Mesoporous Beta Zeolite Catalysts for Benzylation of Naphthalene: Effect of Pore Structure and Acidity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Mesoporous Beta Zeolites
2.2. Acidity of Mesoporous Beta Zeolites
2.2.1. Bulk Acidity of Mesoporous Beta Zeolites by NH3-TPD
2.2.2. Bulk Acidity of Mesoporous Beta Zeolites Using Py-IR
2.2.3. Accessibility of Acids over Mesoporous Beta Zeolites by DTBPy-IR
2.2.4. Accessibility of Acids over Mesoporous Beta Zeolites by Pn-IR
2.3. Benzylation of Naphthalene over Mesoporous Beta Zeolite
3. Experimental
3.1. Catalyst Preparation
3.2. Characterization
3.3. Catalytic Reaction Assessments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Higgins, J.B.; LaPierre, R.B.; Schlenker, J.L.; Rohrman, A.C.; Wood, J.D.; Kerr, G.T.; Rohrbaugh, W.J. The framework topology of zeolite beta. Zeolites 1988, 8, 446–452. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Newsam, J.M. Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth. Nature 1988, 332, 249–251. [Google Scholar] [CrossRef]
- Tanabe, K.; Hölderich, W.F. Industrial application of solid acid-base catalysts. Appl. Catal. A Gen. 1999, 181, 399–434. [Google Scholar] [CrossRef]
- Degnan, T.F.; Smith, C.M.; Venkat, C.R. Alkylation of aromatics with ethylene and propylene: Recent developments in commercial processes. Appl. Catal. A Gen. 2001, 221, 283–294. [Google Scholar] [CrossRef]
- Nivarthy, G.S.; He, Y.; Seshan, K.; Lercher, J.A. Elementary mechanistic steps and the influence of process variables in isobutane alkylation over H-BEA. J. Catal. 1998, 176, 192–203. [Google Scholar] [CrossRef]
- Feller, A.; Guzman, A.; Zuazo, I.; Lercher, J.A. A novel process for solid acid catalyzed isobutane/butene alkylation. Sci. Technol. Catal. 2003, 145, 67–72. [Google Scholar]
- Meng, X.; Nawaz, F.; Xiao, F.S. Templating route for synthesizing mesoporous zeolites with improved catalytic properties. Nano Today 2009, 4, 292–301. [Google Scholar] [CrossRef]
- Valtchev, V.; Majano, G.; Mintova, S.; Pérez-Ramírez, J. Tailored crystalline microporous materials by post-synthesis modification. Chem. Soc. Rev. 2013, 42, 263–290. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Valla, J.; García-Martínez, J. Realizing the Commercial Potential of Hierarchical Zeolites: New Opportunities in Catalytic Cracking. Chemctchem 2014, 6, 46–66. [Google Scholar] [CrossRef]
- Hua, Z.L.; Zhou, J.; Shi, J.L. Recent advances in hierarchically structured zeolites: Synthesis and material performances. Chem. Commun. 2011, 47, 10536–10547. [Google Scholar] [CrossRef] [PubMed]
- Serrano, D.P.; Escola, J.M.; Pizarro, P. Synthesis strategies in the search for hierarchical zeolites. Chem. Soc. Rev. 2013, 42, 4004–4035. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Kanoh, H.; Abrams, L.; Kaneko, K. Mesopore-Modified Zeolites: Preparation, Characterization, and Applications. Chem. Rev. 2006, 106, 896–910. [Google Scholar] [CrossRef] [PubMed]
- Na, K.; Choi, M.; Ryoo, R. Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous Mesoporous Mater. 2013, 166, 3–19. [Google Scholar] [CrossRef]
- Xue, Z.; Ma, J.; Hao, W.; Bai, X.; Kang, Y.; Liu, J.; Li, R. Synthesis and characterization of ordered mesoporous zeolite LTA with high ion exchange ability. J. Mater. Chem. 2012, 22, 2532–2538. [Google Scholar] [CrossRef]
- Dai, G.; Ma, J.; Xiao, H.; Hao, W.; Li, R. Mesoporous EU-1 zeolite with enhanced accessibility and diffusion for bulky molecular reaction. Mater. Res. Bull. 2018, 100, 76–82. [Google Scholar] [CrossRef]
- Dai, G.; Hao, W.; Xiao, H.; Ma, J.; Li, R. Hierarchical mordenite zeolite nano-rods bundles favourable to bulky molecules. Chem. Phys. Lett. 2017, 686, 111–115. [Google Scholar] [CrossRef]
- Zhang, Q.; Ming, W.; Ma, J.; Zhang, J.; Wang, P.; Li, R. De novo assembly of a mesoporous beta zeolite with intracrystalline channels and its catalytic performance for biodiesel production. J. Mater. Chem. A 2014, 2, 8712–8718. [Google Scholar] [CrossRef]
- Coq, B.; Gourves, V.; Figuéras, F. Benzylation of toluene by benzyl chloride over protonic zeolites. Appl. Catal. A Gen. 1993, 100, 69–75. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Jana, S.K.; Kiran, B.P. Alkylation of benzene by benzyl chloride over H-ZSM-5 zeolite with its framework Al completely or partially substituted by Fe or Ga. Catal. Lett. 1999, 59, 217–219. [Google Scholar] [CrossRef]
- Kim, J.C.; Cho, K.; Lee, S.; Ryoo, R. Mesopore wall-catalyzed Friedel-Crafts acylation of bulky aromatic compounds in MFI zeolite nanosponge. Catal. Today 2015, 243, 103–108. [Google Scholar] [CrossRef]
- Kim, J.C.; Cho, K.; Ryoo, R. High catalytic performance of surfactant-directed nanocrystalline zeolites for liquid-phase Friedel-Crafts alkylation of benzene due to external surfaces. Appl. Catal. A Gen. 2014, 470, 420–426. [Google Scholar] [CrossRef]
- Jin, H.; Ansari, M.B.; Jeong, E.Y.; Park, S.E. Effect of mesoporosity on selective benzylation of aromatics with benzyl alcohol over mesoporous ZSM-5. J. Catal. 2012, 291, 55–62. [Google Scholar] [CrossRef]
- Yutthalekha, T.; Wattanakit, C.; Warakulwit, C.; Wannapakdee, W.; Rodponthukwaji, K.; Witoon, T.; Limtrakul, J. Hierarchical FAU-type zeolite nanosheets as green and sustainable catalysts for benzylation of toluene. J. Clean. Prod. 2017, 142, 1244–1251. [Google Scholar] [CrossRef]
- Miao, H.; Zhang, W.; Hu, S.; Ma, J.; Li, R. A practicable mesostructured MFI zeolitic catalyst for large molecule reactions. Catal. Commun. 2016, 78, 68–70. [Google Scholar] [CrossRef]
- Leng, K.; Wang, Y.; Hou, C.; Lancelot, C.; Lamonier, C.; Rives, A.; Sun, Y. Enhancement of catalytic performance in the benzylation of benzene with benzyl alcohol over hierarchical mordenite. J. Catal. 2013, 306, 100–108. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Simon-Masseron, A.; Marques, J.P.; Lopes, J.M.; Ribeiro, F.R.; Gener, I.; Guisnet, M. Influence of the Si/Al ratio and crystal size on the acidity and activity of HBEA zeolites. Appl. Catal. A Gen. 2007, 316, 75–82. [Google Scholar] [CrossRef]
- Maier, S.M.; Jentys, A.; Lercher, J.A. Steaming of zeolite BEA and its effect on acidity: A comparative NMR and IR spectroscopic study. J. Phys. Chem. C 2011, 115, 8005–8013. [Google Scholar] [CrossRef]
- Busca, G. Acidity and basicity of zeolites: A fundamental approach. Microporous Mesoporous Mater. 2017, 254, 3–16. [Google Scholar] [CrossRef]
- Sandoval-Díaz, L.-E.; Gonzalez-Amaya, J.-A.; Trujillo, C.-A. General aspects of zeolite acidity characterization. Microporous Mesoporous Mater. 2015, 215, 229–243. [Google Scholar] [CrossRef]
- Candu, N.; Florea, M.; Coman, S.M.; Parvulescu, V.I. Benzylation of benzene with benzyl alcohol on zeolite catalysts. Appl. Catal. A Gen. 2011, 393, 206–214. [Google Scholar] [CrossRef]
- Parry, E.P. An Infrared Study of Pyridine Adsorbed Characterization of Surface. J. Catal. 1963, 379, 371–379. [Google Scholar] [CrossRef]
- Koo, J.B.; Jiang, N.; Saravanamurugan, S.; Bejblová, M.; Musilová, Z.; Čejka, J.; Park, S.E. Direct synthesis of carbon-templating mesoporous ZSM-5 using microwave heating. J. Catal. 2010, 276, 327–334. [Google Scholar] [CrossRef]
- Trombetta, M.; Busca, G.; Lenarda, M.; Storaro, L.; Pavan, M. An investigation of the surface acidity of mesoporous Al-containing MCM-41 and of the external surface of ferrierite through pivalonitrile adsorption. Appl. Catal. A Gen. 1999, 182, 225–235. [Google Scholar] [CrossRef]
- Kuehl, G.H.; Timken, H.K.C. Acid sites in zeolite Beta: Effects of ammonium exchange and steaming. Microporous Mesoporous Mater. 2000, 35, 521–532. [Google Scholar] [CrossRef]
- Bejblová, M.; Procházková, D.; Čejka, J. Acylation reactions over zeolites and mesoporous catalysts. ChemSusChem 2009, 2, 486–499. [Google Scholar] [CrossRef] [PubMed]
Sample | a SBET (m2/g) | b Smic (m2/g) | c SEXT (m2/g) | d Vmic (cm3/g) | e Vmeso (cm3/g) |
---|---|---|---|---|---|
CB | 742 | 679 | 63 | 0.28 | 0.05 |
MB1 | 764 | 614 | 150 | 0.27 | 0.15 |
MB2 | 764 | 573 | 191 | 0.26 | 0.24 |
MB3 | 814 | 472 | 342 | 0.22 | 0.50 |
MB4 | 931 | 375 | 556 | 0.16 | 0.92 |
Sample | SEXT (cm2/g) | a TL(K) | b TM (K) | c TH (K) | d ATL (%) | e ATM (%) | f ATH (%) |
---|---|---|---|---|---|---|---|
CB | 63 | 508 | 542 | 640 | 11.7 | 17.3 | 71.0 |
MB1 | 150 | 497 | 536 | 634 | 13.7 | 21.0 | 65.3 |
MB2 | 191 | 491 | 530 | 629 | 12.4 | 19.6 | 68.0 |
MB3 | 342 | 489 | 525 | 629 | 11.8 | 22.0 | 66.2 |
MB4 | 556 | 504 | 556 | 649 | 21.0 | 29.5 | 49.5 |
Sample | Py-IR | DTBPy-IR | Pn-IR | ||
---|---|---|---|---|---|
LPy (μmol/g) | BPy (μmol/g) | Py-B + L (μmol/g, 423 K) | BDTBPy (μmol/g, 423 K) | LPn (μmol/g, 303 K) | |
CB | 101 (423 K) | 209 (423 K) | |||
71 (523 K) | 206 (523 K) | 310 | -- | -- | |
60 (623 K) | 179 (623 K) | ||||
MB1 | 189 (423 K) | 177 (423 K) | |||
144 (523 K) | 162 (523 K) | 366 | 37 | 117 | |
112 (623 K) | 96 (623 K) | ||||
MB2 | 168 (423 K) | 208 (423 K) | |||
145 (523 K) | 194 (523 K) | 376 | 81 | 118 | |
111 (623 K) | 115 (623 K) | ||||
MB3 | 112 (423 K) | 152 (423 K) | |||
98 (523 K) | 131 (523 K) | 264 | 92 | 120 | |
79 (623 K) | 92 (623 K) | ||||
MB4 | 181 (423 K) | 241 (423 K) | |||
144 (523 K) | 198 (523 K) | 422 | 216 | 164 | |
132 (623 K) | 123 (623 K) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, W.; Zhang, W.; Guo, Z.; Ma, J.; Li, R. Mesoporous Beta Zeolite Catalysts for Benzylation of Naphthalene: Effect of Pore Structure and Acidity. Catalysts 2018, 8, 504. https://doi.org/10.3390/catal8110504
Hao W, Zhang W, Guo Z, Ma J, Li R. Mesoporous Beta Zeolite Catalysts for Benzylation of Naphthalene: Effect of Pore Structure and Acidity. Catalysts. 2018; 8(11):504. https://doi.org/10.3390/catal8110504
Chicago/Turabian StyleHao, Wenming, Weimin Zhang, Zaibin Guo, Jinghong Ma, and Ruifeng Li. 2018. "Mesoporous Beta Zeolite Catalysts for Benzylation of Naphthalene: Effect of Pore Structure and Acidity" Catalysts 8, no. 11: 504. https://doi.org/10.3390/catal8110504
APA StyleHao, W., Zhang, W., Guo, Z., Ma, J., & Li, R. (2018). Mesoporous Beta Zeolite Catalysts for Benzylation of Naphthalene: Effect of Pore Structure and Acidity. Catalysts, 8(11), 504. https://doi.org/10.3390/catal8110504