Hypertension Assessment Using Photoplethysmography: A Risk Stratification Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. PPG Signal Pre-Processing
2.3. Feature Extraction
2.3.1. Time Span
2.3.2. Features of PPG Amplitude
2.3.3. Features of VPG and APG
2.3.4. Waveform Area
2.3.5. Power Area
2.3.6. Ratio
2.3.7. Slope
2.4. Feature Selection Methods
2.5. Classification Model
3. Results
3.1. Correlation Coefficient between the SBP and Features
3.2. Top 10 Features Ranking
3.3. Model Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gepner, A.D.; Tedla, Y.; Colangelo, L.A.; Tattersall, M.C.; Korcarz, C.E.; Kaufman, J.D.; Liu, K.; Burke, G.L.; Shea, S.; Greenland, P.; et al. Progression of Carotid Arterial Stiffness with Treatment of Hypertension Over 10 Years: The Multi-Ethnic Study of Atherosclerosis. Hypertension 2017, 69, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Alhamdow, A.; Lindh, C.; Albin, M.; Gustavsson, P.; Tinnerberg, H.; Broberg, K. Early markers of cardiovascular disease are associated with occupational exposure to polycyclic aromatic hydrocarbons. Sci. Rep. 2017, 7, 9426. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.A.; Daskalopoulou, S.S.; Dasgupta, K.; McBrien, K.; Butalia, S.; Zarnke, K.B.; Nerenberg, K.; Harris, K.C.; Nakhla, M.; Cloutier, L.; et al. Hypertension Canada’s 2017 Guidelines for Diagnosis, Risk Assessment, Prevention, and Treatment of Hypertension in Adults. Can. J. Cardiol. 2017, 33, 557–576. [Google Scholar] [CrossRef] [PubMed]
- Drawz, P.E.; Pajewski, N.M.; Bates, J.T.; Bello, N.A.; Cushman, W.C.; Dwyer, J.P.; Fine, L.J.; Goff, D.C., Jr.; Haley, W.E.; Krousel-Wood, M.; et al. Effect of Intensive Versus Standard Clinic-Based Hypertension Management on Ambulatory Blood Pressure: Results from the SPRINT (Systolic Blood Pressure Intervention Trial) Ambulatory Blood Pressure Study. Hypertension 2017, 69, 42–50. [Google Scholar] [CrossRef]
- Kachuee, M.; Kiani, M.M.; Mohammadzade, H.; Shabany, M. Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring. IEEE Trans. Biomed. Eng. 2017, 64, 859–869. [Google Scholar] [CrossRef]
- Atomi, K.; Kawanaka, H.; Bhuiyan, M.S.; Oguri, K. Cuffless Blood Pressure Estimation Based on Data-Oriented Continuous Health Monitoring System. Comput. Math. Methods Med. 2017, 2017, 1803485. [Google Scholar] [CrossRef] [PubMed]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef]
- Watanabe, N.; Bando, Y.K.; Kawachi, T.; Yamakita, H.; Futatsuyama, K.; Honda, Y.; Yasui, H.; Nishimura, K.; Kamihara, T.; Okumura, T.; et al. Development and Validation of a Novel Cuff-Less Blood Pressure Monitoring Device. JACC Basic Transl. Sci. 2017, 2, 631–642. [Google Scholar] [CrossRef]
- Korotkoff, N.S. On methods of studying blood pressure. Bull. Imp. Mil. Med. Acad. 1905, 11, 365–367. [Google Scholar]
- Yan, Y.S.; Zhang, Y.T. Noninvasive estimation of blood pressure using photoplethysmographic signals in the period domain. In Proceedings of the Annual International Conference, Shanghai, China, 17–18 January 2005; Volume 4, pp. 3583–3584. [Google Scholar] [CrossRef]
- Hui, X.; Kan, E.C. Monitoring vital signs over multiplexed radio by near-field coherent sensing. Nat. Electron. 2017. [Google Scholar] [CrossRef]
- Hosseini, Z.S.; Zahedi, E.; Movahedian Attar, H.; Fakhrzadeh, H.; Parsafar, M.H. Discrimination between different degrees of coronary artery disease using time-domain features of the finger photoplethysmogram in response to reactive hyperemia. Biomed. Signal Process. Control 2015, 18, 282–292. [Google Scholar] [CrossRef]
- Elgendi, M. On the analysis of fingertip photoplethysmogram signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [Google Scholar] [CrossRef]
- Elgendi, M.; Fletcher, R.R.; Norton, I.; Brearley, M.; Abbott, D.; Lovell, N.H.; Schuurmans, D. Frequency analysis of photoplethysmogram and its derivatives. Comput. Methods Prog. Biomed. 2015, 122, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.M.; Craft, S.; Lopez, O.L. Review of ‘the potential role of arterial stiffness in the pathogenesis of Alzheimer’s disease’. Neurodegener. Dis. Manag. 2015, 5, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Mukkamala, R.; Hahn, J.O.; Inan, O.T.; Mestha, L.K.; Kim, C.S.; Toreyin, H.; Kyal, S. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. IEEE Trans. Bio-Med. Eng. 2015, 62, 1879–1901. [Google Scholar] [CrossRef]
- Palmeri, L.; Gradwohl, G.; Nitzan, M.; Hoffman, E.; Adar, Y.; Shapir, Y.; Koppel, R. Photoplethysmographic waveform characteristics of newborns with coarctation of the aorta. J. Perinatol. 2017, 37, 77–80. [Google Scholar] [CrossRef]
- Allen, J.; Murray, A. Age-related changes in peripheral pulse timing characteristics at the ears, fingers and toes. J. Hum. Hypertens. 2002, 16, 711–717. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.; Min, S.D. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: Normotensive subject study. Biomed. Eng. Online 2017, 16, 10. [Google Scholar] [CrossRef]
- Alian, A.A.; Shelley, K.H. Photoplethysmography. Best practice & research. Clin. Anaesthesiol. 2014, 28, 395–406. [Google Scholar] [CrossRef]
- Nichols, W.; O’Rourke, M.; Vlachopoulos, C. (Eds.) McDonald’s Blood Flow in Arteries: Theoretical; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Tang, S.C.; Huang, P.W.; Hung, C.S.; Shan, S.M.; Lin, Y.H.; Shieh, J.S.; Lai, D.M.; Wu, A.Y.; Jeng, J.S. Identification of Atrial Fibrillation by Quantitative Analyses of Fingertip Photoplethysmogram. Sci. Rep. 2017, 7, 45644. [Google Scholar] [CrossRef] [Green Version]
- Koivistoinen, T.; Lyytikäinen, L.P.; Aatola, H.; Luukkaala, T.; Juonala, M.; Viikari, J.; Lehtimäki, T.; Raitakari, O.T.; Kähönen, M.; Hutri-Kähönen, N. Pulse Wave Velocity Predicts the Progression of Blood Pressure and Development of Hypertension in Young Adults. Hypertension 2018. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Yan, B.P.; Zhang, Y.T.; Liu, J.; Zhao, N.; Tsang, H.K. Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New Extension and A Comprehensive Evaluation. Sci. Rep. 2017, 7, 11554. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M.; Fletcher, R.; Norton, I.; Brearley, M.; Abbott, D.; Lovell, N.H.; Schuurmans, D. On Time Domain Analysis of Photoplethysmogram Signals for Monitoring Heat Stress. Sensors 2015, 15, 24716. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Chen, Z.; Liu, G.; Elgendi, M. A new, short-recorded photoplethysmogram dataset for blood pressure monitoring in China. Sci. Data 2018, 5, 180020. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Elgendi, M.; Chen, Z.; Ward, R. An optimal filter for short photoplethysmogram signals. Sci. Data 2018, 5, 180076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Chen, Z.; Ward, R.; Elgendi, M. Hypertension Assessment via ECG and PPG Signals: An Evaluation Using MIMIC Database. Diagnostics 2018, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Martínez, G.; Howard, N.; Abbott, D.; Lim, K.; Ward, R.; Elgendi, M. Can Photoplethysmography Replace Arterial Blood Pressure in the Assessment of Blood Pressure? J. Clin. Med. 2018, 7, 316. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M.; Liang, Y.; Ward, R. Toward Generating More Diagnostic Features from Photoplethysmogram Waveforms. Diseases 2018, 6, 20. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, Z.; Ward, R.; Elgendi, M. Photoplethysmography and Deep Learning: Enhancing Hypertension Risk Stratification. Biosensors 2018, 8, 101. [Google Scholar] [CrossRef]
- Elgendi, M. Optimal Signal Quality Index for Photoplethysmogram Signals. Bioengineering 2016, 3, 21. [Google Scholar] [CrossRef]
- Suganthi, L.; Manivannan, M.; Kunwar, B.K.; Joseph, G.; Danda, D. Morphological analysis of peripheral arterial signals in Takayasu’s arteritis. J. Clin. Monit. Comput. 2015, 29, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M. TERMA Framework for Biomedical Signal Analysis: An Economic-Inspired Approach. Biosensors 2016, 6, 55. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M. Eventogram: A Visual Representation of Main Events in Biomedical Signals. Bioengineering 2016, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M. Detection of c, d, and e waves in the acceleration photoplethysmogram. Comput. Methods Prog. Biomed. 2014, 117, 125–136. [Google Scholar] [CrossRef]
- Elgendi, M.; Norton, I.; Brearley, M.; Abbott, D.; Schuurmans, D. Detection of a and b waves in the acceleration photoplethysmogram. Biomed. Eng. Online 2014, 13, 139. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Morstatter, F.; Sharma, S.; Alelyani, S.; Anand, A.; Liu, H. Advancing Feature Selection Research; ASU: Tempe, AZ, USA, 2010; pp. 1–28. [Google Scholar]
- Alhaj, T.A.; Siraj, M.M.; Zainal, A.; Elshoush, H.T.; Elhaj, F. Feature Selection Using Information Gain for Improved Structural-Based Alert Correlation. PLoS ONE 2016, 11, e0166017. [Google Scholar] [CrossRef]
- Hauke, J.; Kossowski, T. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data. Quaest. Geogr. 2011, 30. [Google Scholar] [CrossRef]
- Robnik-Šikonja, M.; Kononenko, I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53, 23–69. [Google Scholar] [CrossRef]
- Yu, H. Efficient Feature Selection via Analysis of Relevance and Redundancy. J. Mach. Learn. Res. 2004, 5, 1205–1224. [Google Scholar]
- Lin, W.-H.; Wang, H.; Samuel, O.W.; Liu, G.; Huang, Z.; Li, G. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy. Physiol. Meas. 2018, 39, 025005. [Google Scholar] [CrossRef] [Green Version]
- Hsiu, H.; Hsu, C.L.; Wu, T.L. Effects of different contacting pressure on the transfer function between finger photoplethysmographic and radial blood pressure waveforms. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2011, 225, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Jeong, I.; Jun, S.; Um, D.; Oh, J.; Yoon, H. Non-invasive estimation of systolic blood pressure and diastolic blood pressure using photoplethysmograph components. Yonsei Med. J. 2010, 51, 345–353. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Zhang, L.; Yang, X.; Song, J. Characters available in photoplethysmogram for blood pressure estimation: Beyond the pulse transit time. Aust. Phys. Eng. Sci. Med. 2014, 37, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kim, K.K.; Baek, H.J.; Park, K.S. Effect of confounding factors on blood pressure estimation using pulse arrival time. Physiol. Meas. 2008, 29, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Pombo, N.; Garcia, N.; Bousson, K. Classification techniques on computerized systems to predict and/or to detect Apnea: A systematic review. Comput. Methods Prog. Biomed. 2017, 140, 265–274. [Google Scholar] [CrossRef]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1–R39. [Google Scholar] [CrossRef]
- Allen, J.; Murray, A. Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites. Physiol. Meas. 2003, 24, 297–307. [Google Scholar] [CrossRef]
- Elgendi, M.; Howard, N.; Lovell, N.; Cichocki, A.; Brearley, M.; Abbott, D.; Adatia, I. A Six-Step Framework on Biomedical Signal Analysis for Tackling Noncommunicable Diseases: Current and Future Perspectives. JMIR Biomed. Eng. 2016, 1, e1. [Google Scholar] [CrossRef]
- Gudsoorkar, P.S.; Tobe, S.W. Changing concepts in hypertension management. J. Hum. Hypertens. 2017. [Google Scholar] [CrossRef]
- Bruno, R.M.; Duranti, E.; Ippolito, C.; Segnani, C.; Bernardini, N.; Di Candio, G.; Chiarugi, M.; Taddei, S.; Virdis, A. Different Impact of Essential Hypertension on Structural and Functional Age-Related Vascular Changes. Hypertension 2017, 69, 71–78. [Google Scholar] [CrossRef] [Green Version]
Index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Feature | (b-c-d)/a | c−2 | b−2 | |||||||
Correlation coefficient | 0.6903 | 0.6721 | 0.6181 | 0.6164 | 0.5332 | −0.4722 | −0.5928 | −0.6353 | −0.6391 | −0.6482 |
p-value | 0.0001 | 0.0009 | 0.0013 | 0.0017 | 0.0425 | 0.0443 | 0.0058 | 0.0004 | 0.00003 | 0.0079 |
Feature Rank | Spearman | ReliefF | Info Gain | Chi2 | mRMR | Gini |
---|---|---|---|---|---|---|
1 | (b−c−d)/a | c−1/w | ||||
2 | (b−c−d)/a | (b−c−d)/a | c−1/w | (b−c−d−e)/a | ||
3 | c−2 | c−1/w | ||||
4 | c−2 | (b−c−d−e)/a | ||||
5 | c−2 | c−1/w | c−1/w | (b−c−d)/a | ||
6 | (b−c−d)/a | (b−c−d−e)/a | c−1 | |||
7 | d | |||||
8 | b−2 | c−2 | c−2 | |||
9 | c−1 | c−1 | ||||
10 | c−1 | (b−c−d)/a |
LDA | LR | Cubic SVM | Weight KNN | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Index | PP | SE | F1 | PP | SE | F1 | PP | SE | F1 | PP | SE | F1 | |
Normal (n = 48) vs. Prehyp. (n = 41) | Spearman | 75.76% | 60.98% | 67.57% | 70.27% | 63.41% | 66.67% | 67.57% | 60.98% | 64.10% | 75.00% | 58.54% | 65.75% |
ReliefF | 71.79% | 68.29% | 70.00% | 74.36% | 70.73% | 72.50% | 65.12% | 68.29% | 66.67% | 81.82% | 65.85% | 72.97% | |
Info Gain | 78.13% | 60.98% | 68.49% | 73.53% | 60.98% | 66.67% | 60.00% | 51.22% | 55.26% | 80.65% | 60.98% | 69.44% | |
Chi2 | 70.27% | 63.41% | 66.67% | 72.73% | 58.54% | 64.86% | 55.00% | 53.66% | 54.32% | 75.00% | 58.54% | 65.75% | |
mRMR | 79.41% | 65.85% | 72.00% | 76.47% | 63.41% | 69.33% | 55.56% | 60.98% | 58.14% | 71.43% | 60.98% | 65.79% | |
Gini | 70.59% | 58.54% | 64.00% | 67.57% | 60.98% | 64.10% | 58.54% | 58.54% | 58.54% | 73.53% | 60.98% | 66.67% | |
Normal (n = 48) vs. Hyp. (n = 35) | Spearman | 93.33% | 80.00% | 86.15% | 91.18% | 88.57% | 89.86% | 88.57% | 88.57% | 88.57% | 90.32% | 80.00% | 84.85% |
ReliefF | 93.55% | 82.86% | 87.88% | 87.50% | 80.00% | 83.58% | 96.77% | 85.71% | 90.91% | 93.75% | 85.71% | 89.55% | |
Info Gain | 93.55% | 82.86% | 87.88% | 82.86% | 82.86% | 82.86% | 100.00% | 82.86% | 90.63% | 93.55% | 82.86% | 87.88% | |
Chi2 | 93.10% | 77.14% | 84.38% | 87.88% | 82.86% | 85.29% | 100.00% | 77.14% | 87.10% | 96.67% | 82.86% | 89.23% | |
mRMR | 87.10% | 77.14% | 81.82% | 78.38% | 82.86% | 80.56% | 96.77% | 85.71% | 90.91% | 100.00% | 85.71% | 92.31% | |
Gini | 93.33% | 80.00% | 86.15% | 87.88% | 82.86% | 85.29% | 100.00% | 80.00% | 88.89% | 93.55% | 82.86% | 87.88% | |
Normal + Prehyp. (n = 89) vs. Hyp. (n = 35) | Spearman | 59.26% | 45.71% | 51.61% | 62.86% | 62.86% | 62.86% | 65.52% | 54.29% | 59.38% | 86.36% | 54.29% | 66.67% |
ReliefF | 68.97% | 57.14% | 62.50% | 60.00% | 60.00% | 60.00% | 87.10% | 77.14% | 81.82% | 87.50% | 60.00% | 71.19% | |
Info Gain | 69.57% | 45.71% | 55.17% | 60.61% | 57.14% | 58.82% | 58.33% | 40.00% | 47.46% | 76.19% | 45.71% | 57.14% | |
Chi2 | 64.00% | 45.71% | 53.33% | 54.55% | 51.43% | 52.94% | 76.00% | 54.29% | 63.33% | 88.89% | 45.71% | 60.38% | |
mRMR | 73.08% | 54.29% | 62.30% | 67.86% | 54.29% | 60.32% | 52.50% | 60.00% | 56.00% | 76.00% | 54.29% | 63.33% | |
Gini | 66.67% | 51.43% | 58.06% | 59.38% | 54.29% | 56.72% | 79.17% | 54.29% | 64.41% | 84.00% | 60.00% | 70.00% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Chen, Z.; Ward, R.; Elgendi, M. Hypertension Assessment Using Photoplethysmography: A Risk Stratification Approach. J. Clin. Med. 2019, 8, 12. https://doi.org/10.3390/jcm8010012
Liang Y, Chen Z, Ward R, Elgendi M. Hypertension Assessment Using Photoplethysmography: A Risk Stratification Approach. Journal of Clinical Medicine. 2019; 8(1):12. https://doi.org/10.3390/jcm8010012
Chicago/Turabian StyleLiang, Yongbo, Zhencheng Chen, Rabab Ward, and Mohamed Elgendi. 2019. "Hypertension Assessment Using Photoplethysmography: A Risk Stratification Approach" Journal of Clinical Medicine 8, no. 1: 12. https://doi.org/10.3390/jcm8010012
APA StyleLiang, Y., Chen, Z., Ward, R., & Elgendi, M. (2019). Hypertension Assessment Using Photoplethysmography: A Risk Stratification Approach. Journal of Clinical Medicine, 8(1), 12. https://doi.org/10.3390/jcm8010012