The Fabrication of Nanostructures on Polydimethylsiloxane by Laser Interference Lithography
Abstract
:1. Introduction
2. Materials and Methods
2.1. PDMS Thin Film Preparation
2.2. Interference Lithography
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hinchet, R.; Seung, W.; Kim, S.-W. Recent Progress on Flexible Triboelectric Nanogenerators for SelfPowered Electronics. ChemSusChem 2015, 8, 2327–2344. [Google Scholar] [CrossRef] [PubMed]
- Rim, Y.S.; Bae, S.-H.; Chen, H.; De Marco, N.; Yang, Y. Recent Progress in Materials and Devices toward Printable and Flexible Sensors. Adv. Mater. 2016, 28, 4415–4440. [Google Scholar] [CrossRef] [PubMed]
- Hill, S.; Qian, W.; Chen, W.; Fu, J. Surface micromachining of polydimethylsiloxane for microfluidics applications. Biomicrofluidics 2016, 10, 054114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, K.; Chen, D.; Yang, F.; Wang, Z.; Yin, L.; Wang, F.; Cheng, R.; Liu, K.; Xiong, J.; Liu, Q.; et al. Sub-10 nm Nanopattern Architecture for 2D Material Field-Effect Transistors. Nano Lett. 2017, 17, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, R.; Sakuma, H.; Imade, Y.; Otsuka, P.H.; Tomoda, M.; Matsuda, O.; Kim, H.; Park, G.-W.; Wright, O.B. Elucidating gigahertz acoustic modulation of extraordinary optical transmission through a two-dimensional array of nano-holes. Appl. Phys. Lett. 2017, 110, 091910. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Chang, H.-Y.; Lu, J.-K.; Huang, Y.-C.; Harroun, S.G.; Tseng, Y.-T.; Li, Y.-J.; Huang, C.-C.; Chang, H.-T. Self-Assembly of Antimicrobial Peptides on Gold Nanodots: Against Multidrug-Resistant Bacteria and Wound-Healing Application. Adv. Funct. Mater. 2015, 25, 7189–7199. [Google Scholar] [CrossRef]
- Deng, S.; Chen, R.; Zhou, W.; Ho, J.Y.L.; Wong, M.; Kwok, H.-S. Fabrication of High-Performance Bridged-Grain Polycrystalline Silicon TFTs by Laser Interference Lithography. IEEE Trans. Electron Devices 2016, 63, 1085–1090. [Google Scholar] [CrossRef]
- Seo, J.-H.; Park, J.; Zhao, D.; Yang, H.; Zhou, W.; Ju, B.-K.; Ma, Z. Large-Area Printed Broadband Membrane Reflectors by Laser Interference Lithography. IEEE Photonics J. 2013, 5, 2200106. [Google Scholar]
- Chantiwas, R.; Park, S.; Soper, S.A.; Kim, B.C.; Takayama, S.; Sunkara, V.; Hwang, H.; Cho, Y.-K. Flexible fabrication and applications of polymer nanochannels and nanoslits. Chem. Soc. Rev. 2011, 40, 3677. [Google Scholar] [CrossRef] [Green Version]
- McDonald, J.C.; Duffy, D.C.; Anderson, J.R.; Chiu, D.T.; Wu, H.; Schueller, O.J.A.; Whitesides, G.M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000, 21, 27–40. [Google Scholar] [CrossRef]
- Diebold, R.M.; Clarke, D.R. Lithographic patterning on polydimethylsiloxane surfaces using polydimethylglutarimide. Lab Chip 2011, 11, 1694. [Google Scholar] [CrossRef] [PubMed]
- Nagaraj, K.S.; Sangeeth, K.; Hegde, G.M. Nanostructure patterning on flexible substrates using electron beam lithography. In Proceedings of the International Conference on Experimental Mechanics and Twelfth Asian Conference on Experimental Mechanics, Bangkok, Thailand, 25–27 November 2013; Sirisoonthorn, S., Ed.; SPIE: Bellingham, WA, USA, 2014; p. 923415. [Google Scholar]
- Qiao, W.; Huang, W.; Liu, Y.; Li, X.; Chen, L.-S.; Tang, J.-X. Toward Scalable Flexible Nanomanufacturing for Photonic Structures and Devices. Adv. Mater. 2016, 28, 10353–10380. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Gates, B.; Xia, Y. A Soft Lithography Approach to the Fabrication of Nanostructures of Single Crystalline Silicon with Well-Defined Dimensions and Shapes. Adv. Mater. 2000, 12, 1426–1430. [Google Scholar] [CrossRef]
- Bjørnsen, G.; Roots, J.; Henriksen, L. Patterning of soft polydimethylsiloxane elastomers using plasma etching. J. Appl. Polym. Sci. 2011, 119, 888–895. [Google Scholar] [CrossRef]
- Lan, H.; Ding, Y.; Liu, H.; Que, Y.; Tao, W.; Li, H.; Lu, B. Mold deformation in soft UV-nanoimprint lithography. Sci. China Ser. E Technol. Sci. 2009, 52, 294–302. [Google Scholar] [CrossRef]
- Santos, A.; Deen, M.J.; Marsal, L.F. Low-cost fabrication technologies for nanostructures: State-of-the-art and potential. Nanotechnology 2015, 26, 042001. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Feng, S. Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures. Nanotechnology 2009, 20, 425303. [Google Scholar] [CrossRef]
- Abid, M.I.; Wang, L.; Chen, Q.-D.; Wang, X.-W.; Juodkazis, S.; Sun, H.-B. Angle-multiplexed optical printing of biomimetic hierarchical 3D textures: Angle-multiplexed optical printing. Laser Photonics Rev. 2017, 11, 1600187. [Google Scholar] [CrossRef]
- Kondo, T.; Yamasaki, K.; Juodkazis, S.; Matsuo, S.; Mizeikis, V.; Misawa, H. Three-dimensional microfabrication by femtosecond pulses in dielectrics. Thin Solid Films 2004, 453–454, 550–556. [Google Scholar] [CrossRef]
- Fang, Y.; Dai, L.; Yang, F.; Yue, G.; Zuo, P.; Chen, H. Fabrication of metal nano-wires by laser interference lithography using a tri-layer resist process. Opt. Quantum Electron. 2016, 48. [Google Scholar] [CrossRef]
- Lin, T.H.; Yang, Y.-K.; Mai, H.-Y.; Fu, C.-C. Improved multi-beam laser interference lithography system by vibration analysis model. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 26 February–3 March 2017; Sanchez, M.I., Ukraintsev, V.A., Eds.; SPIE: Bellingham, WA, USA, 2017; p. 101452O. [Google Scholar]
- Zahid, A.; Dai, B.; Hong, R.; Zhang, D. Optical properties study of silicone polymer PDMS substrate surfaces modified by plasma treatment. Mater. Res. Express 2017, 4, 105301. [Google Scholar] [CrossRef] [Green Version]
- Siddique, R.H.; Hünig, R.; Faisal, A.; Lemmer, U.; Hölscher, H. Fabrication of hierarchical photonic nanostructures inspired by Morpho butterflies utilizing laser interference lithography. Opt. Mater. Express 2015, 5, 996–1005. [Google Scholar] [CrossRef]
- Lin, T.-H.; Yang, Y.-K.; Fu, C.-C. Integration of multiple theories for the simulation of laser interference lithography processes. Nanotechnology 2017, 28, 475301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biyikli, N.; Kimukin, I.; Butun, B.; Aytur, O.; Ozbay, E. ITO-Schottky Photodiodes for High-Performance Detection in the UV–IR Spectrum. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 759–765. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Geng, Z.; Xie, Y.; Fan, Z.; Su, Y.; Xu, C.; Chen, H. The Fabrication of Nanostructures on Polydimethylsiloxane by Laser Interference Lithography. Nanomaterials 2019, 9, 73. https://doi.org/10.3390/nano9010073
Wu J, Geng Z, Xie Y, Fan Z, Su Y, Xu C, Chen H. The Fabrication of Nanostructures on Polydimethylsiloxane by Laser Interference Lithography. Nanomaterials. 2019; 9(1):73. https://doi.org/10.3390/nano9010073
Chicago/Turabian StyleWu, Jun, Zhaoxin Geng, Yiyang Xie, Zhiyuan Fan, Yue Su, Chen Xu, and Hongda Chen. 2019. "The Fabrication of Nanostructures on Polydimethylsiloxane by Laser Interference Lithography" Nanomaterials 9, no. 1: 73. https://doi.org/10.3390/nano9010073
APA StyleWu, J., Geng, Z., Xie, Y., Fan, Z., Su, Y., Xu, C., & Chen, H. (2019). The Fabrication of Nanostructures on Polydimethylsiloxane by Laser Interference Lithography. Nanomaterials, 9(1), 73. https://doi.org/10.3390/nano9010073