Comparative Analysis of Chemical Constituents of Moringa oleifera Leaves from China and India by Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-Of-Flight Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Preparation and Extraction
2.3. UPLC-QTOF-MSE
2.4. Screening Analysis of Components of CML and IML by UNIFI Platform
2.5. Metabonomics Analysis of CML and IML
3. Results
3.1. Identification of Components from CML and IML Based on the UNIFI Platform
3.2. Diversity Evaluation of CML and IML Using Metabolomics Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Makita, C.; Madala, N.E.; Cukrowska, E.; Abdelgadir, H.; Chimuka, L.; Steenkamp, P.; Ndhlala, A.R. Variation in pharmacologically potent rutinoside-bearing flavonoids amongst twelve Moringa oleifera, Lam. cultivars. S. Afr. J. Bot. 2017, 112, 270–274. [Google Scholar] [CrossRef]
- Khalafalla, M.M.; Abdellatef, E.; Dafalla, H.M. Active principle from Moringa oleifera Lam leaves effective against two leukemias and a hepatocarcinoma. Afr. J. Biotechnol. 2010, 9, 8467–8471. [Google Scholar]
- Mahmood, K.T.; Mugal, T.; Haq, I.U. Moringa oleifera: A natural gift-a review. J. Pharm. Sci. Res. 2010, 2, 775–2781. [Google Scholar]
- Vergara-Jimenez, M.; Almatrafi, M.M.; Fernandez, M.L. Bioactive Components in Moringa oleifera Leaves Protect against Chronic Disease. Antioxidants 2017, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Shih, M.C.; Chang, C.M.; Kang, S.M.; Tsai, M.L. Effect of Different Parts (Leaf, Stem and Stalk) and Seasons (Summer and Winter) on the Chemical Compositions and Antioxidant Activity of Moringa oleifera. Int. J. Mol. Sci. 2011, 12, 6077–6088. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Bhanger, M.I. Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. J. Food Compos. Anal. 2006, 19, 544–551. [Google Scholar] [CrossRef]
- Mahdi, H.J.; Khan, N.A.K.; Asmawi, M.Z.B.; Mahmud, R.; Murugauyah, V.A. In vivo, anti-arthritic and anti-noceciptive effects of ethanol extract of Moringa oleifera, leaves on complete Freund’s adjuvant (CFA)-induced arthritis in rats. Integr. Med. Res. 2018, 7, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Cheenpracha, S.; Park, E.J.; Yoshida, W.Y.; Barit, C.; Wall, M.; Pezzuto, J.M.; Chang, L.C. Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits. Bioorg. Med. Chem. 2010, 18, 6598–6602. [Google Scholar] [CrossRef] [PubMed]
- Sreelatha, S.; Jeyachitra, A.; Padma, P.R. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem. Toxicol. 2011, 49, 1270–1275. [Google Scholar] [CrossRef] [PubMed]
- Tragulpakseerojn, J.; Yamaguchi, N.; Pamonsinlapatham, P.; Wetwitayaklung, P.; Yoneyama, T.; Ishikawa, N.; Ishibashi, M.; Apirakaramwong, A. Anti-proliferative effect of Moringa oleifera Lam (Moringaceae) leaf extract on human colon cancer HCT116 cell line. Trop. J. Pharm. Res. 2017, 16, 371–378. [Google Scholar] [CrossRef]
- Kajihara, R.; Nakatsu, S.; Shiono, T.; Ishihara, M.; Sakamoto, K.; Muto, N. Antihypertensive Effect of Water Extracts from Leaves of Moringa oleifera Lam. on Spontaneously Hypertensive Rats. Nippon Shokuhin Kagaku Kogaku Kaishi 2008, 55, 183–185. [Google Scholar] [CrossRef]
- Helmy, S.A.; Nfs, M.; Elaby, S.M.; Ghally, M.A.A. Hypolipidemic Effect of Moringa oleifera Lam Leaf Powder and its Extract in Diet-Induced Hypercholesterolemic Rats. J. Med. Food 2017, 20, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Dharmendra, S.; Vrat, A.P.; Prakash, A.V.; Radhey, S.G. Evaluation of Antioxidant and Hepatoprotective Activities of Moringa oleifera Lam. Leaves in Carbon Tetrachloride-Intoxicated Rats. Antioxidants 2014, 3, 569–591. [Google Scholar]
- Villarruel-López, A.; Mora, L.L.; Vázquez-Paulino, O.D.; Puebla-Mora, A.G.; Torres-Vitela, M.R.; Guerrero-Quiroz, L.A.; Nuño, K. Effect of Moringa oleifera consumption on diabetic rats. BMC Complement. Altern. Med. 2018, 18, 127. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S.G.; Negi, P.S.; Radha, C. Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour. J. Funct. Foods 2013, 5, 1883–1891. [Google Scholar] [CrossRef]
- Pal, S.K.; Mukherjee, P.K.; Saha, K.; Pal, M.; Saha, B.P. Antimicrobial action of the leaf extract of Moringa oleifera lam. Anc. Sci. Life 1995, 14, 197–199. [Google Scholar] [PubMed]
- Selvakumar, D.; Natarajan, P. Hepato-Protective activity of Moringa oleifera Lam Leaves in Carbon tetrachloride induced Hepato-Toxicity in Albino Rats. Pharmacogn. Mag. 2008, 4, 97–98. [Google Scholar]
- Abd-Rani, N.Z.; Husain, K.; Kumolosasi, E. Moringa Genus: A Review of Phytochemistry and Pharmacology. Front. Pharmacol. 2018, 9, 108. [Google Scholar] [CrossRef] [PubMed]
- Kou, X.; Li, B.; Olayanju, J.B.; Drake, J.M.; Chen, N. Nutraceutical or Pharmacological Potential of Moringa oleifera Lam. Nutrients 2018, 10, 343. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.J.; Zhu, B.F.; Wang, Y.Z.; Liu, Z. Extraction and hypolycemic effect of the total flavonoid from leaves of Moringa oleifera. J. Food Sci. Biotechnol. 2007, 26, 42–45. [Google Scholar]
- The Minister of Health of the People’s Republic of China (MOHC). Announcement on the Approval of 4 New Resource Foods Such as Chlorella vulgaris (No. Nineteenth 2012). [EB/OL]. (12 November 2012). Available online: http://www.nhfpc.gov.cn/sps/s7891/201212/5d4c82e89a9e4713aba8f782eca51e09.shtml (accessed on 17 December 2018).
- Rodríguez-Pérez, C.; Quirantes-Piné, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Ind. Crop. Prod. 2015, 66, 246–254. [Google Scholar] [CrossRef]
- Sheikh, A.; Yeasmin, F.; Agarwal, S.; Rahman, M.; Islam, K.; Hossain, E.; Hossain, S.; Karim, M.D.; Nikkon, F.; Saud, Z.A.; et al. Protective effects of Moringa oleifera Lam. leaves against arsenic-induced toxicity in mice. Asian Pac. J. Trop. Biomed. 2014, 4, S353–S358. [Google Scholar] [CrossRef] [PubMed]
- Ndhlala, A.R.; Mulaudzi, R.; Ncube, B.; Abdelgadir, H.A.; Plooy, C.P.; Van-Staden, J. Antioxidant, antimicrobial and phytochemical variations in thirteen Moringa oleifera Lam. cultivars. Molecules 2014, 19, 10480–10494. [Google Scholar] [CrossRef] [PubMed]
- Förster, N.; Ulrichs, C.; Schreiner, M.; Arndt, N.; Schmidt, R.; Mewis, I. Ecotype Variability in Growth and Secondary Metabolite Profile in Moringa oleifera: Impact of Sulfur and Water Availability. J. Agric. Food Chem. 2015, 63, 2852–2861. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Z.; Zhang, N.Q.; Wang, Z.Z.; Qi, Z.; Zheng, B.Z.; Li, P.Y.; Liu, J.P. Rapid characterization of chemical constituents of Platycodon grandiflorum and its adulterant Adenophora stricta by UPLC-QTOF-MS/MS. J. Mass Spectrom. 2017, 52, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.X.; Li, M.; Qiao, L.R.; Yao, Z.H.; Li, C.; Shen, X.Y.; Wang, Y.; Yu, K.; Yao, X.S.; Dai, Y. Rapid characterization of Ziziphi Spinosae Semen by UPLC/Q-tof MS with novel informatics platform and its application in evaluation of two seeds from Ziziphus species. J. Pharm. Biomed. Anal. 2016, 122, 59–80. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Shi, A.M.; Liu, H.Z.; Meruva, N.; Liu, L.; Hu, H.; Yang, Y.; Huang, C.; Li, P.; Wang, Q. Identification of chemical ingredients of peanut stems and leaves extracts using UPLC-QTOF-MS coupled with novel informatics UNIFI platform. J. Mass Spectrom. 2016, 51, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.F.; Li, W.X.; Tan, X.J.; Li, P.; Xiao, X.H.; Wang, J.B.; Zhu, M.J.; Li, X.L.; Meng, F. A novel and improved UHPLC-QTOF/MS method for the rapid analysis of the chemical constituents of Danhong Injection. Anal. Methods 2016, 8, 2904–2914. [Google Scholar] [CrossRef]
- Wang, Y.R.; Wang, C.Z.; Lin, H.Q.; Liu, Y.H.; Li, Y.M.; Zhao, Y.; Li, P.Y.; Liu, J.P. Discovery of the Potential Biomarkers for Discrimination between Hedyotis diffusa and Hedyotis corymbosa by UPLC-QTOF/MS Metabolome Analysis. Molecules 2018, 23, 1525. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Wang, C.Z.; Zhu, H.L.; Zhou, B.S.; Xiong, L.X.; Wang, F.; Li, P.Y.; Liu, J.P. Comprehensive Metabolomics Analysis of Xueshuan Xinmaining Tablet in Blood Stasis Model Rats Using UPLC-Q/TOF-MS. Molecules 2018, 23, 1650. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Z.; Zhang, N.Q.; Wang, Z.Z.; Qi, Z.; Zhu, H.L.; Zheng, B.Z.; Li, P.Y.; Liu, J.P. Nontargeted Metabolomic Analysis of Four Different Parts of Platycodon grandiflorum Grown in Northeast China. Molecules 2017, 22, 1280. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.L.; Lin, H.Q.; Tan, J.; Wang, H.; Wu, F.L.; Dong, Q.H.; Liu, Y.H.; Li, P.Y.; Liu, J.P. UPLC-QTOF/MS-Based Nontargeted Metabolomic Analysis of Mountain- and Garden-Cultivated Ginseng of Different Ages in Northeast China. Molecules 2019, 24, 33. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Y.; Cheng, X.L.; Wei, F.; Xiao, X.Y.; Sun, W.J.; Zhang, Y.M.; Lin, R.C. Serum metabonomics study of adenine-induced chronic renal failure in rats by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Biomarkers 2012, 17, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.Q.; Wang, G.Q.; Ran, N.; Lin, H.Q.; Wang, Z.Y.; Guan, X.W.; Yuan, Y.Z.; Fang, K.Y.; Liu, J.P.; Wang, F. Inhibitory Effect of Methotrexate on Rheumatoid Arthritis Inflammation and Comprehensive Metabolomics Analysis Using Ultra-Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry (UPLC-Q/TOF-MS). Int. J. Mol. Sci. 2018, 19, 2894. [Google Scholar] [CrossRef] [PubMed]
- Kuligowski, J.; Pérez-Guaita, D.; Escobar, J.; Guardia, M.D.; Vento, M.; Ferrer, A.; Quintáse, Q. Evaluation of the effect of chance correlations on variable selection using Partial Least Squares-Discriminant Analysis. Talanta 2013, 116, 835–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makita, C.; Chimuka, L.; Cukrowska, E.; Steenkamp, P.A.; Kandawa-Schutzd, M.; Ndhlalae, A.R.; Madala, N.E. UPLC-qTOF-MS profiling of pharmacologically important chlorogenic acids and associated glycosides in Moringa ovalifolia, leaf extracts. S. Afr. J. Bot. 2017, 108, 193–199. [Google Scholar] [CrossRef]
- Sahakitpichan, P.; Mahidol, C.; Disadee, W.; Ruchirawat, S.; Kanchanapoom, T. Unusual glycosides of pyrrole alkaloid and 4′-hydroxyphenylethanamide from leaves of Moringa oleifera. Phytochemistry 2011, 72, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Ezzat, S.; Hegazy, A.; Amer, A.M.; Kamel, G.M. Isolation of biologically active constituents from Moringa peregrina (Forssk.) Fiori. (family: Moringaceae) growing in Egypt. Pharmacogn. Mag. 2011, 7, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.R.; Chen, X.H.; Li, L.; Shen, Z.D.; Wang, X.L.; Zheng, P.; Duan, F.X.; Ma, Y.F.; Bi, K.S. LC-MS determination and pharmacokinetic study of six phenolic components in rat plasma after taking traditional Chinese medicinal-preparation: Guanxinning lyophilized powder for injection. J. Chromatogr. B 2008, 873, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Manguro, L.O.A.; Lemmen, P. Phenolics of Moringa oleifera leaves. Nat. Prod. Res. 2007, 21, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.J.; Lin, Y.; Li, P.F.; Liu, Y. Analysis of chemical constituents of Moutan cortex by HPLC-QTOF-MS. J. Pharm. Pract. 2014, 32, 261–265. [Google Scholar]
- Panda, S.; Kar, A.; Sharma, P.; Sharma, A. Cardioprotective potential of N,α-l-rhamnopyranosyl vincosamide, an indole alkaloid, isolated from the leaves of Moringa oleifera in isoproterenol induced cardiotoxic rats: In vivo and in vitro studies. Bioorg. Med. Chem. Lett. 2013, 23, 959–962. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Kim, H.J.; Yun, S.S.; Jin, C.; Lee, K.T.; Cho, J.; Lee, Y.S. Constituents of the stems and fruits of Opuntia ficus-indica var.saboten. Arch. Pharm. Res. 2003, 26, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Li, F.H.; Wang, H.Q.; Su, X.M.; Li, C.K.; Li, B.M.; Chen, R.Y.; Kang, J. Constituents isolated from n-butanol extract of leaves of Moringa oleifera. China J. Chin. Mater. Med. 2018, 43, 114–118. [Google Scholar]
- Bianco, A.; Melchioni, C.; Ramunno, A. Iridoid glucosides from Lamium garganicum flowers. Nat. Prod. Lett. 2003, 17, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Choi, S.U.; Lee, J.H. A new phenylpropane glycoside from the rhizome of Sparganium stoloniferum. Arch. Pharm. Res. 2010, 33, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Shanker, K.; Gupta, M.M.; Srivastava, S.K.; Bawankule, D.U.; Pal, A.; Khanuja, S. Determination of bioactive nitrile glycoside(s) in drumstick (Moringa oleifera) by reverse phase HPLC. Food Chem. 2007, 105, 376–382. [Google Scholar] [CrossRef]
- Alessandro, L.; Giovanni, F.; Franca, C.; Stefano, R.; Laura, S.; Gelsomina, F.; Angela, S.; Alberto, B.; Alberto, S.; Federica, P.; et al. Nutritional Characterization and Phenolic Profiling of, Moringa oleifera Leaves Grown in Chad, Sahrawi Refugee Camps, and Haiti. Int. J. Mol. Sci. 2015, 16, 18923–18937. [Google Scholar]
- Abubakar, A.M.; Sharida, F.; Palanisamy, A.; Pike, S.C.; Farida, A.; Sharida, F. Evaluation of wound healing properties of bioactive aqueous fraction from Moringa oleifera Lam on experimentally induced diabetic animal model. Drug Des. Dev. Ther. 2016, 10, 1715–1730. [Google Scholar]
- Zhang, K.; Zuo, Y. GC-MS Determination of Flavonoids and Phenolic and Benzoic Acids in Human Plasma after Consumption of Cranberry Juice. J. Agric. Food Chem. 2004, 52, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.M.; Kully, M.; Khan, J.K.; Hattori, M.; Daneshtalab, M. Synthesis of chlorogenic acid derivatives with promising antifungal activity. Bioorg. Med. Chem. 2007, 15, 6830–6833. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.T.; Fontaine, J.; Malonne, H.; Claeys, M.; Luhmer, M.; Duez, P. A sugar ester and an iridoid glycoside from Scrophularia ningpoensis. Phytochemistry 2005, 36, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Vongsak, B.; Sithisarn, P.; Gritsanapan, W. Simultaneous HPLC quantitative analysis of active compounds in leaves of Moringa oleifera Lam. J. Chromatogr. Sci. 2014, 52, 641–645. [Google Scholar] [CrossRef] [PubMed]
- Cuyckens, F.; Shahat, A.A.; Pieters, L.; Claeys, M. Direct stereochemical assignment of hexose and pentose residues in flavonoid O-glycosides by fast atom bombardment and electrospray ionization mass spectrometry. J. Mass Spectrom. 2002, 37, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J.; Xu, M.; Yu, C.Q.; Zhang, G.F.; Tang, X. Simultaneous determination of vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, rutin and vitexin from hawthorn leaves flavonoids in rat plasma by UPLC-ESI-MS/MS. J. Chromatogr. B 2010, 878, 1837–1844. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.Y.; Gao, G.H.; Zheng, S.N.; Li, F.M. Qualitative and quantitative analysis of flavonoids in the leaves of Isatis indigatica Fort. by ultra-performance liquid chromatography with PDA and electrospray ionization tandem mass spectrometry detection. J. Pharm. Biomed. Anal. 2008, 48, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Atawodi, S.E.; Atawodi, J.C.; Idakwo, G.A.; Pfundstein, B.; Haubner, R.; Wurtele, G.; Bartsch, H.; Owen, R.W. Evaluation of the Polyphenol Content and Antioxidant Properties of Methanol Extracts of the Leaves, Stem, and Root Barks of Moringa oleifera Lam. J. Med. Food 2010, 13, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tu, Z.C.; Wang, H.; Fu, Z.F.; Wen, Q.H.; Chang, H.X.; Huang, X.Q. Comparison of different methods for extracting polyphenols from Ipomoea batatas, leaves, and identification of antioxidant constituents by HPLC-QTOF-MS2. Food Res. Int. 2015, 70, 101–109. [Google Scholar] [CrossRef]
- Hasan, A.; Hussain, A.; Khan, M.A. Flavonol glycosides from leaves of Bergenia himalaica. Asian J. Chem. 2005, 17, 822–828. [Google Scholar]
- Polasek, J.; Queiroz, E.F.K. On-line identification of phenolic compounds of Trifolium, species using HPLC-UV-MS and post-column UV-derivatisation. Phytochem. Anal. 2007, 18, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Shen, L.M.; Ma, Z.J. Screening for ligands of human aromatase from mulberry (Mori alba L.) leaf by using high-performance liquid chromatography/tandem mass spectrometry. Food Chem. 2011, 126, 1337–1343. [Google Scholar] [CrossRef]
- Faizi, S.; Siddiqui, B.S.; Saleem, R.; Siddiqui, S.; Aftab, K.; Gilani, A.H. Isolation and Structure Elucidation of New Nitrile and Mustard Oil Glycosides from Moringa oleifera and Their Effect on Blood Pressure. J. Nat. Prod. 1994, 57, 1256–1261. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.P.; Liu, L.; Wang, L.L.; Hu, Y.H.; Zhang, W.D.; Liu, R.H. Structural characterization and identification of major constituents in Jitai tablets by high-performance liquid chromatography/diode-array detection coupled with electrospray ionization tandem mass spectrometry. Molecules 2012, 17, 10470–10493. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Hu, L.M.; Liu, Y.N. A rapid method for qualitative and quantitative analysis of major constituents in dengzhanxixin injection by LC-DAD-ESI-MSn. Chromatographia 2010, 71, 845–853. [Google Scholar] [CrossRef]
- Tumer, T.B.; Rojas-Silva, P.; Poulev, A.; Raskin, L.; Waterman, C. Direct and Indirect Antioxidant Activity of Polyphenol- and Isothiocyanate-Enriched Fractions from Moringa oleifera. J. Agric. Food Chem. 2015, 63, 1505–1513. [Google Scholar] [CrossRef] [PubMed]
- He, C.M.; Cheng, Z.H.; Chen, D.F. Qualitative and quantitative analysis of flavonoids in Sophora tonkinensis by LC/MS and HPLC. Chin. J. Nat. Med. 2013, 11, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.L.; Zou, D.; Zhang, A.H.; Tan, Y.L.; Sun, H.; Wang, X.J. UPLC-Q-TOF-MS/MS fingerprinting for rapid identification of chemical constituents of Ermiao Wan. Anal. Methods 2015, 7, 846–862. [Google Scholar] [CrossRef]
- Mekonnen, A. Chemical Investigation of the Leaves of Moringa Stenopetala. Bull. Chem. Soc. Ethiopi. 2000, 14, 197–201. [Google Scholar] [CrossRef]
- Strutt, K.D.; Keay, S.; Millett, M. The Hinterland of Portus. Integrated Analysis of Geophysical Survey Data and Remotely Sensed Imagery in the Tiber Delta. Chem. Pharm. Bull. 2012, 39, 1551–1555. [Google Scholar]
- Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Lorenzo, J.M.; Afolayan, A.J.; Muchenje, V. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Res. Int. 2018, 106, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.F.; Cheng, X.L.; Lin, Q.H.; Li, S.S.; Jia, Z.; Han, T.; Lin, R.C.; Wang, D.; Wei, F.; Li, X.R. Identification of mountain-cultivated ginseng and cultivated ginseng using UPLC/oa-TOF MSE with a multivariate statistical sample-profiling strategy. J. Ginseng Res. 2016, 40, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Hameed, A.; Noreen, R. Antioxidant Potential and Biochemical Analysis of Moringa oleifera Leaves. Int. J. Agric. Biol. 2017, 19, 941–950. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Species | Sample No. | Source | Collection Time |
---|---|---|---|
CML | 1 | Pu‘er City, Yunnan Province, China; market | November 2017 |
2 | Xishuangbanna City, Yunnan Province, China; field | March 2018 | |
3 | Shaoguan City, Guangdong Province, China; market | January 2017 | |
4 | Guangzhou City, Guangdong Province, China; field | December 2017 | |
5 | Danzhou City, Hainan Province, China; market | January 2018 | |
6 | Changjiang City, Hainan Province, China; market | March 2017 | |
IML | 1 | Howrah, India; market | December 2017 |
2 | Howrah, India; market | November 2017 | |
3 | Tamil Nadu, India; market | February 2018 | |
4 | Tamil Nadu, India; market | March 2018 | |
5 | Maharastra, India; market | January 2018 | |
6 | Maharastra, India; market | January 2017 |
No. | Retention Time (RT) (min) | Formula | Calculated Mass (Da) | Theoretical Mass (Da) | Mass Error (ppm) | MSE Fragmentation | Identification | Sources | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | 0.59 | C7H12O6 | 192.0629 | 192.0634 | −2.6 | 191.0542[M − H]−, 173.0432[M-H-H2O]−, 145.0516[M-H-HCOOH]−, 137.0232[M-H-3H2O]−, 127.0401[M-H-H2O-HCOOH]− | Quinic acid | CML, IML | s |
2 | 0.60 | C12H22O11 | 342.1161 | 342.1162 | −0.3 | 387.1143[M + HCOO]−, 179.0554[M-H-Glu]− | α-Maltose | CML, IML | s |
3 | 0.62 | C16H18O9 | 354.0968 | 354.0951 | 4.8 | 353.0895[M − H]−, 335.0896[M-H-H2O]−, 190.0544[M-H-C9H7O3]−, 190.0391[M-H-3H2O-C6H5O2]−, 143.0346[M-H-HCOOH-C9H8O3]− | Cryptochlorogenic acid | CML, IML | [37] |
4 | 0.72 | C10H13N5O4 | 267.0968 | 267.0968 | 0.0 | 268.1041[M + H]+, 187.0620[M + H-C3H3N3]+, 161.0744[M + H-C4H3N4]+, 136.0612[M + H-Rib]+ | Adenosine | CML, IML | s |
5 | 0.80 | C13H16O8 | 300.0836 | 300.0845 | −2.9 | 299.0764[M − H]−, 178.0632[M-H-C7H5O2]−, 135.0231[M-H-Glu]−, 89.0347[M-H-Glu-HCOOH]− | Benzoic acid 4-O-β-glucoside | CML, IML | [18] |
6 | 1.03 | C20H29NO11 | 459.1739 | 459.1741 | −0.2 | 504.1721[M + HCOO]−, 427.1487[M-H-NH2-CH3]−, 307.0995[M-H-C8H9NO2]−, 279.1081[M-H-Glu]−, 150.0546[M-H-2Glu]− | 3 ′′-O-β-d-glucopyranosyl derivatives (marumoside B) | CML, IML | [38] |
7 | 1.04 | C14H19NO6 | 297.1210 | 297.1212 | −0.7 | 342.1192[M + HCOO]−, 262.0758[M-H-H2O-NH2]−, 149.0546[M-H-Rha]−, 105.0430[M-H-Rha-CONH2]− | 4 ′-Hydroxyphenylethanamide-α-l-rhamnopyranoside (marumoside A) | CML, IML | [38] |
8 | 1.18 | C16H18O9 | 354.0942 | 354.0951 | −2.4 | 353.0869[M − H]−, 281.1169[M-H-4H2O]−, 190.0546[M-H-C9H7O3]−, 161.0285[M-H-C7H12O6]−, 134.0436[M-H-C8H11O7]− | Neochlorogenic acid | CML, IML | [39] |
9 | 1.38 | C16H23NO7 | 341.1458 | 341.1475 | −4.7 | 342.1531[M + H]+, 261.1188[M + H-2H2O-C2H5O]+, 107.0492[M + H-Rha-C3H6NO2]+, 102.0550[M + H-Rha-C6H4]+ | O-Ethyl-4-[(α-l-rhamnosyloxy)-benzyl]carbamate | CML, IML | [18] |
10 | 1.47 | C7H6O4 | 154.0271 | 154.0266 | 3.2 | 153.0215[M − H]−, 135.0211[M-H-H2O]−, 89.0340[M-H-H2O-HCOOH]− | 3,4-Dihydroxy-benzoic acid | CML, IML | [40] |
11 | 1.51 | C13H16O7 | 300.0892 | 300.0896 | −1.5 | 299.0819[M − H]−, 160.0351[M-H-H2O-C7H5O2]−, 90.0343[M-H-Glu-HCOOH]− | Benzaldehyde 4-O-β-glucoside | CML, IML | [41] |
12 * | 1.70 | C31H34O14 | 630.1957 | 630.1949 | 1.3 | 675.1692[M + HCOO]−, 414.1127[M-H-Ph-CH3-C7H7O2]−, 353.0869[M-H-H2O-C7H6O-C8H8O3]−, 298.0797[M-H-CH3-C17H16O6]−, 222.0634[M-H-Ph-Glu-C8H7O3]− | Mudanpioside J | CML >> IML VIP: 2.73 p < 0.001 | [42] |
13 | 1.71 | C32H40N2O13 | 660.2563 | 660.2530 | 4.6 | 705.2545[M + HCOO]−, 441.1367[M-H-Rha-C2H3-C2H4]−, 326.0797[M-H-Rha-C11H9N2]−, 263.0856[M-H-Rha-Glu-C4H5]−, 175.0444[M-H-Rha-Glu-C10H6N]− | N, α-l-Rhamnopyranosyl vincosamide | CML, IML | [43] |
14 * | 1.84 | C15H12O7 | 304.0573 | 304.0583 | −3.2 | 349.00618[M + HCOO]−, 285.0418[M-H-H2O]−, 162.0364[M-H-C6H5O4]−, 152.9691[M-H-CH3-C8H8O2]−, 132.0231[M-H-H2O-OCH3-C7H6O2]−, 130.0235[M-H-C11H9O2]− | Dihydroquercetin | CML VIP: 8.20 p < 0.001 | [44] |
15 | 2.07 | C16H18O9 | 354.0951 | 354.0951 | 0.1 | 353.0878[M − H]−, 253.1035[M-H-3H2O-HCOOH]−, 190.0182[M-H-3H2O-C6H5O2]−, 144.0302[M-H-H2O-C7H11O6]−, 125.0251[M-H-H2O-HCOOH-C9H8O3]− | Chlorogenic acid | CML, IML | s |
16 | 2.09 | C17H20O9 | 368.1102 | 368.1107 | −1.5 | 367.1029[M − H]−, 336.0902[M-H-OCH3]−, 295.1124[M-H-4H2O]−, 243.0591[M-H-CH3-C6H5O2]−, 189.0549[M-H-CH3-C9H7O3]−, 178.0346[M-H-C8H13O5]− | Methyl-3-caffeoylquinate | CML, IML | [45] |
17 | 2.34 | C16H18N2O4 | 302.1254 | 302.1267 | −4.1 | 303.1327[M + H]+, 285.1232[M + H-H2O]+, 212.0983[M + H-H2O-C2H5O2]+, 176.0893[M + H-2H2O-C3H7O3]+ | Tangutorid E | CML, IML | [45] |
18 | 2.35 | C19H28O12 | 448.1578 | 448.1581 | −0.7 | 447.1505[M − H]−,417.0973[M-H-2CH3]−, 267.1031[M-H-Glu]−, 245.1016[M-H-OCOCH3-C6H7O4]−, 167.0480[M-H-Glu-C4H4O3]− | 8-O-Acetylshanzhiside methyl ester | CML, IML | [46] |
19 | 2.53 | C9H8O4 | 180.0414 | 180.0423 | −4.5 | 179.0335[M − H]−, 143.0430[M-H-2H2O]−, 133.0433[M-H-HCOOH]−, 108.0265[M-H-C3H3O2]− | Caffeic acid | CML, IML | s |
20 | 2.62 | C16H18N2O4 | 302.1257 | 302.1267 | −3.1 | 303.1330[M + H]+, 285.1248[M + H-H2O]+, 194.0881[M + H-2H2O-C2H5O2]+, 194.0895[M + H-H2O-C3H7O2]+, 118.0799[M + H-H2O-C11H7N2]+ | Tangutorid F | CML, IML | [45] |
21 | 2.87 | C17H20O9 | 368.1104 | 368.1107 | −0.9 | 367.1031[M − H]−, 336.0931[M-H-OCH3]−, 203.0655[M-H-C9H8O3]−, 188.0545[M-H-CH3-C9H8O3]−, 151.0384[M-H-2H2O-C9H8O4]− | Methyl-4-caffeoylquinate | CML, IML | [45] |
22 | 2.96 | C10H20O6 | 236.1260 | 236.1261 | 0.3 | 259.1153[M + Na]+, 219.1322[M + H-H2O]+, 176.0465[M + H-H2O-C3H7]+, 164.0694[M + H-C4H9O]+ | n-Butyl-β-d-fructopyranoside | CML, IML | [47] |
23 | 3.00 | C18H26O10 | 402.1536 | 402.1526 | 2.3 | 425.1428[M + Na]+, 296.1001[M + H-C7H7O]+, 253.1061[M + H-Xyl]+, 146.0584[M + H-Xyl-C7H7O]+, 73.0491[M + H-Glu-Xyl]+ | Benzyl-O-β-d-xylopyranosyl-(1→6)-β-d-glucopyranoside | CML, IML | [18] |
24 | 3.01 | C19H28O12 | 448.1587 | 448.1581 | 1.5 | 447.1514[M − H]−,398.1453[M-H-H2O-OCH3]−, 378.1102[M-H-3H2O-CH3]−, 291.0974[M-H-C8H12O3]−, 267.1025[M-H-Glu]−, 193.0447[M-H-Glu-OCH3-COCH3]− | 6-O-acetylshanzhiside methyl ester | CML, IML | [46] |
25 | 3.04 | C14H17NO6 | 295.1051 | 295.1056 | −1.7 | 294.0978[M-H]−, 268.1025[M-H-CN]−, 162.0436[M-H-C8H6NO]−, 130.0390[M-H-Rha]−, 104.0286[M-H-Rha-CN]− | Niaziridin | CML, IML | [48] |
26 | 3.13 | C9H8O3 | 164.0474 | 164.0473 | 0.3 | 165.0544[M + H]+, 147.0444[M + H-H2O]+, 119.0483[M + H-HCOOH]+ | o-Coumaric acid | CML, IML | [49] |
27 | 3.23 | C27H30O15 | 594.1590 | 594.1585 | 0.8 | 593.1517[M − H]−, 575.1371[M-H-H2O]−, 529.0871[M-H-H2O-Glu]−, 394.1305[M-H-2H2O-C9H6O3]− | Vicenin-2 | CML, IML | [50] |
28 | 3.32 | C9H8O3 | 164.0471 | 164.0473 | −1.4 | 165.0544[M + H]+, 147.0442[M + H-H2O]+, 119.0482[M + H-HCOOH]+, 107.0495[M + H-C2H2O2]+ | ρ-Coumaric acid | CML, IML | [49] |
29 * | 3.34 | C31H34O14 | 630.1943 | 630.1949 | −0.8 | 675.1939[M + HCOO]−, 464.0735[M-H-2CH3-C8H7O2]−, 339.0923[M-H-H2O-C7H5O2-C8H7O3]−, 223.0599[M-H-C7H7O2-Glu benzoate]−, 163.0386[M-H-C9H9O4-Glu benzoate]− | 6′-O-Benzoyl-4″-hydroxy-3″-methoxypaeoniflorin | CML >> IML VIP: 2.12 p < 0.001 | [51] |
30 * | 3.35 | C16H18O8 | 338.997 | 338.1002 | −1.5 | 337.0930[M − H]−, 265.0787[M-H-4H2O]−, 173.0442[M-H-C9H7O3]−, 162.0386[M-H-C7H11O5]−, 127.0704[M-H-HCOOH-C9H7O3]− | 3-p-Coumaroylquinic acid | CML >> IML VIP: 9.19 p < 0.001 | [52] |
31 | 3.47 | C27H30O15 | 594.1589 | 594.1585 | 0.7 | 593.1516[M − H]−, 575.1396[M-H-H2O]−, 411.0869[M-H-H2O-Rha]−, 287.0536[M-H-H2O-Rha-C6H4O3]−, 125.0302[M-H-Rha-Glu-C6H4O3]− | Kaempferol-3-O-rutinoside | CML, IML | s |
32 | 3.54 | C13H16O6 | 268.0942 | 268.0947 | −1.6 | 313.0924[M + HCOO]−, 213.0760[M-H-3H2O]−, 184.0768[M-H-3H2O-CHO]−, 147.0540[M-H-CH3-C7H5O]−, 103.0284[M-H-Rha]− | Benzaldehyde-4-O-α-l-rhamnopyranoside | CML, IML | [45] |
33 * | 3.55 | C16H14O7 | 318.0746 | 318.0740 | 1.9 | 363.0747[M + HCOO]−, 208.0473[M-H-C6H5O2]−, 193.0273[M-H-CH3-C6H5O2]−, 133.0452[M-H-H2O-C8H6O4]−, 121.0284[M-H-C9H8O5]− | Padmatin | CML VIP: 3.75 p < 0.001 | s |
34 | 3.89 | C17H20O9 | 368.1097 | 368.1107 | −2.7 | 367.1025[M − H]−, 298.0387[M-H-3H2O-CH3]−, 288.1015[M-H-H2O-CH3-HCOOH]−, 192.0488[M-H-C7H11O5]−, 191.0629[M-H-C10H8O3]− | 4-Feruloylquinic acid | CML, IML | a |
35 | 4.02 | C14H17NO5 | 279.1100 | 279.1107 | −2.1 | 324.1082[M + HCOO]−, 188.0725[M-H-C3H6O]−, 147.0545[M-H-CH3-C8H6N]−, 114.0433[M-H-Rha]−, 88.0545[M-H-Rha-CN]− | Niazirin | CML, IML | [45] |
36 | 4.05 | C27H30O17 | 626.1487 | 626.1483 | 0.7 | 625.1414[M − H]−, 445.0853[M-H-Glu]−, 318.0205[M-H-Glu-H2O-C6H5O2]−, 324.1075[M-H-C15H9O7]−, 265.0333[M-H-2Glu]−, 275.0708[M-H-Glu-H2O-C7H4O4]− | QuerQuercetin-3-gentiobioside | CML, IML | a |
37 | 4.14 | C15H14O6 | 290.0784 | 290.0790 | −1.8 | 335.0766[M + HCOO]−, 162.0243[M-H-H2O-C6H5O2]−, 138.0291[M-H-H2O-C7H6O3]−, 120.0283[M-H-C8H9O4]−, 79.0342[M-H-H2O-C10H8O4]− | Epicatechin | CML, IML | s |
38 * | 4.16 | C18H22O8 | 366.1324 | 366.1315 | 2.5 | 411.1641[M + HCOO]−, 335.0765[M-H-2CH3]−, 232.0622[M-C9H9O]−, 173.0459[M-H-CH3-C10H9O3]−, 161.0243[M-CH3-Rha ethyl ester]− | 3-O-acetyl-2-O-p-methoxycinnamoyl-α-l-rhamnopyranose | CML VIP: 2.69 p < 0.001 | [53] |
39 | 4.22 | C21H20O11 | 448.0999 | 448.1006 | −1.4 | 447.0926[M − H]−, 429.0850[M-H-H2O]−, 267.0395[M-H-Glu]−, 143.0288[M-H-Glu-C6H4O3]− | Astragalin | CML, IML | [54] |
40 | 4.47 | C15H14O6 | 290.0793 | 297.0790 | 0.6 | 335.0775[M + HCOO]−, 147.0436[M-H2O-C6H4O3]−, 137.0224[M-H-C8H8O3]−, 133.0295[M-H-H2O-C7H6O3]−, 90.0342[M-H-H2O-C9H9O4]− | Catechin | CML, IML | s |
41 | 4.49 | C21H20O12 | 464.0955 | 464.0949 | −1.2 | 465.1022[M + H]+, 285.0485[M + H-Glu]+, 231.0678[M + H-Glu-3H2O]+, 149.0150[M + H-Glu-C7H4O3]+, 152.0154[M + H-Glu-C8H5O2]+ | Hyperoside | CML, IML | s |
42 | 4.50 | C27H30O17 | 626.1475 | 626.1483 | −1.3 | 625.1402[M − H]−, 516.1277[M-H-C6H5O2]−, 396.0689[M-H-Glu-H2O-CH2OH]−, 265.0264[M-H-2Glu]−, 132.9991[M-H-2Glu-C8H5O2]− | Quercetin-3-sophoroside | CML, IML | a |
43 | 4.52 | C26H28O16 | 596.1400 | 596.1377 | 3.8 | 595.1327[M − H]−, 265.0264[M-H-Glu-Xyl]−, 138.0156[M-H-Glu-Xyl-H2O-C6H5O2]−, 115.9991[M-H-Glu-Xyl-C8H6O3]−, 144.0485[M-H-Xyl-C15H9O7]− | Quercetin-3-O-β-d-xylopyranosyl-(1→2)-β-d-glucopyranoside | CML, IML | a |
44 | 4.67 | C21H20O12 | 464.0939 | 464.0955 | −3.4 | 463.0866[M − H]−, 318.0758[M-H-2H2O-C6H5O2]−, 178.0513[M-H-C15H9O6]−, 159.0379[M-H-Glu-C6H4O3]− | Isoquercetin | CML, IML | [54] |
45 | 4.68 | C27H30O14 | 578.1635 | 578.1636 | −0.2 | 579.1707[M + H]+, 543.1466[M + H-2H2O]+, 415.1130[M + H-Rha]+, 322.0748[M + H-Rha-C6H5O]+, 235.0580[M + H-Glu-Rha]+ | Apigenin-7-O-rutinoside | CML, IML | [39] |
46 | 4.71 | C27H30O15 | 594.1596 | 594.1585 | 2.0 | 593.1524[M − H]−, 413.0899[M-H-Glu]−, 338.0756[M-H-Glu-H2O-C2HO2]−, 247.0305[M-H-Rha-Glu]−, 160.0677[M-H-Rha-C15H9O5]− | Kaempferol-3-O-α-l-rhamnoside-(1→4)-β-d-glucoside | CML, IML | a |
47 | 4.82 | C26H34O11 | 522.2118 | 522.2101 | 3.0 | 567.2100[M + HCOO]−, 461.2005[M-H-C2H4O]−, 341.1509[M-H-Glu]−, 401.1193[M-H-C9H12]−, 200.0871[M-H-Glu-H2O-C7H7O2]−, 134.0427[M-H-Glu-C12H15O3]− | Ligan glycoside A | CML, IML | b |
48 | 4.85 | C26H28O14 | 564.1475 | 564.1479 | −0.7 | 565.1548[M + H]+, 418.1217[M + H-C9H6O2]+, 298.0909[M + H-Api-C8H6O]+, 180.0776[M + H-Api-C15H9O4]+, 147.0593[M + H-Glu-Api-C6H3O2]+ | Apiin | CML, IML | [55] |
49 | 4.95 | C15H10O7 | 302.0429 | 302.0427 | 0.7 | 303.0501[M + H]+, 153.0162[M + H-C8H6O3]+, 151.0210[M + H-C7H4O4]+, 122.0388[M + H-C9H6O4]+ | Quercetin | CML, IML | s |
50 # | 4.97 | C27H30O16 | 610.1537 | 610.1534 | 0.6 | 611.1652[M + H]+, 447.1016[M + H-Rha]+, 267.0509[M + H-Glu-Rha]+, 158.0289[M + H-Glu-Rha-C6H5O2]+, 131.0222[M + H-Glu-Rha-C7H4O3]+ | Rutin | CML << IML VIP: 8.51 p < 0.001 | s |
51 # | 5.01 | C27H30O16 | 610.1532 | 610.1534 | −0.3 | 609.1472[M − H]−, 427.0974[M-H-Rha-H2O]−, 336.0683[M-H-Rha-C6H5O2]−, 265.0326[M-H-Glu-Rha]−, 132.0015[M-H-Glu-Rha-C8H5O2]− | Quercetin-3-rutinoside | CML << IML VIP: 13.28 p < 0.001 | [56] |
52 | 5.02 | C21H20O10 | 432.1048 | 432.1056 | −2.0 | 431.0975[M − H]−, 395.0746[M-H-2H2O]−, 338.0683[M-H-C6H5O]−, 251.0447[M-H-Glu]−, 100.0326[M-H-Glu-C7H3O4]− | Apigenin-8-C-glucoside | CML, IML | [39] |
53 | 5.04 | C21H20O10 | 432.1069 | 432.1056 | 2.7 | 477.1051[M + HCOO]−, 267.0464[M-H-Rha]−, 163.0701[M-H-C15H8O5]−, 115.0438[M-H-Rha-C7H4O4]− | Kaempherol-3-O-α-rhamnoside | CML, IML | [41] |
54 | 5.08 | C15H19NO5 | 293.1265 | 293.1263 | 0.5 | 294.1337[M + H]+, 131.0526[M + H-OCH3-C8H6NO]+, 99.0646[M + H-Rha-OCH3]+ | 4-(4 ′-O-methyl-α-l-rhamnosyloxy)benzyl nitrile | CML, IML | [18] |
55 * | 5.22 | C21H20O12 | 464.0938 | 464.0955 | −3.5 | 463.0880[M − H]−, 283.0502[M-H-Glu]−, 174.0278[M-H-Glu-C6H5O2]−, 150.0174[M-H-Glu-C8H5O2]− | Quercetin 3-O-β-d-glucopyranoside | CML >> IML VIP: 7.30 p < 0.001 | [56] |
56 | 5.48 | C15H14O5 | 274.0837 | 274.0841 | −1.2 | 319.0819[M + HCOO]−, 144.0281[M-H-2H2O-C6H5O]−, 137.0222[M-H-C8H8O2]−, 117.0329[M-H-H2O-C7H6O3]−, 92.0344[M-H-C9H9O4]− | (−)-Epiafzelechin | CML, IML | s |
57 | 5.55 | C27H30O17 | 626.1490 | 626.1483 | 1.1 | 625.1417[M − H]−, 571.1354[M-H-3H2O]−, 391.0807[M-H-Glu-3H2O]−, 303.0966[M-H-Glu-H2O-C6H3O2]−, 265.0399[M-H-2Glu]− | Quercetin-3,7-O-β-d-diglucopyranoside | CML, IML | a |
58 | 5.65 | C24H22O15 | 550.0957 | 550.0959 | −0.2 | 549.0885[M − H]−, 445.0780[M-H-malonyl]−, 300.0267[M-H-malonyl-Glu]−, 160.0133[M-H-malonyl-Glu-C6H4O3]− | Quercetin-3-O-(6″-malonyl) glucoside | CML, IML | [49] |
59 # | 5.67 | C27H30O15 | 594.1579 | 594.1585 | −1.0 | 595.1678[M + H]+, 448.1063[M + H-3H2O-C6H5O]+, 385.1335[M + H-Glu-C2HO]+, 304.0494[M + H-H2O-Glu-C6H5O]+, 142.0169[M + H-2Glu-C6H5O]+ | Isovitexin-3″-O-glucopyranoside | CML << IML VIP: 5.63 p < 0.001 | [57] |
60 # | 5.69 | C30H26O13 | 594.1355 | 594.1373 | −3.1 | 593.1507[M − H]−, 484.1116[M-H-C6H5O2]−, 439.0848[M-H-C7H6O4]−, 286.0394[M-H-H2O-C15H13O6]−, 153.9989[M-H-C23H20O9]− | Procyanidins | CML << IML VIP: 7.04 p < 0.001 | [58] |
61 | 5.72 | C27H28O16 | 608.1378 | 608.1377 | 0.0 | 607.1305[M − H]−, 543.1275[M-H-H2O-HCOOH]−, 504.0985[M-H-C4H7O3]−, 440.0889[M-H-H2O-C5H9O3]−, 462.0868[M-H-C6H9O4]−, 282.0267[M-H-Glu-C6H9O4]− | Quercetin-3-O-hydroxy methylglutaroyl galactoside | CML, IML | [59] |
62 # | 5.84 | C28H32O16 | 624.1703 | 624.1690 | 2.1 | 623.1611[M − H]−, 590.1383[M-H-H2O-CH3]−, 466.1438[M-H-2H2O-C7H7O2]−, 337.0986[M-H-Rha-C6H4O3]−, 281.0460[M-H-Glu-Rha]− | Isorhamnetin-3-O-rutinoside | CML << IML VIP: 2.90 p < 0.001 | s |
63* | 5.92 | C21H20O11 | 448.1003 | 448.1006 | −0.7 | 447.0929[M − H]−, 267.0463[M-H-Glu]−, 227.0343[M-H-Glu-C2O]−, 134.0018[M-H-Glu-C8H5O2]− | Kaempferol-3-O-glucoside | CML >> IML VIP: 10.89 p < 0.001 | [49] |
64 | 6.07 | C16H12O7 | 316.0581 | 316.0583 | −0.6 | 317.0654[M + H]+, 302.0412[M + H-CH3]+, 299.0533[M + H-H2O]+, 152.0169[M + H-C9H8O3]+, 125.0388[M + H-C10H8O4]+ | Isorhamnetin | CML, IML | s |
65 | 6.16 | C23H22O13 | 506.1068 | 506.1060 | 1.4 | 505.0995[M − H]−, 490.0815[M-H-CH3]−, 428.0988[M-H-H2O-OCOCH3]−, 317.0980[M-H-2H2O-C7H4O4]−, 283.0198[M-H-Glu ethyl ester]− | Quercetin-3-O-(6″-O-acetyl)-β-d-glucopyranoside | CML, IML | [49] |
66 | 6.24 | C9H16O4 | 188.1045 | 188.1049 | 2.1 | 187.0965[M − H]−, 141.1105[M-H-HCOOH]−, 123.0957[M-H-H2O-HCOOH]−, 112.0644[M-H-H2O-C3H5O]− | Azelaic acid | CML, IML | s |
67 | 6.28 | C22H22O9 | 430.1242 | 430.1264 | −4.7 | 475.1224[M + HCOO]−, 288.0536[M-H-H2O-C7H7O2]−, 244.0915[M-H-2H2O-C9H8O2]−, 143.0398[M-H-CH3-Rha-C6H3O2]−, 130.0289[M-H-Rha-C7H3O3]− | Chryseriol-7-O-rhamnoside | CML, IML | [39] |
68 | 6.43 | C36H36O18 | 756.1900 | 756.1902 | −0.3 | 755.1827[M − H]−, 737.1844[M-H-H2O]−, 575.1386[M-H-Glu]−, 427.0933[M-H-Glu-C9H7O2]−, 405.0904[M-H-Glu-H2O-C7H4O4]−, 247.0320[M-H-2Glu-C9H7O2]− | Allivictoside A | CML, IML | b |
69 * | 6.44 | C34H24O10 | 592.1387 | 592.1370 | 3.0 | 593.1639[M + H]+, 483.1521[M + H-H2O-C6H4O]+, 266.0696[M + H-C8H5O2-C10H10O2]+, 241.0502[M + H-C20H16O6]+, 134.0267[M + H-C26H19O8]+ | Mulberrofuran Q | CML >> IML VIP: 5.76 p < 0.001 | [59] |
70 | 6.46 | C24H22O14 | 534.1014 | 534.1010 | 0.8 | 533.0941[M − H]−, 447.0920[M-H-malonyl]−, 323.0962[M-H-malonyl-C6H4O3]−, 284.0320[M-H-malonyl-Glu]− | Kaempferol-3-O-(6″-malonyl) glucoside | CML, IML | [49] |
71 | 6.74 | C22H20O12 | 476.0964 | 476.0955 | 1.8 | 475.0891[M − H]−, 444.0726[M-H-OCH3]−, 351.0892[M-H-C6H4O3]−, 283.0394[M-H-methyl glucuronate]−, 172.0452[M-H-H2O-C15H9O6]− | Kaempferol-3-O-β-d-glucuronide-6″-methyl ester | CML, IML | [60] |
72 | 6.98 | C21H20O10 | 432.1052 | 432.1056 | −1.1 | 431.0979[M − H]−, 267.0327[M-H-Rha]−, 249.0447[M-H-Rha-H2O]−, 157.9997[M-H-Rha-C6H6O2]− | Kaempferol-7-O-α-l-rhamnoside | CML, IML | [61] |
73 | 6.99 | C15H10O6 | 286.0484 | 286.0477 | 2.4 | 287.0557[M + H]+, 153.0167[M + H-C8H6O2]+, 135.0583[M + H-C7H4O4]+, 124.0385[M + H-C9H6O3]+ | Orobol | CML, IML | [62] |
74 * | 7.01 | C23H22O12 | 490.1108 | 490.1111 | −0.6 | 489.1039[M − H]−, 446.1001[M-H-COCH3]−, 267.0323[M-H-Glu ethyl ester]−, 143.0443[M-H-Glu ethyl ester-C6H4O3]− | 3-O-(6″-O-acetyl)-β-d-glucopyranside | CML >> IML VIP: 6.15 p < 0.001 | [63] |
75 | 7.80 | C16H19NO6 | 321.1213 | 321.1212 | 0.2 | 366.1195[M + HCOO]−, 249.0617[M-H-OCH 3-C2H2N]−, 189.0517[M-H-CH3-C8H6N]−, 97.0370[M-H-Rha-C2H3O2]− | Niazirinin | CML, IML | [45] |
76 | 7.86 | C15H10O6 | 286.0477 | 286.0473 | −1.7 | 285.0400[M − H]−, 121.0377[M-H-C6H4O3]−, 183.0010[M-H-C8H6]−, 133.0415[M-H-C7H4O4]−, 108.0280[M-H-C9H5O4]− | Luteolin | CML, IML | s |
77 | 7.89 | C15H10O7 | 302.0408 | 302.0427 | −1.8 | 301.0336[M − H]−, 244.0329[M-H-C2HO2]−, 190.0130[M-H-H2O-C6H5O]−, 133.0269[M-H-C7H4O5]−, 92.0343[M-H-C9H5O6]− | 6-Hydroxykaempferol | CML, IML | [64] |
78 # | 7.89 | C28H32O17 | 640.1653 | 640.1639 | 2.1 | 663.3153[M + Na]+, 443.0906[M + H-Glu-H2O]+, 281.0480[M + H-2Glu]+, 266.0487[M + H-2Glu-CH3]+, 158.0315[M + H-2Glu-C7H7O2]+ | Isorhamnetin 3-O-β-gentiobioside | CML << IML VIP: 4.79 p < 0.001 | a |
79 * | 8.01 | C15H10O6 | 286.0479 | 286.0477 | 0.6 | 287.0567[M + H]+, 163.0580[M + H-C6H4O3]+, 147.0435[M + H-C6H4O4]+, 124.0384[M + H-C9H6O3]+ | Scutellarein | CML >> IML VIP: 3.69 p < 0.001 | [65] |
80 * | 8.02 | C25H24O12 | 516.1266 | 516.1268 | −0.3 | 515.1203[M − H]−, 451.1465[M-H-H2O-HCOOH]−, 326.0487[M-H-3H2O-C8H7O2]−, 219.0638[M-H-2C9H7O2]−, 143.0279[M-H-H2O-C16H18O9]− | 1,3-Dicaffeoylquinic acid | CML >> IML VIP: 4.25 p < 0.001 | s |
81 # | 8.26 | C20H26O9 | 410.1573 | 410.1577 | −1.0 | 409.1504[M − H]−, 336.0817[M-H-C4H9O]−, 251.1394[M-H-2H2O-C7H6O2]−, 202.0639[M-H-C3H7-C9H7O3]−, 134.0437[M-H-C12H19O7]− | 5-O-Caffeoylquinic acid butyl ester | CML << IML VIP: 4.72 p < 0.001 | a |
82 # | 8.52 | C38H48O19 | 808.2757 | 808.2790 | −3.9 | 853.2706[M + HCOO]−, 700.2173[M-H-C7H7O]−, 572.1546[M-H-C4H7-Glu]−, 438.1262[M-H-C4H7-Rha-Ara]−, 274.1182[M-H-Glu-Ara-C12H11O3]− | 7-(α-L-Galactopyranosyloxy)-5-hydroxy-2-(4-methoxyphenyl)-8-(3-methyl-2-buten-1-yl)-4-oxo-4H-chromen | IML VIP: 2.08 p < 0.001 | b |
83 | 9.08 | C30H34O15 | 634.1872 | 634.1898 | −3.7 | 679.1854[M + HCOO]−, 600.1579[M-H-H2O-CH3]−, 454.10677[M-H-Rha-CH3]−, 411.0997[M-H-CH3-Rha ethyl ester]−, 334.0931[M-H-Rha-C7H3O3]−, 296.0665[M-H-C9H7O-Rha ethyl ester]− | Kaempferol-3-O-α-l-(4-O-acetyl)-rhamnosyl-7-O-α-l-rhamnoside | CML, IML | [41] |
84 * | 9.23 | C15H10O6 | 286.0473 | 286.0477 | −1.7 | 285.0435[M − H]−, 228.0285[M-H-C2HO2]−, 161.0377[M-H-C6H4O3]−, 151.0010[M-H-C8H6O2]− | Kaempferol | CML >> IML VIP: 4.99 p < 0.001 | s |
85 | 9.31 | C14H17NO5S | 311.0821 | 311.0827 | −1.9 | 356.0803[M + HCOO]−, 252.0915[M-H-NCS]−, 162.0681[M-H-C8H6NS]−, 88.0495[M-H-Rha-NCS]− | 4-[(α-l-rhamnosyloxy) benzyl] Isothiocyanate | CML, IML | [66] |
86 | 9.47 | C16H12O7 | 316.0575 | 316.0583 | −2.4 | 315.0503[M − H]−, 300.0268[M-H-CH3]−, 282.0400[M-H-H2O-CH3]−, 191.0163[M-H-CH3-C6H5O2]−, 165.0069[M-H-C8H6O3]− | Rhamnetin | CML, IML | [18] |
87 | 9.54 | C12H16O4 | 224.1038 | 224.1049 | −4.8 | 223.0965[M − H]−, 205.1027[M-H-H2O]−, 135.0421[M-H-C4H8O2]−, 123.0964[M-H-C4H4O3]−, 87.0295[M-H-C8H8O2]− | 3-Butylidene-4,5,6,7-tetrahydro-6,7-dihydroxy-1(3H)-isobenzofuranone | CML, IML | [67] |
88 | 9.69 | C30H36O4 | 460.2612 | 460.2614 | −0.4 | 505.2629[M + HCOO]−, 444.2249[M-H-CH3]−, 372.1847[M-H-H2O-C5H9]−, 240.1718[M-H-CH3-C12H12O3]−, 139.0822[M-H-H2O-C4H7O-C14H15O3]− | Sophoranone | CML, IML | a |
89 | 9.94 | C15H10O6 | 286.0480 | 286.0477 | 1.1 | 287.0553[M + H]+, 153.0163[M + H-C8H6O2]+, 135.0449[M + H-C7H4O4]+, 124.0382[M + H-C9H6O3]+, 110.0281[M + H-C9H5O4]+ | 5,7,2′,5′-Tetrahydroxyflavone | CML, IML | b |
90 | 9.98 | C27H28O12 | 544.1583 | 544.1581 | 0.4 | 589.1565[M + HCOO]−, 375.1260[M-H-C6H5O2-C2H3O2]−, 328.0465[M-H-H2O-2OCH3-C8H7O2]−, 244.0508[M-H-C9H7O3-C8H7O2]−, 153.0016[M-H-2OCH3-2C9H7O3]− | 1-O-methyl-3,5-O-dicaffeoylquinic acid methyl ester | CML, IML | a |
91 | 10.10 | C29H32O15 | 620.1741 | 620.1758 | 2.6 | 621.1830[M + H]+, 507.1514[M + H-C9H6]+, 310.0986[M + H-Rha-C9H6O2]+, 147.0658[M + H-Glu ethyl ester-C15H9O4]+ | Apigenin-7-O-α-l-rhamnopyranosyl(1 → 4)-6″-O-acetyl-β-d-glucopyranoside | CML, IML | [68] |
92 | 10.30 | C18H34O5 | 330.2405 | 330.2406 | −0.4 | 329.2332[M − H]−, 293.2084[M-H-2H2O]−, 226.1434[M-H-H2O-C6H13]−, 212.1325[M-H-HCOOH-C5H11]−, 168.1004[M-H-H2O-C9H19O]−, 137.1117[M-H-H2O-C3H7-C6H11O3]− | Sanleng acid | CML, IML | [26] |
93 * | 10.39 | C10H12O2 | 164.0837 | 164.0831 | −2.8 | 209.1118[M + HCOO]−, 122.0453[M-H-C3H5]−, 105.0495[M-H-OCH3-C2H3]− | Eugenol | CML >> IML VIP: 2.57 p < 0.001 | s |
94 | 10.52 | C15H10O6 | 286.0477 | 286.0478 | 0.1 | 287.0550[M + H]+, 256.0427[M + H-OCH3]+, 167.0167[M + H-C7H4O2]+, 137.0227[M + H-C8H6O3]+, 121.0434[M + H-C8H6O4]+ | 1,7-Dihydroxy-2,3-methylenedioxyxanthone | CML, IML | b |
95 | 10.67 | C15H30O2 | 242.2241 | 242.2246 | −1.6 | 287.2223[M + HCOO]−, 170.1211[M-H-C5H11]−, 153.1120[M-H-OCH3-C4H9]−, 97.0818[M-H-OCH3-C8H17]−, 69.0512[M-H-OCH3-C10H21]− | Methyl myristate | CML, IML | s |
96 | 10.73 | C15H10O6 | 286.0480 | 286.0477 | 0.8 | 287.0552[M + H]+, 153.0171[M + H-C8H6O2]+, 124.0390[M + H-C9H6O3]+, 110.0285[M + H-C9H5O4]+ | 2′-Hydroxygenistein | CML, IML | s |
97 # | 11.22 | C18H34O5 | 330.2393 | 330.2406 | −4.0 | 329.2320[M − H]−, 213.1323[M-H-C2H5-C4H7O2]−, 208.1038[M-H-2H2O-C6H13]−, 183.1403[M-H-H2O-C7H13O2]−, 170.1223[M-H-C8H15O3]− | Tianshic acid | CML << IML VIP: 1.52 p < 0.001 | [69] |
98 | 11.35 | C16H19NO6S | 353.0930 | 353.0933 | −0.8 | 398.0912[M + HCOO]−, 262.1963[M-H-H2O-C2H2NS]−, 236.0926[M-H-CH3-COCH3-C2H2S]−, 150.0741[M-H-C2H2NS-C6H10O3]− | 4-[(4′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate | CML, IML | [66] |
99 | 11.86 | C12H14O2 | 190.0988 | 190.0994 | −2.4 | 235.0970[M + HCOO]−, 146.0415[M-H-C3H7]−, 132.0273[M-H-C4H9]−, 113.0743[M-H-C6H4]− | 3-n-Butylphthalide | CML, IML | a |
100 # | 11.95 | C32H50O14 | 658.3196 | 658.3201 | −0.8 | 681.2695[M + Na]+, 617.2802[M + H-C3H6]+, 448.2238[M + H-Glu-CH2OH]+, 397.2184[M + H-Glu-C6H10]+, 203.0848[M + H-2Glu-C7H12]+ | Ajugaside A | CML << IML VIP: 3.40 p < 0.001 | [70] |
101 | 12.01 | C30H40O12 | 592.2544 | 592.2520 | 4.1 | 591.2471[M − H]−, 561.2176[M-H-2CH3]−, 365.1552[M-H-CH3-OCH3-Glu]−, 315.1166[M-H-C16H20O4]−, 211.1134[M-H-Glu-C11H12O3]− | Syringaresinolmono-β-d-glucoside | CML, IML | [71] |
102 | 12.21 | C12H14O4 | 222.0883 | 222.0892 | −3.9 | 221.0811[M − H]−, 160.0546[M-H-OC2H5]−, 119.0282[M-H-C3H5O2-C2H5]−, | Diethyl phthalate | CML, IML | [67] |
103 | 12.22 | C16H19NO6S | 353.0930 | 353.0933 | −0.8 | 398.0912[M + HCOO]−, 265.0805[M-H-COCH3-CS]−, 161.0338[M-H-COCH3-C8H6NS]−, 101.0359[M-H-Rha-COCH3-CS]− | 4-[(2′-O-acetyl-α-l-rhamnosyloxy) benzyl] Isothiocyanate | CML, IML | [49] |
104 # | 12.98 | C20H23N7O7 | 473.1668 | 473.1659 | 1.9 | 472.1665[M − H]−, 423.1223[M-H-H2O-NH2-NH]−, 383.1668[M-H-H2O-CHO-CH2N2]−, 351.0896[M-H-H2O-HCOOH-CH3N3]−, 164.0386[M-H-CHO-CH3N-C12H12NO5]− | Folinic acid | CML << IML VIP: 3.43 p < 0.001 | a |
105 | 13.10 | C21H38O4 | 354.2757 | 354.2770 | −3.3 | 399.2739[M + HCOO]−, 324.2187[M-H-C2H5]−, 238.1479[M-H-H2O-C7H13]−, 202.1101[M-H-C11H19]−, 151.1152[M-H-C8H15-C3H7O3] | 2-Monolinolein | CML, IML | [26] |
106 | 13.29 | C35H52O14 | 696.3375 | 696.3357 | 2.4 | 741.3357[M + HCOO]−, 571.2800[M-H-C7H8O2]−, 433.2317[M-H-Glu-2H2O-HCOOH]−, 366.2232[M-H-Glu-Ribose]−, 303.2063[M-H-Glu-H2O-C11H14O3]− | Erysimosole | CML, IML | b |
107 | 13.40 | C21H31NO10S | 489.1682 | 489.1669 | 2.8 | 488.1610[M − H]−, 473.1683[M-H-CH3]−, 308.1280[M-H-Glu]−, 293.0912[M-H-CH3-Glu]−, 218.0984[M-H-Glu-H2O-C2H2NS]− | 4-[(β-d-glucopyranosyl-1-4-α-l-rhamnopyranosyloxy) benzyl] Isothiocyanate | CML, IML | a |
108 | 13.52 | C13H16O3 | 220.1095 | 220.1099 | −1.9 | 219.1023[M − H]−, 164.0378[M-H-C4H7]−, 145.0326[M-H-OCH3-C3H7]− | 4-(1-Oxopentyl)-methyl ester,Benzoic acid | CML, IML | a |
109 | 14.68 | C18H34O4 | 314.2443 | 314.2457 | −4.6 | 313.2370[M − H]−, 199.1107[M-H-2C4H9]−, 184.1370[M-H-C7H13O2]−, 155.1048[M-H-C9H17O2]−, 125.1126[M-H-C4H9O-C6H11O2]− | Dibutyl sebacate | CML, IML | s |
110 | 15.87 | C18H28O2 | 276.2099 | 276.2089 | 3.3 | 277.2171[M + H]+, 150.1315[M + H-C7H11O2]+, 136.1167[M + H-C8H13O2]+, 107.0704[M + H-C5H9-C5H9O2]+, 95.0708[M + H-C4H7-C7H11O2]+ | Parinaric acid | CML, IML | s |
111 | 15.93 | C15H22O4 | 266.1506 | 266.1518 | −3.8 | 265.1488[M − H]−, 247.1494[M-H-H2O]−, 211.1328[M-H-C3H2O]−, 180.1365[M-H-CH3-C3H2O2]−, 169.1007[M-H-C3H6-C3H2O]−, 133.1009[M-H-H2O-C5H6O3]− | 4α,6α-Dihydroxyeud-esman-8β,12-olide | CML, IML | a |
112 | 16.00 | C17H34O2 | 270.2556 | 270.2559 | −0.9 | 315.2538[M + HCOO]−, 254.2163[M-H-CH3]−, 139.1285[M-H-OCH3-C7H15]−, 125.1118[M-H-OCH3-C8H17]− | Methyl palmitate | CML, IML | s |
113 | 16.49 | C18H30O4 | 310.2142 | 310.2144 | −0.6 | 309.2069[M − H]−, 291.1964[M-H-H2O]−, 245.2069[M-H-H2O-HCOOH]−, 208.1397[M-H-C5H9O2]−, 198.1177[M-H-C7H11O]−, 135.0958[M-H-C9H17O3]− | 9,16-Dihydroxy-10,12,14-octadecatrienoic acid | CML, IML | b |
114 | 17.88 | C16H30O2 | 254.2259 | 254.2246 | 4.8 | 277.2151[M + Na]+, 237.2359[M + H-H2O]+, 97.1016[M + H-C2H5-C7H13O2]+, 88.0605[M + H-C12H23]+, 69.0716[M + H-C4H9-C7H13O2]+ | Palmitoleic acid | CML, IML | [32] |
115 * | 18.44 | C18H30O3 | 294.2198 | 294.2195 | 0.9 | 293.2087[M − H]−, 275.2009[M-H-H2O]−, 247.2242[M-H-HCOOH]−, 232.1683[M-H-H2O-C3H7]−, 152.1063[M-H-H2O-C9H15]− | (E,E)-9-Oxooctadeca-10,12-dienoic acid | CML >> IML VIP: 2.45 p < 0.001 | [30] |
116 * | 18.56 | C18H34O3 | 298.2494 | 298.2508 | −4.6 | 297.2440[M − H]−, 279.2478[M-H-H2O]−, 224.1515[M-H-H2O-C4H7]−, 139.1260[M-H-C2H5-C7H13O2]−, 139.1113[M-H-C3H7-C6H11O2]− | Ricinoleic acid | CML >> IML VIP: 3.12 p < 0.001 | s |
117 | 19.27 | C18H32O3 | 296.2339 | 296.2351 | −4.3 | 295.2266[M − H]−, 266.1996[M-H-C2H5]−, 249.2382[M-H-HCOOH]−, 184.1156[M-H-C8H15]−, 152.1412[M-H-HCOOH-C7H13]−, 124.0960[M-H-H2O-C10H17O]− | Coronaric acid | CML, IML | [26] |
118 | 19.71 | C18H34O2 | 282.2558 | 282.2559 | −0.4 | 283.2631[M + H]+, 97.1020[M + H-C5H11-C6H11O2]+, 86.1024[M + H-C12H21O2]+, 72.0876[M + H-C13H23O2]+ | Oleic acid | CML, IML | s |
119 # | 19.95 | C21H36O4 | 352.2620 | 352.2614 | 1.8 | 353.2701[M + H]+, 335.2693[M + H-H2O]+, 214.2202[M + H-C3H7O3]+, 150.1320[M + H-C10H19O4]+, 123.1012[M + H-C5H9-C7H13O4]+, 83.0715[M + H-C7H11-C8H15O4]+ | 1-Linolenoylglycerol | CML << IML VIP: 5.63 p < 0.001 | a |
120 | 21.54 | C18H30O2 | 278.2237 | 278.2246 | −3.0 | 277.2165[M − H]−, 182.1234[M-H-C7H11]−, 168.1230[M-H-C8H13]−, 110.0795[M-H-C11H17-H2O]− | Linolenic acid | CML, IML | s |
121 * | 21.70 | C15H30O | 226.2300 | 226.2297 | 1.3 | 271.2274[M + HCOO]−, 164.1118[M-H-C6H13]−, 108.0499[M-H-C10H21]− | n-Pentadecanal | CML >> IML VIP: 4.02 p < 0.001 | [32] |
122 * | 24.46 | C17H34O | 254.2616 | 254.2610 | 2.1 | 299.2594[M + HCOO]−, 248.2224[M-H-C2H5]−, 122.0654[M-H-C11H23]−, 94.0506[M-H-C13H27]− | n-Heptadecanal | CML >> IML VIP: 3.12 p < 0.001 | [32] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Zhu, H.; Tan, J.; Wang, H.; Wang, Z.; Li, P.; Zhao, C.; Liu, J. Comparative Analysis of Chemical Constituents of Moringa oleifera Leaves from China and India by Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-Of-Flight Mass Spectrometry. Molecules 2019, 24, 942. https://doi.org/10.3390/molecules24050942
Lin H, Zhu H, Tan J, Wang H, Wang Z, Li P, Zhao C, Liu J. Comparative Analysis of Chemical Constituents of Moringa oleifera Leaves from China and India by Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-Of-Flight Mass Spectrometry. Molecules. 2019; 24(5):942. https://doi.org/10.3390/molecules24050942
Chicago/Turabian StyleLin, Hongqiang, Hailin Zhu, Jing Tan, Han Wang, Zhongyao Wang, Pingya Li, Chunfang Zhao, and Jinping Liu. 2019. "Comparative Analysis of Chemical Constituents of Moringa oleifera Leaves from China and India by Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-Of-Flight Mass Spectrometry" Molecules 24, no. 5: 942. https://doi.org/10.3390/molecules24050942
APA StyleLin, H., Zhu, H., Tan, J., Wang, H., Wang, Z., Li, P., Zhao, C., & Liu, J. (2019). Comparative Analysis of Chemical Constituents of Moringa oleifera Leaves from China and India by Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-Of-Flight Mass Spectrometry. Molecules, 24(5), 942. https://doi.org/10.3390/molecules24050942