Effects of Mediterranean Diet and Physical Activity on Pulmonary Function: A Cross-Sectional Analysis in the ILERVAS Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Study and Description of the Study Population
2.2. Pulmonary Function Measurements
2.3. Adherence to Mediterranean Diet Assessment
2.4. Physical Activity Level and Type Assessment
2.5. Covariate Assessment
2.6. Ethical Approval
2.7. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Castro-Quezada, I.; Román-Viñas, B.; Serra-Majem, L. The mediterranean diet and nutritional adequacy: A review. Nutrients 2014, 6, 231–248. [Google Scholar] [CrossRef]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet; a Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef]
- Rees, K.; Hartley, L.; Flowers, N.; Clarke, A.; Hooper, L.; Thorogood, M.; Stranges, S. ‘Mediterranean’ dietary pattern for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2013, 8, CD009825. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Itsiopoulos, C.; Kucianski, T.; Mayr, H.L.; van Gaal, W.J.; Martinez-Gonzalez, M.A.; Vally, H.; Kingsley, M.; Kouris-Blazos, A.; Radcliffe, J.; Segal, L.; et al. The AUStralian MEDiterranean diet heart trial (AUSMED heart trial): A randomized clinical trial in secondary prevention of coronary heart disease in a multi-ethnic Australian population: Study protocol. Am. Heart J. 2018, 203, 4–11. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Roman, B.; Estruch, R. Scientific evidence of interventions using the Mediterranean diet: A systematic review. Nutr. Rev. 2006, 64, S27–S47. [Google Scholar] [CrossRef]
- Godos, J.; Zappalà, G.; Bernardini, S.; Giambini, I.; Bes-Rastrollo, M.; Martinez-Gonzalez, M. Adherence to the Mediterranean diet is inversely associated with metabolic syndrome occurrence: A meta-analysis of observational studies. Int. J. Food Sci. Nutr. 2017, 68, 138–148. [Google Scholar] [CrossRef]
- Esposito, K.; Maiorino, M.I.; Ciotola, M.; Di Palo, C.; Scognamiglio, P.; Gicchino, M.; Petrizzo, M.; Saccomanno, F.; Beneduce, F.; Ceriello, A.; et al. Effects of Mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: A randomized trial. Ann. Intern. Med. 2009, 151, 306–314. [Google Scholar] [CrossRef]
- Grosso, G.; Marventano, S.; Yang, J.; Micek, A.; Pajak, A.; Scalfi, L. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: Are individual components equal? Crit. Rev. Food Sci. Nutr. 2017, 57, 3218–3232. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G. Adherence to Mediterranean diet and risk of cancer: A systematic review and metaanalysis of observational studies. Int. J. Cancer 2014, 135, 1884–1897. [Google Scholar] [CrossRef]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; De la Torre, R.; Martínez-González, M.Á. Mediterranean Diet and Age-Related Cognitive Decline: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef]
- Ceriello, A.; Esposito, K.; La Sala, L.; Pujadas, G.; De Nigris, V.; Testa, R. The protective effect of the Mediterranean diet on endothelial resistance to GLP-1 in type 2 diabetes: A preliminary report. Cardiovasc. Diabetol. 2014, 13, 140. [Google Scholar] [CrossRef]
- Owen, R.W.; Giacosa, A.; Hull, W.E.; Haubner, R.; Würtele, G.; Spiegelhalder, B.; Bartsch, H. Olive-oil consumption and health: The possible role of antioxidants. Lancet Oncol. 2000, 1, 107–112. [Google Scholar] [CrossRef]
- Casas, R.; Sacanella, E.; Estruch, R. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr. Metab. Immune Disord. Drug Targets 2014, 14, 245–254. [Google Scholar] [CrossRef]
- Salas-Salvadó, J.; Becerra-Tomás, N.; García-Gavilán, J.F.; Bulló, M.; Barrubés, L. Mediterranean Diet and Cardiovascular Disease Prevention: What do We Know? Prog. Cardiovasc. Dis. 2018, 61, 62–67. [Google Scholar] [CrossRef]
- Yazdanpanah, L.; Paknahad, Z.; Moosavi, A.J.; Maracy, M.R.; Zaker, M.M. The relationship between different diet quality indices and severity of airflow obstruction among COPD patients. Med. J. Islam. Repub. Iran 2016, 30, 380. [Google Scholar]
- Castro-Rodriguez, J.A.; Garcia-Marcos, L. What Are the Effects of a Mediterranean Diet on Allergies and Asthma in Children? Front. Pediatr. 2017, 5, 72. [Google Scholar] [CrossRef]
- Sorlí-Aguilar, M.; Martín-Luján, F.; Santigosa-Ayala, A.; Piñol-Moreso, J.L.; Flores-Mateo, G.; Basora-Gallisà, J. Effects of mediterranean diet on lung function in smokers: A randomised, parallel and controlled protocol. BMC Public Health 2015, 15, 74. [Google Scholar] [CrossRef]
- Strandvik, B. Mediterranean diet and cystic fibrosis. Br. J. Nutr. 2006, 96, 199–200. [Google Scholar] [CrossRef] [Green Version]
- Dassios, T.; Katelari, A.; Doudounakis, S.; Dimitriou, G. Aerobic exercise and respiratory muscle strength in patients with cystic fibrosis. Respir. Med. 2013, 107, 684–690. [Google Scholar] [CrossRef] [Green Version]
- Chlif, M.; Chaouachi, A.; Ahmaidi, S. Effect of Aerobic Exercise Training on Ventilatory Efficiency and Respiratory Drive in Obese Subjects. Respir. Care 2017, 62, 936–946. [Google Scholar] [CrossRef]
- Ding, B.; Judge, D.; Small, M. Functional performance in patients with COPD: Association with treatment regimen, GOLD group, lung function, and symptom burden in a cross-sectional study. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 2785–2796. [Google Scholar] [CrossRef]
- Luzak, A.; Karrasch, S.; Thorand, B.; Nowak, D.; Holle, R.; Peters, A.; Schulz, H. Association of physical activity with lung function in lung-healthy German adults: Results from the KORA FF4 study. BMC Pulm. Med. 2017, 17, 215. [Google Scholar] [CrossRef]
- Betriu, À.; Farràs, C.; Abajo, M.; Martinez-Alonso, M.; Arroyo, D.; Barbé, F. Randomised intervention study to assess the prevalence of subclinical vascular disease and hidden kidney disease and its impact on morbidity and mortality: The ILERVAS project. Nefrologia 2016, 36, 389–396. [Google Scholar] [CrossRef]
- National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.A.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef] [Green Version]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J. A short screener is valid for assessing mediterranean diet adherence among older Spanish men and women. J. Nutr. 2011, 14, 1140–1145. [Google Scholar] [CrossRef]
- Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Ruiz-Gutiérrez, V.; Covas, M.I. Effects of a Mediterranean-style diet on cardiovascular risk factors: A randomized trial. Ann. Intern Med. 2006, 14, 1–11. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjorstrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- MEMBERS, W.G.; Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation 2017, 135, e146. [Google Scholar]
- Young, D.R.; Hivert, M.F.; Alhassan, S. Sedentary Behavior and Cardiovascular Morbidity and Mortality: A Science Advisory from the American Heart Association. Circulation 2016, 134, e262. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef]
- Garcia, M.; Bihuniak, J.D.; Shook, J. The Effect of the Traditional Mediterranean-Style Diet on Metabolic Risk Factors: A Meta-Analysis. Nutrients 2016, 8, 168. [Google Scholar] [CrossRef]
- Garcia-Marcos, L.; Castro-Rodriguez, J.A.; Weinmayr, G.; Panagiotakos, D.B.; Priftis, K.N.; Nagel, G. Influence of Mediterranean diet on asthma in children: A systematic review and meta-analysis. Pediatr. Allergy Immunol. 2013, 24, 330–338. [Google Scholar] [CrossRef]
- Lv, N.; Xiao, L.; Ma, J. Dietary pattern and asthma: A systematic review and meta-analysis. J. Asthma Allergy 2014, 7, 105–121. [Google Scholar]
- Thyagarajan, B.; AMeyer, K.; Smith, L.J.; Beckett, W.S.; Williams, O.D.; Gross, M.D.; Jacobs, D.R., Jr. Serum carotenoid concentrations predict lung function evolution in young adults: The Coronary Artery Risk Development in Young Adults (CARDIA) study. Am. J. Clin. Nutr. 2011, 94, 1211–1218. [Google Scholar] [CrossRef]
- Pounis, G.; Arcari, A.; Costanzo, S.; Di Castelnuovo, A.; Bonaccio, M.; Persichillo, M. Favorable association of polyphenol-rich diets with lung function: Cross-sectional findings from the Moli-sani study. Respir. Med. 2018, 136, 48–57. [Google Scholar] [CrossRef]
- Garcia-Larsen, V.; Potts, J.F.; Omenaas, E.; Heinrich, J.; Svanes, C.; Garcia-Aymerich, J. Dietary antioxidants and 10-year lung function decline in adults from the ECRHS survey. Eur. Respir. J. 2017, 50, 1602286. [Google Scholar] [CrossRef]
- Ng, T.P.; Niti, M.; Yap, K.B.; Tan, W.C. Dietary and supplemental antioxidant and anti-inflammatory nutrient intakes and pulmonary function. Public Health Nutr. 2014, 17, 2081–2086. [Google Scholar] [CrossRef]
- Brigham, E.P.; Steffen, L.M.; London, S.J.; Boyce, D.; Diette, G.B.; Hansel, N.N. Diet Pattern and Respiratory Morbidity in the Atherosclerosis Risk in Communities Study. Ann. Am. Thorac. Soc. 2018, 15, 675–682. [Google Scholar] [CrossRef]
- Budden, K.F.; Gellatly, S.L.; Wood, D.L.; Cooper, M.A.; Morrison, M.; Hugenholtz, P.; Hansbro, P.M. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol. 2017, 15, 55. [Google Scholar] [CrossRef]
- Lopez-Moreno, J.; Quintana-Navarro, G.M.; Delgado-Lista, J.; Garcia-Rios, A.; Delgado-Casado, N.; Camargo, A. Mediterranean Diet Reduces Serum Advanced Glycation End Products and Increases Antioxidant Defenses in Elderly Adults: A Randomized Controlled Trial. J. Am. Geriatr. Soc. 2016, 64, 901–904. [Google Scholar] [CrossRef]
- Rodríguez, J.M.; Leiva Balich, L.; Concha, M.J.; Mizón, C.; Bunout Barnett, D.; Barrera Acevedo, G. Reduction of serum advanced glycation end-products with a low calorie Mediterranean diet. Nutr. Hosp. 2015, 31, 2511–2517. [Google Scholar]
- Sánchez, E.; Lecube, A.; Betriu, À.; Hernández, C.; López-Cano, C.; Gutiérrez-Carrasquilla, L. Subcutaneous advanced glycation end-products and lung function according to glucose abnormalities: The ILERVAS Project. Diabetes Metab. 2018, in press. [Google Scholar]
- Salcedo, P.A.; Lindheimer, J.B.; Klein-Adams, J.C.; Sotolongo, A.M.; Falvo, M.J. Effects of Exercise Training on Pulmonary Function in Adults With Chronic Lung Disease: A Meta-Analysis of Randomized Controlled Trials. Arch. Phys. Med. Rehabil. 2018, 99, 2561–2569.e7. [Google Scholar] [CrossRef]
- Cordova-Rivera, L.; Gibson, P.G.; Gardiner, P.A.; McDonald, V.M. A Systematic Review of Associations of Physical Activity and Sedentary Time with Asthma Outcomes. J. Allergy Clin. Immunol. Pract. 2018, 6, 1968–1981.e2. [Google Scholar] [CrossRef]
- Radtke, T.; Nolan, S.J.; Hebestreit, H.; Kriemler, S. Physical exercise training for cystic fibrosis. Cochrane Database Syst. Rev. 2017, 11, CD002768. [Google Scholar] [CrossRef]
- Benck, L.R.; Cuttica, M.J.; Colangelo, L.A.; Sidney, S.; Dransfield, M.T.; Mannino, D.M. Association between cardiorespiratory fitness and lung health from young adulthood to middle age. Am. J. Respir. Crit. Care Med. 2017, 195, 1236–1243. [Google Scholar] [CrossRef]
- Schünemann, H.J.; Dorn, J.; Grant, B.J.; Winkelstein, W.; Trevisan, M. Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the Buffalo Health Study. Chest 2000, 118, 656–664. [Google Scholar] [CrossRef]
- Stavem, K.; Aaser, E.; Sandvik, L.; Bjørnholt, J.V.; Erikssen, G.; Thaulow, E.; Erikssen, J. Lung function, smoking and mortality in a 26-year follow-up of healthy middle-aged males. Eur. Respir. J. 2005, 25, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Becklake, M.R.; Kauffmann, F. Gender differences in airway behaviour over the human life span. Thorax 1999, 54, 1119–1138. [Google Scholar] [CrossRef] [Green Version]
- Dominelli, P.B.; Ripoll, J.G.; Cross, T.J.; Baker, S.E.; Wiggins, C.C.; Welch, B.T.; Joyner, M.J. Sex differences in large conducting airway anatomy. J. Appl. Physiol. 2018, 125, 960–965. [Google Scholar] [CrossRef]
- Gan, W.Q.; Man, S.P.; Postma, D.S.; Camp, P.; Sin, D.D. Female smokers beyond the perimenopausal period are at increased risk of chronic obstructive pulmonary disease: A systematic review and metaanalysis. Respir. Res. 2006, 7, 52. [Google Scholar] [CrossRef]
- Eng, A.; Mannetje, A.T.; McLean, D.; Ellison-Loschmann, L.; Cheng, S.; Pearce, N. Gender differences in occupational exposure patterns. Occup. Environ. Med. 2011, 68, 888–894. [Google Scholar] [CrossRef] [Green Version]
- Hemmingsen, B.; Gimenez-Perez, G.; Mauricio, D.; i Figuls, M.R.; Metzendorf, M.I.; Richter, B. Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2017, 12, CD003054. [Google Scholar] [CrossRef]
- Wu, T.; Gao, X.; Chen, M.; Van Dam, R.M. Long-term effectiveness of diet-plus-exercise interventions vs. diet-only interventions for weight loss: A meta-analysis. Obes. Rev. 2009, 10, 313–323. [Google Scholar] [CrossRef]
- Villareal, D.T.; Aguirre, L.; Gurney, A.B.; Waters, D.L.; Sinacore, D.R.; Colombo, E.; Armamento-Villareal, R.; Qualls, C. Aerobic or Resistance Exercise, or Both, in Dieting Obese Older Adults. N. Engl. J. Med. 2017, 376, 1943–1955. [Google Scholar] [CrossRef] [Green Version]
- Tilert, T.; Dillon, C.; Paulose-Ram, R.; Hnizdo, E.; Doney, B. Estimating the U.S. prevalence of chronic obstructive pulmonary disease using pre- and post-bronchodilator spirometry: The National Health and Nutrition Examination Survey (NHANES) 2007–2010. Respir. Res. 2013, 14, 103. [Google Scholar] [CrossRef]
Variables | Low Adherence | Moderate Adherence | High Adherence | p * | p ** |
---|---|---|---|---|---|
n (%) | 376 (12,4) | 2420 (80.1) | 224 (7.4) | - | - |
Women, n (%) | 154 (41.0) | 1400 (57.9) | 136 (60.7) | <0.001 | 0.436 |
Age (years) | 55 (51–61) | 58 (53–64) | 59 (54–64) | <0.001 | 1.000 |
Hypertension, n (%) | 135 (35.9) | 100 (41.3) | 88 (39.3) | 0.432 | 0.571 |
Systolic blood pressure (mmHg) | 130 (120–142) | 131 (120–143) | 129 (118–141) | 0.429 | 0.429 |
Diastolic blood pressure (mmHg) | 82 (76–88) | 82 (75–88) | 80 (74–88) | 0.143 | 0.143 |
Dyslipidemia, n (%) | 186 (49.5) | 1284 (53.1) | 127 (56.7) | 0.092 | 0.327 |
Total cholesterol (mg/dL) | 202 (178–228) | 204 (181–229) | 208 (184–235) | 0.147 | 0.147 |
Obesity, n (%) | 90 (23.9) | 701 (29.0) | 52 (23.2) | 0.921 | 0.075 |
BMI (kg/m2) | 28.4 (25.6–31.2) | 28.5 (25.7–31.6) | 27.6 (25.3–30.4) | 0.277 | 0.015 |
Current smoker, n (%) | 147 (39.1) | 559 (23.1) | 40 (17.9) | <0.001 | 0.026 |
Total METs per week | 480 (198–1188) | 720 (240–1272) | 975 (396–1386) | <0.001 | 0.012 |
FVC (% predicted) | 94 (82–105) | 95 (84–107) | 100 (87–109) | 0.003 | 0.020 |
FEV1 (% predicted) | 93 (80–107) | 97 (84–108) | 100 (89–112) | <0.001 | 0.009 |
FEV1/FVC | 78 (73–83) | 78 (74–82) | 79 (75–83) | 0.273 | 0.273 |
FEV1 < 80% predicted, n (%) | 91 (24.3) | 402 (16.7) | 31 (13.8) | 0.002 | 0.300 |
Non-obstructive ventilatory defect i, n (%) | 61 (16.2) | 334 (13.8) | 21 (9.4) | 0.019 | 0.065 |
Obstructive ventilatory defect i, n (%) | 55 (14.6) | 298 (12.3) | 16 (7.1) | 0.006 | 0.023 |
Variables | Low Physical Activity | Moderate Physical Activity | Vigorous Physical Activity | p * | p ** |
---|---|---|---|---|---|
n (%) | 1880 (62.2) | 1039 (34.4) | 101 (3.3) | - | - |
Women, n (%) | 975 (51.9) | 679 (65.4) | 36 (35.6) | 0.001 | <0.001 |
Age (years) | 57 (53–63) | 59 (54–64) | 54 (50–61) | 0.004 | <0.001 |
Hypertension, n (%) | 747 (39.8) | 440 (42.3) | 35 (34.7) | 0.347 | 0.140 |
Systolic blood pressure (mmHg) | 131 (120–143) | 131 (120–143) | 126 (118–140) | 0.274 | 0.274 |
Diastolic blood pressure (mmHg) | 82 (75–88) | 81 (75–88) | 78 (73–88) | 0.157 | 0.157 |
Dyslipidemia, n (%) | 987 (52.5) | 560 (53.9) | 49 (48.5) | 0.474 | 0.347 |
Total cholesterol (mg/dL) | 204 (180–229) | 204 (184–230) | 195 (170–218) | 0.025 | 0.007 |
Obesity, n (%) | 531 (28.3) | 295 (28.4) | 16 (15.8) | 0.006 | 0.007 |
BMI (kg/m2) | 28.6 (25.8–31.2) | 28.3 (25.4–31.6) | 27.5 (24.5–30.4) | 0.005 | 0.025 |
Current smoker, n (%) | 472 (25.1) | 241 (23.2) | 32 (31.7) | 0.122 | 0.022 |
MedDiet score | 8 [7,8,9] | 8 (7–10) | 8 (7–9) | 1.000 | 1.000 |
FVC (% predicted) | 94 (83–105) | 97 (85–108) | 100 (88–107) | 0.027 | 0.703 |
FEV1 (% predicted) | 95 (84–108) | 98 (84–111) | 100 (89–110) | 0.047 | 0.588 |
FEV1/FVC | 79 (74–83) | 79 (73–82) | 79 (74–82) | 1.000 | 1.000 |
FEV1 < 80% predicted, n (%) | 330 (17.7) | 185 (17.9) | 9 (8.9) | 0.021 | 0.026 |
Non-obstructive ventilatory defect i, n (%) | 281 (15.0) | 128 (12.3) | 7 (6.9) | 0.029 | 0.145 |
Obstructive ventilatory defect i, n (%) | 213 (11.3) | 141 (13.6) | 15 (14.9) | 0.265 | 0.761 |
FEV1 < 80% | OR (95% CIs) * | p | |
---|---|---|---|
Age (years) | 0.99 (0.98–1.02) | 0.893 | |
BMI (kg/m2) | 1.02 (1.00–1.05) | 0.123 | |
Adherence to Mediterranean diet | High | Reference | |
Moderate | 1.27 (0.73–2.22) | 0.404 | |
Low | 2.07 (1.06–4.06) | 0.033 | |
Physical activity practice | Vigorous | Reference | |
Moderate | 1.42 (1.49–4.12) | 0.516 | |
Low | 1.22 (0.42–3.52) | 0.711 | |
Hosmer–Lemeshow test of fit | 0.713 | ||
Area under the ROC curve | 0.54 (0.50–0.59) | 0.028 | |
Non-obstructive ventilatory defect | |||
Age (years) | 1.02 (0.99–1.05) | 0.084 | |
BMI (kg/m2) | 1.06 (1.03–1.09) | <0.001 | |
Adherence to Mediterranean diet | High | Reference | |
Moderate | 2.21 (1.01–4.83) | 0.047 | |
Low | 2.42 (0.97–6.05) | 0.058 | |
Physical activity practice | Vigorous | Reference | |
Moderate | 3.83 (0.51–28.7) | 0.191 | |
Low | 4.41 (0.59–32.8) | 0.147 | |
Hosmer–Lemeshow test of fit | 0.026 | ||
Area under the ROC curve | 0.59 (0.55–0.63) | <0.001 | |
Obstructive ventilatory defect | |||
Age (years) | 1.06 (1.03–1.09) | <0.001 | |
BMI (kg/m2) | 0.95 (0.92–0.98) | 0.001 | |
Adherence to Mediterranean diet | Vigorous | Reference | |
Moderate | 1.55 (0.84–2.88) | 0.164 | |
Low | 1.99 (0.93–4.26) | 0.077 | |
Physical activity practice | High | Reference | |
Moderate | 0.76 (0.30–1.91) | 0.559 | |
Low | 0.68 (0.27–1.69) | 0.402 | |
Hosmer–Lemeshow test of fit | 0.160 | ||
Area under the ROC curve | 0.62 (0.57–0.66) | <0.001 |
FEV1 < 80% | OR (95% CIs) * | p | |
---|---|---|---|
Age (years) | 1.04 (1.02–1.06) | <0.001 | |
BMI (kg/m2) | 1.04 (1.00–1.07) | 0.032 | |
Adherence to Mediterranean diet | High | Reference | |
Moderate | 1.17 (0.66–2.07) | 0.587 | |
Low | 1.75 (0.94–3.27) | 0.078 | |
Physical activity practice | Vigorous | Reference | |
Moderate | 3.10 (1.20–8.03) | 0.020 | |
Low | 2.95 (1.16–7.49) | 0.023 | |
Hosmer–Lemeshow test of fit | 0.273 | ||
Area under the ROC curve | 0.60 (0.56–0.63) | <0.001 | |
Non-obstructive ventilatory defect | |||
Age (years) | 1.05 (1.02–1.08) | <0.001 | |
BMI (kg/m2) | 1.08 (1.04–1.12) | <0.001 | |
Adherence to Mediterranean diet | High | Reference | |
Moderate | 1.06 (0.58–1.94) | 0.851 | |
Low | 1.32 (0.68–2.59) | 0.413 | |
Physical activity practice | Vigorous | Reference | |
Moderate | 1.56 (0.64–3.82) | 0.331 | |
Low | 1.85 (0.78–4.39) | 0.165 | |
Hosmer–Lemeshow test of fit | 0.353 | ||
Area under the ROC curve | 0.59 (0.55–0.63) | <0.001 | |
Obstructive ventilatory defect | |||
Age (years) | 1.04 (1.01–1.07) | 0.006 | |
BMI (kg/m2) | 0.97 (0.93–1.01) | 0.184 | |
Adherence to Mediterranean diet | Vigorous | Reference | |
Moderate | 3.15 (1.13–8.76) | 0.028 | |
Low | 4.14 (1.42–12.1) | 0.009 | |
Physical activity practice | High | Reference | |
Moderate | 0.99 (0.46–2.15) | 0.983 | |
Low | 0.74 (0.35–1.56) | 0.434 | |
Hosmer–Lemeshow test of fit | 0.210 | ||
Area under the ROC curve | 0.60 (0.56–0.65) | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Carrasquilla, L.; Sánchez, E.; Hernández, M.; Polanco, D.; Salas-Salvadó, J.; Betriu, À.; Gaeta, A.M.; Carmona, P.; Purroy, F.; Pamplona, R.; et al. Effects of Mediterranean Diet and Physical Activity on Pulmonary Function: A Cross-Sectional Analysis in the ILERVAS Project. Nutrients 2019, 11, 329. https://doi.org/10.3390/nu11020329
Gutiérrez-Carrasquilla L, Sánchez E, Hernández M, Polanco D, Salas-Salvadó J, Betriu À, Gaeta AM, Carmona P, Purroy F, Pamplona R, et al. Effects of Mediterranean Diet and Physical Activity on Pulmonary Function: A Cross-Sectional Analysis in the ILERVAS Project. Nutrients. 2019; 11(2):329. https://doi.org/10.3390/nu11020329
Chicago/Turabian StyleGutiérrez-Carrasquilla, Liliana, Enric Sánchez, Marta Hernández, Dinora Polanco, Jordi Salas-Salvadó, Àngels Betriu, Anna Michela Gaeta, Paola Carmona, Francesc Purroy, Reinald Pamplona, and et al. 2019. "Effects of Mediterranean Diet and Physical Activity on Pulmonary Function: A Cross-Sectional Analysis in the ILERVAS Project" Nutrients 11, no. 2: 329. https://doi.org/10.3390/nu11020329
APA StyleGutiérrez-Carrasquilla, L., Sánchez, E., Hernández, M., Polanco, D., Salas-Salvadó, J., Betriu, À., Gaeta, A. M., Carmona, P., Purroy, F., Pamplona, R., Farràs, C., López-Cano, C., Fernández, E., & Lecube, A. (2019). Effects of Mediterranean Diet and Physical Activity on Pulmonary Function: A Cross-Sectional Analysis in the ILERVAS Project. Nutrients, 11(2), 329. https://doi.org/10.3390/nu11020329