Antifungal, Antibacterial, and Antioxidant Activities of Acacia Saligna (Labill.) H. L. Wendl. Flower Extract: HPLC Analysis of Phenolic and Flavonoid Compounds
Abstract
:1. Introduction
2. Results
2.1. Isolated Fungi
2.2. Antifungal Activity of Wood Treated with Water Extract
2.3. Antibacterial Activity
2.4. Phytochemical Constituents and DPPH Activity of Extract
3. Discussion
4. Materials and Methods
4.1. Plant Material and Preparation of the Extract
4.2. Fungal Isolation, DNA Extraction, PCR, and Sequencing
4.3. Antifungal Activity of Wood Treated with Water Extract
4.4. Antibacterial Activity
4.5. Determination of Antioxidant Activity
4.6. HPLC condition for Phenolic Compounds
4.7. HPLC Condition for Flavonoids
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, C.Y.; Chen, R.; Wang, X.S.; Shen, B.; Yue, W.; Wu, Q. Antioxidant and Anti-Fatigue Activities of Phenolic Extract from the Seed Coat of Euryale ferox Salisb. and Identification of Three Phenolic Compounds by LC-ESI-MS/MS. Molecules 2013, 18, 11003–11021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- EL-Hefny, M.; Ashmawy, N.A.; Salem, M.Z.M.; Salem, A.Z.M. Antibacterial activity of the phytochemicals-characterized extracts of Callistemon viminalis, Eucalyptus camaldulensis and Conyza dioscoridis against the growth of some phytopathogenic bacteria. Microb. Pathogen. 2017, 113, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Ashmawy, N.A.; Salem, M.Z.M.; EL-Hefny, M.; Abd El-Kareem, M.S.M.; El-Shanhorey, N.A.; Mohamed, A.A.; Salem, A.Z.M. Antibacterial activity of the bioactive compounds identified in three woody plants against some pathogenic bacteria. Microb. Pathogen. 2018, 121, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.Z.M.; El-Hefny, M.; Ali, H.M.; Elansary, H.O.; Nasser, R.A.; El-Settawy, A.A.A.; El Shanhorey, N.; Ashmawy, N.A.; Salem, A.Z.M. Antibacterial activity of extracted bioactive molecules of Schinus terebinthifolius ripened fruits against some pathogenic bacteria. Microb. Pathogen. 2018, 120, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.Z.M.; Elansary, H.O.; Ali, H.M.; El-Settawy, A.A.; Elshikh, M.S.; Abdel-Salam, E.M.; Skalicka-Woźniak, K. Bioactivity of essential oils extracted from Cupressus macrocarpa branchlets and Corymbia citriodora leaves grown in Egypt. BMC Complem. Altern. Med. 2018, 18, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Andersen, B.; Frisvad, J.C.; Søndergaard, I.; Rasmussen, I.S.; Larsen, L.S. Associations between fungal species and water-damaged building materials. Appl. Environ. Microb. 2011, 77, 4180–4188. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lee, S.; Wu, Y.; Wu, Q. Borate-treated strand board from southern wood species: Resistance against decay and mold fungi. BioResources 2013, 8, 104–114. [Google Scholar] [CrossRef]
- Lee, Y.M.; Lee, H.; Jang, Y.; Cho, Y.; Kim, G.-H.; Kim, J.-J. Phylogenetic analysis of major molds inhabiting woods. Part 4. Genus Alternaria. Holzforschung 2014, 68, 247–251. [Google Scholar] [CrossRef]
- Salem, M.Z.M. EDX measurements and SEM examination of surface of some imported woods inoculated by three mold fungi. Measurement 2016, 86, 301–309. [Google Scholar] [CrossRef]
- Sohail, M.; Ahmad, A.; Khan, S.A. Production of cellulases from Alternaria sp. MS28 and their partial characterization. Pak. J. Bot. 2011, 43, 3001–3006. [Google Scholar]
- De Vries, R.P.; Visser, J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. R. 2001, 65, 497–522. [Google Scholar] [CrossRef] [PubMed]
- Kubicek, C.P. Enzymology of hemicellulose degradation. In Fungi and Lignocellulosic Biomass; John Wiley & Sons, Inc.: Ames, IA, USA, 2012; pp. 69–97. [Google Scholar]
- Mansour, M.M.A.; Salem, M.Z.M. Evaluation of wood treated with some natural extracts and Paraloid B-72 against the fungus Trichoderma harzianum: Wood elemental composition, in-vitro and application evidence. Int. Biodeter. Biodegr. 2015, 100, 62–69. [Google Scholar] [CrossRef]
- Mansour, M.M.A.; Abdel-Megeed, A.; Nasser, R.A.; Salem, M.Z.M. Comparative evaluation of some woody tree methanolic extracts and Paraloid B-72 against phytopathogenic mold fungi Alternaria tenuissima and Fusarium culmorum. BioResources 2015, 10, 2570–2584. [Google Scholar] [CrossRef]
- Mansour, M.M.A.; Salem, M.Z.M.; Khamis, M.H.; Ali, H.M. Natural durability of Citharexylum spinosum and Morus alba woods against three mold fungi. BioResources 2015, 10, 5330–5344. [Google Scholar] [CrossRef]
- Ochoa, J.L.; Hernández-Montiel, L.G.; Latisnere-Barragán, H.; León de La Luz, J.L.; Larralde-Corona, C.P. Isolation and identification of pathogenic fungi from orange Citrus sinensis L. Osbeck cultured in Baja California Sur, Mexico. Cienc. Tecnol. Aliment. 2007, 5, 352–359. [Google Scholar] [CrossRef]
- Abdel-Monaim, M.F.; EL-Morsi, M.E.A.; Hassan, M.A.E. Control of root rot and wilt disease complex of some evergreen fruit transplants by using plant growth promoting rhizobacteria in the New Valley Governorate, Egypt. J. Phytopathol. Pest Manag. 2014, 1, 23–33. [Google Scholar]
- Barkai-Golan, R. Chemical control. In Postharvest Diseases of Fruits and Vegetables: Development and Control; Barkai-Golan, R., Ed.; Elsevier Science: Oxford, UK, 2001; pp. 147–188. [Google Scholar]
- Restuccia, C.; Giusino, F.; Licciardello, F.; Randazzo, C.; Caggia, C.; Muratore, G. Biological control of peach fungal pathogens by commercial products and indigenous yeasts. J. Food Protect. 2006, 69, 2465–2470. [Google Scholar] [CrossRef]
- Hernández-Montiel, L.G.; Ochoa, J.L.; Troyo-Diéguez, E.; Larralde-Corona, C.P. Biocontrol of postharvest blue mold (Penicillium italicum Wehmer) on Mexican lime by marine and citrus Debaryomyces hansenii isolates. Postharvest Biol. Technol. 2010, 56, 181–187. [Google Scholar] [CrossRef]
- Molinu, M.G.; Pani, G.; Venditti, T.; Dore, A.; Ladu, G.; D’Hallewin, G. Alternative methods to control postharvest decay caused by Penicillium expansum in plums (Prunus domestica L.). Commun. Agric. Appl. Biol. Sci. 2012, 77, 509–514. [Google Scholar]
- Eckert, J.W.; Eaks, I.L. Postharvest disorders and diseases of citrus fruits. In The Citrus Industry; Reuther, W., Calavan, E.C., Carman, G.E., Eds.; University of California Press: Berkeley, CA, USA, 1989; Volume 5, pp. 179–260. [Google Scholar]
- Marcet-Houben, M.; Ballester, A.-R.; De la Fuente, B.; Harries, E.; Marcos, J.F.; González-Candelas, L.; Gabaldón, T. Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus. BMC Genom. 2012, 13, 646. [Google Scholar] [CrossRef] [PubMed]
- Atanasova-Penichon, V.; Bernillon, S.; Marchegay, G.; Lornac, A.; Pinson-Gadais, L.; Ponts, N.; Zehraoui, E.; Barreau, C.; Richard-Forget, F. Bioguided isolation, characterization, and biotransformation by Fusarium verticillioides of Maize Kernel compounds that inhibit Fumonisin production. Mol. Plant Microbe Interact. 2014, 27, 1148–1158. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Hua, H.; Selvaraj, J.N.; Yuan, Y.; Zhao, Y.; Zhou, L.; Liu, Y. Degradation of fumonisin B1 by cinnamon essential oil. Food Control 2014, 38, 37–40. [Google Scholar] [CrossRef]
- Ploetz, R.C. Fusarium Wilt of Banana. Phytopathology 2015, 105, 1512–1521. [Google Scholar] [CrossRef] [PubMed]
- Pérombelon, M.C.M. Potato diseases caused by soft rot erwinias: An overview of pathogenesis. Plant Pathol. 2002, 51, 1–12. [Google Scholar] [CrossRef]
- EL-Hefny, M.; Mohamed, A.A.; Salem, M.Z.M.; Abd El-Kareem, M.S.M.; Ali, H.M. Chemical composition, antioxidant capacity and antibacterial activity against some potato bacterial pathogens of fruit extracts from Phytolacca dioica and Ziziphus spina-christi grown in Egypt. Sci. Hortic. 2018, 233, 225–232. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Elansary, H.O.; Elkelish, A.A.; Zeidler, A.; Ali, H.M.; Hefny, M.E.L.; Yessoufou, K. In vitro bioactivity and antimicrobial activity of Picea abies and Larix decidua wood and bark extracts. BioResources 2016, 11, 9421–9437. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Behiry, S.I.; Salem, A.Z.M. Effectiveness of root-bark extract from Salvadora persica against the growth of certain molecularly identified pathogenic bacteria. Microb. Pathogen. 2018, 117, 320–326. [Google Scholar] [CrossRef]
- Meyer, V. A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Appl. Microbiol. Biot. 2008, 78, 17–28. [Google Scholar] [CrossRef]
- Scherm, B.; Balmas, V.; Spanu, F.; Pani, G.; Delogu, G.; Pasquali, M.; Migheli, Q. Fusarium culmorum: Causal agent of foot and root rot and head blight on wheat. Mol. Plant Pathol. 2013, 14, 323–341. [Google Scholar] [CrossRef]
- Ajayi-Oyetunde, O.O.; Bradley, C.A. Rhizoctonia solani: Taxonomy, population biology and management of Rhizoctonia seedling disease of soybean. Plant Pathol. 2017, 67, 3–17. [Google Scholar] [CrossRef]
- Castiblanco, V.; Castillo, H.E.; Miedaner, T. Candidate genes for aggressiveness in a natural Fusarium culmorum population greatly differ between wheat and rye head blight. J. Fungi 2018, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C. Phytotoxicity: An overview of the physiological responses of plants exposed to fungicides. Jpn. J. Bot. 2012, 2012, 135479. [Google Scholar] [CrossRef]
- Mazu, T.K.; Bricker, B.A.; Flores-Rozas, H.; Ablordeppey, S.Y. The mechanistic targets of antifungal agents: An overview. Mini Rev. Med. Chem. 2016, 16, 555–578. [Google Scholar] [CrossRef] [PubMed]
- Villa, F.; Cappitelli, F.; Cortesi, P.; Kunova, A. Fungal biofilms: Targets for the development of novel strategies in plant disease management. Front. Microbiol. 2017, 8, 654. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kumar, P.; Nidhi, R.; Gade, R.M. Allelopathy—A Sustainable Alternative and Eco-Friendly Tool for Plant Disease Management. Plant Dis. Sci. 2012, 7, 127–134. [Google Scholar]
- Rodrigues, A.M.; Theodoro, P.N.; Eparvier, V.; Basset, C.; Silva, M.R.; Beauchêne, J.; Espíndola, L.S.; Stien, D. Search for Antifungal Compounds from the Wood of Durable Tropical Trees. J. Nat. Prod. 2010, 73, 1706–1707. [Google Scholar] [CrossRef] [PubMed]
- Midgely, S.J.; Turnbull, J.W. Domestication and use of Australian acacias: Case studies of five important species. Aust. Syst. Bot. 2003, 16, 89–102. [Google Scholar] [CrossRef]
- Shinwari, Z.K.; Gilani, S.A.; Khan, A.L. Biodiversity loss, emerging infectious diseases and impact on human and crops. Pak. J. Bot. 2012, 44, 137–142. [Google Scholar]
- Rafiqul Hoque, A.T.M.; Ahmed, R.; Uddin, M.B.; Hossain, M.K. Allelopathic effect of different concentration of water extracts of Acacia auriculiformis leaf on some initial growth parameters of five common agricultural crops. J. Agron. 2003, 2, 92–100. [Google Scholar]
- Alhammadi, A.S.A. Allelopathic effect of Tagetes minuta L. water extracts on seeds germination and seedling root growth of Acacia asak. Assiut Univ. Bull. Environ. Res. 2008, 11, 17–24. [Google Scholar]
- Bitende, S.N.; Ledin, I. Effect of doubling the amount of low quality grass hay offered and supplementation with Acacia tortilis fruits or Sesbania sesban leaves, on intake and digestibility by sheep in Tanzania. Livest. Prod. Sci. 1996, 45, 39–48. [Google Scholar] [CrossRef]
- Shayo, C.M. Udén, PNutritional uniformity on neutral detergent solubles in some tropical browse leaf and pod diets. Anim. Feed Sci. Technol. 1999, 82, 63–73. [Google Scholar] [CrossRef]
- Dube, J.S.; Reed, J.D.; Ndlovu, L.R. Proanthocyanidins and other phenolics in Acacia leaves of Southern Africa. Anim. Feed Sci. Technol. 2001, 91, 59–67. [Google Scholar] [CrossRef]
- Rubanza, C.D.K.; Shem, M.N.; Otsyina, R.; Bakengesa, S.S.; Ichinohe, T.; Fujihara, T. Polyphenolics and tannins effect on in vitro digestibility of selected Acacia species leaves. Anim. Feed Sci. Technol. 2005, 119, 129–142. [Google Scholar] [CrossRef]
- Nakafeero, A.L.; Reed, M.S.; Moleele, N.M. Allelopathic potential of five agroforestry trees, Botswana. Afr. J. Ecol. 2007, 45, 590–593. [Google Scholar] [CrossRef]
- Abd El-Gawad, A.M.; El-Amier, Y.A. Allelopathy and potential impact of invasive Acacia saligna (Labill.) Wendl. on plant diversity in the Nile Delta coast of Egypt. Int. J. Environ. Res. 2015, 9, 923–932. [Google Scholar]
- Oskoueian, E.; Abdullah, N.; Ahmad, S.; Saad, W.Z.; Omar, A.R.; Ho, Y.W. Bioactive compounds and biological activities of Jatropha curcas L. kernel meal extract. Int. J. Mol. Sci. 2011, 12, 5955–5970. [Google Scholar] [CrossRef] [PubMed]
- El-Toumy, S.A.; Salib, J.Y.; Mohamed, W.M.; Morsy, F.A. Phytochemical and antimicrobial studies on Acacia saligna leaves. Egypt. J. Chem. 2010, 53, 705–717. [Google Scholar]
- Noreen, I.; Iqbal, A.; Fazl-e-Rabbi; Muhammad, A.; Shah, Z.; Ur Rahman, Z. Antimicrobial activity of different solvents extracts of Acacia cyanophylla. Pak. J. Weed Sci. Res. 2017, 23, 79–90. [Google Scholar]
- Gumgumjee, N.M.; Hajar, A.S. Antimicrobial efficacy of Acacia saligna (Labill.) H.L. Wendl. and Cordia sinensis Lam. leaves extracts against some pathogenic microorganisms. Int. J. Microbiol. Immunol. Res. 2015, 3, 51–57. [Google Scholar]
- Ali, H.M.; Salem, M.Z.M.; Abdel-Megeed, A. In-vitro antibacterial activities of alkaloids extract from leaves of Conocarpus lancifolius Engl. J. Pure Appl. Microbiol. 2013, 7, 1903–1907. [Google Scholar]
- Saleem, A.; Ahotupa, M.; Pihlaja, K. Total phenolics concentration and antioxidant potential of extracts of medicinal plants of Pakistan. Z. Naturforsch. C 2001, 56, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Seigler, D.S. Phytochemistry of Acacia—Sensu lato. Biochem. Syst. Ecol. 2003, 31, 845–873. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Photochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Gedara, S.R.; Galala, A.A. New cytotoxic spirostane saponin and biflavonoid glycoside from the leaves of Acacia saligna (Labill.) H.L. Wendl. Nat. Prod. Res. 2014, 28, 324–329. [Google Scholar] [CrossRef] [PubMed]
- El Sissi, H.I.; El Sherbeiny, A.E.A. The flavonoid components of the leaves of Acacia saligna. Qual. Plant Mater. Veg. 1967, 14, 257–266. [Google Scholar] [CrossRef]
- Thieme, H.; Khogali, A. The occurrence of flavonoids and tannins in the leaves of some African acacia species. Pharmazie 1975, 30, 736–743. [Google Scholar]
- Baldan, V.; Sut, S.; Faggian, M.; Gassa, E.D.; Ferrari, S.; De Nadai, G.; Francescato, S.; Baratto, G.; Dall’Acqua, S. Larix decidua bark as a source of phytoconstituents: An LC-MS study. Molecules 2017, 22, 1974. [Google Scholar] [CrossRef]
- Dall’Acqua, S.; Minesso, P.; Shresta, B.B.; Comai, S.; Jha, P.K.; Gewali, M.B.; Greco, E.; Cervellati, R.; Innocenti, G. Phytochemical and antioxidant-related investigations on bark of Abies spectabilis (D. don) spach. from Nepal. Molecules 2012, 17, 1686–1697. [Google Scholar] [CrossRef]
- Dall’Acqua, S.; Cervellati, R.; Loi, M.C.; Innocenti, G. Evaluation of in vitro antioxidant properties of some traditional Sardinian medicinal plants: Investigation of the high antioxidant capacity of Rubus ulmifolius. Food Chem. 2008, 106, 745–749. [Google Scholar] [CrossRef]
- Tohma, H.; Köksal, E.; Kılıç, Ö.; Alan, Y.; Yılmaz, M.A.; Gülçin, İ.; Bursal, E.; Alwasel, S.H. RP-HPLC/MS/MS analysis of the phenolic compounds, antioxidant and antimicrobial activities of Salvia L. Species. Antioxidants 2016, 5, 38. [Google Scholar] [CrossRef] [PubMed]
- Bravo, L.; Goya, L.; Lecumberri, E. LC/MS characterization of phenolic constituents of mate (Ilex paraguariensis, St. Hil.) and its antioxidant activity compared to commonly consumed beverages. Food Res. Int. 2007, 40, 393–405. [Google Scholar] [CrossRef]
- Salih, E.Y.A.; Fyhrquist, P.; Abdalla, A.M.A.; Abdelgadir, A.Y.; Kanninen, M.; Sipi, M.; Luukkanen, O.; Fahmi, M.K.M.; Elamin, M.H.; Ali, H.A. LC-MS/MS tandem mass spectrometry for analysis of phenolic compounds and pentacyclic triterpenes in antifungal extracts of Terminalia brownii (Fresen). Antibiotics 2017, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.T.; Ferreira, I.C.; Barros, L.; Silva, S.; Azeredo, J.; Henriques, M. Antifungal activity of phenolic compounds identified in flowers from North Eastern Portugal against Candida species. Future Microbiol. 2014, 9, 139–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tempesti, T.C.; Alvarez, M.G.; de Arau’jo, M.F.; Ju’nior, F.E.; de Carvalho, M.G.; Durantini, E.N. Antifungal activity of a novel quercetin derivative bearing a trifluoromethyl group on Candida albicans. Med. Chem. Res. 2012, 21, 2217–2222. [Google Scholar] [CrossRef]
- Weidenbörner, M.; Hindorf, H.; Jha, H.C.; Tsotsonos, P. Antifungal activity of flavonoids against storage fungi of the genus Aspergillus. Phytochemistry 1990, 29, 1103–1105. [Google Scholar] [CrossRef]
- Céspedes, C.L.; Salazar, J.R.; Ariza-Castolo, A.; Yamaguchi, L.; Avila, J.G.; Aqueveque, P.; Kubo, I.; Alarcón, J. Biopesticides from plants: Calceolaria integrifolia sl. Environ. Res. 2014, 132, 391–406. [Google Scholar] [CrossRef]
- Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as important molecules of plant interactions with the environment. Molecules 2014, 19, 16240–16265. [Google Scholar] [CrossRef]
- Orhan, D.D.; Özçelik, B.; Özgen, S.; Ergun, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res. 2010, 165, 496–504. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Zidan, Y.E.; El Hadidi, N.M.N.; Mansour, M.M.A.; Abo Elgat, W.A.A. Evaluation of usage three natural extracts applied to three commercial wood species against five common molds. Int. Biodeter. Biodegr. 2016, 110, 206–226. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innes, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press, Inc.: New York, NY, USA, 1990. [Google Scholar]
- Geiser, D.M.; Jiménez-Gasco, M.D.M.; Kang, S.; Makalowska, I.; Veeraraghavan, N.; Ward, T.J.; Zhang, N.; Kuldau, G.A.; O’donnell, K. FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol. 2004, 110, 473–479. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Mansour, M.M.A.; Elansary, H.O. Evaluation of the effect of inner and outer bark extracts of Sugar Maple (Acer saccharum var. saccharum) in combination with citric acid against the growth of three common molds. J. Wood Chem. Technol. 2019. [Google Scholar] [CrossRef]
- Mohareb, A.S.O.; Kherallah, I.E.A.; Badawy, M.E.I.; Salem, M.Z.M.; Faraj, H.A.Y. Chemical composition and antibacterial activity of essential oils isolated from leaves of different woody trees grown in Al-Jabel al-Akhdar region, Libya. Alex. Sci. Exchang. J. 2016, 37, 358–371. [Google Scholar]
- Tepe, B.; Daferera, D.; Sokmen, A.; Sokmen, M.; Polissiou, A. Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chem. 2005, 90, 333–340. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Fungal Isolate | Accession Number |
---|---|
Fusarium culmorum | MH352452 |
Rhizoctonia solani | MH352450 |
Penicillium chrysogenum | MH352451 |
Conc. (%) | Inhibition Percentage of Mycelial Growth (%) | ||
---|---|---|---|
F. culmorum | P. chrysogenum | R. solani | |
Mean ± SD | Mean ± SD | Mean ± SD | |
0 | 0.00 c | 0.00 c | 0.00 b |
1 | 31.11 b ± 2.22 | 14.07 c ± 7.14 | 40.74 a ± 1.28 |
2 | 31.11 b ± 2.22 | 36.29 b ± 1.28 | 41.48 a ± 1.28 |
3 | 38.51 a ± 1.28 | 65.92 a ± 1.28 | 41.48 a ± 1.28 |
p-value | <0.0001 | <0.0001 | <0.0001 |
LSD0.05 | 3.195 | 6.938 | 2.092 |
Tested Material | MIC (µg/mL) | |||
---|---|---|---|---|
A. tumefaciens | E. cloacae | E. amylovora | P. carotovorum subsp. carotovorum | |
Extract | 200 | 300 | 300 | 100 |
Tobramycin (10 μg/disc) | 32 | 35 | 35 | 16 |
Compound | Conc. (mg/100 g) |
---|---|
Phenolic compounds | |
Gallic acid | ND * |
Catechol | 6.54 |
p-Hydroxy benzoic acid | 14.13 |
Caffeine | 100.11 |
Vanillic acid | ND |
Caffeic acid | 2.50 |
Syringic acid | 5.83 |
Vanillin | ND |
p-Coumaric acid | 2.45 |
Ferulic acid | 6.65 |
Ellagic acid | 12.17 |
Benzoic acid | 161.68 |
o-Coumaric acid | 42.09 |
Salicylic acid | 4.43 |
Cinnamic acid | ND |
Flavonoid compounds | |
Rutin | ND |
Myricetin | ND |
Quercetin | 111.96 |
Naringenin | 145.03 |
Kaempferol | 44.49 |
Apigenin | ND |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Huqail, A.A.; Behiry, S.I.; Salem, M.Z.M.; Ali, H.M.; Siddiqui, M.H.; Salem, A.Z.M. Antifungal, Antibacterial, and Antioxidant Activities of Acacia Saligna (Labill.) H. L. Wendl. Flower Extract: HPLC Analysis of Phenolic and Flavonoid Compounds. Molecules 2019, 24, 700. https://doi.org/10.3390/molecules24040700
Al-Huqail AA, Behiry SI, Salem MZM, Ali HM, Siddiqui MH, Salem AZM. Antifungal, Antibacterial, and Antioxidant Activities of Acacia Saligna (Labill.) H. L. Wendl. Flower Extract: HPLC Analysis of Phenolic and Flavonoid Compounds. Molecules. 2019; 24(4):700. https://doi.org/10.3390/molecules24040700
Chicago/Turabian StyleAl-Huqail, Asma A., Said I. Behiry, Mohamed Z. M. Salem, Hayssam M. Ali, Manzer H. Siddiqui, and Abdelfattah Z. M. Salem. 2019. "Antifungal, Antibacterial, and Antioxidant Activities of Acacia Saligna (Labill.) H. L. Wendl. Flower Extract: HPLC Analysis of Phenolic and Flavonoid Compounds" Molecules 24, no. 4: 700. https://doi.org/10.3390/molecules24040700
APA StyleAl-Huqail, A. A., Behiry, S. I., Salem, M. Z. M., Ali, H. M., Siddiqui, M. H., & Salem, A. Z. M. (2019). Antifungal, Antibacterial, and Antioxidant Activities of Acacia Saligna (Labill.) H. L. Wendl. Flower Extract: HPLC Analysis of Phenolic and Flavonoid Compounds. Molecules, 24(4), 700. https://doi.org/10.3390/molecules24040700