Antidiabetic, Anticholinesterase and Antioxidant Activity vs. Terpenoids and Phenolic Compounds in Selected New Cultivars and Hybrids of Artichoke Cynara scolymus L.
Abstract
:1. Introduction
2. Results
2.1. Basic Chemical Composition of Artichoke
2.2. Identifications and Quantification of Terpenoids as Carotenoids and Chlorophylls by LC-PDA-MS/QTof
2.3. Identification and Quantification of Polyphenols by LC-PDA-MS/QTof
2.4. Analysis of Antioxidant, Antidiabetic and Anticholinesterase Activity
2.5. Principal Composition Analysis (PCA)
3. Materials and Methods
3.1. Plant Material and Sample Preparation
3.2. Basic Chemical Analysis
3.3. Identification and Quantification of Carotenoids and Polyphenolic Compounds
3.4. Analysis of Biological Activity
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe artichoke: A functional food and source of nutraceutical ingredients. J. Funct. Foods 2009, 1, 131–144. [Google Scholar] [CrossRef]
- FAO Production Statistics. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 19 October 2018).
- Pandino, G.; Courts, F.L.; Lombardo, S.; Mauromicale, G.; Williamson, G. Caffeoylquinic acids and flavonoids in the immature inflorescence of globe artichoke, wild cardoon, and cultivated cardoon. J. Agric. Food Chem. 2009, 58, 1026–1031. [Google Scholar] [CrossRef]
- El Sohaimy, S.A. Chemical composition, antioxidant and antimicrobial potential of artichoke. Open Nutraceuticals J. 2014, 7, 15–20. [Google Scholar] [CrossRef]
- Fratianni, F.; Tucci, M.; De Palma, M.; Pepe, R.; Nazzaro, F. Polyphenolic composition in different parts of some cultivars of Globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Food Chem. 2007, 104, 1282–1286. [Google Scholar] [CrossRef]
- Zuorro, A.; Maffei, G.; Lavecchia, R. Reuse potential of artichoke (Cynara scolimus L.) waste for the recovery of phenolic compounds and bioenergy. J. Clean. Prod. 2016, 111, 279–284. [Google Scholar] [CrossRef]
- D’Antuono, I.; Carola, A.; Sena, L.; Linsalata, V.; Cardinali, A.; Logrieco, A.; Colucci, M.; Apone, F. Artichoke polyphenols produce skin anti-age effects by improving endothelial cell integrity and functionality. Molecules 2018, 23, 2729. [Google Scholar] [CrossRef] [PubMed]
- Marakis, G.; Walker, A.; Middleton, R.; Booth, J.; Wright, J.; Pike, D. Artichoke leaf extract reduces mild dyspepsia in an open study. Phytomedicine 2002, 9, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.B.; Affes, H.; Ksouda, K.; Dhouibi, R.; Sahnoun, Z.; Hammami, S.; Zeghal, K.M. Pharmacological studies of artichoke leaf extract and their health benefits. Plant Foods Hum. Nutr. 2015, 70, 441–453. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Pereira, C.; Ntatsi, G.; Danalatos, N.; Barros, L.; Ferreira, I.C. Nutritional value and chemical composition of greek artichoke genotypes. Food Chem. 2018, 267, 296–302. [Google Scholar] [CrossRef]
- Ferracane, R.; Pellegrini, N.; Visconti, A.; Graziani, G.; Chiavaro, E.; Miglio, C.; Fogliano, V. Effects of different cooking methods on antioxidant profile, antioxidant capacity, and physical characteristics of artichoke. J. Agric. Food Chem. 2008, 56, 8601–8608. [Google Scholar] [CrossRef]
- Williamson, G.; Manach, C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am. J. Clin. Nutr. 2005, 81, 243S–255S. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Bernardi, J.; Cardarelli, M.; Bernardo, L.; Kane, D.; Colla, G.; Lucini, L. Phenolic compounds and sesquiterpene lactones profile in leaves of nineteen artichoke cultivars. J. Agric. Food Chem. 2016, 64, 8540–8548. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, S.; Pandino, G.; Ierna, A.; Mauromicale, G. Variation of polyphenols in a germplasm collection of globe artichoke. Food Res. Int. 2012, 46, 544–551. [Google Scholar] [CrossRef]
- Sałata, A. Wpływ Zabiegów Agrotechnicznych na Plon i Wartość Biologiczną Karczocha Zwyczajnego (Cynara scolymus L.); Wydawnictwo Uniwersytetu Przyrodniczego w Lublinie: Lublinie, Poland, 2010; Volume 34. [Google Scholar]
- Michalak-Majewska, M.; Żukiewicz-Sobczak, W.; Kalbarczyk, J. Ocena składu i właściwości soków owocowych preferowanych przez konsumentów. Bromatol. Chem. Toksykol. 2009, 42, 836–841. [Google Scholar]
- Nicoletto, C.; Santagata, S.; Tosini, F.; Sambo, P. Qualitative and healthy traits of different Italian typical artichoke genotypes. CyTA J. Food 2013, 11, 108–113. [Google Scholar] [CrossRef]
- Li, B.W.; Andrews, K.W.; Pehrsson, P.R. Individual sugars, soluble, and insoluble dietary fiber contents of 70 high consumption foods. J. Food Compos. Anal. 2002, 15, 715–723. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J. Food Sci. 2012, 77, C1064–C1070. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Nowicka, P.; Bąbelewski, P. Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. J. Funct. Foods 2018, 48, 632–642. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J. Content of bioactive compounds and antioxidant capacity in skin tissues of pear. J. Funct. Foods 2016, 23, 40–51. [Google Scholar] [CrossRef]
- Delpino-Rius, A.; Cosovanu, D.; Eras, J.; Vilaró, F.; Balcells, M.; Canela-Garayoa, R. A fast and reliable ultrahigh-performance liquid chromatography method to assess the fate of chlorophylls in teas and processed vegetable foodstuff. J. Chromatogr. A 2018, 1568, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Petrović, S.; Zvezdanović, J.; Marković, D. Chlorophyll degradation in aqueous mediums induced by light and UV-B irradiation: An UHPLC-ESI-MS study. Radiat. Phys. Chem. 2017, 141, 8–16. [Google Scholar] [CrossRef]
- Delgado-Pelayo, R.; Gallardo-Guerrero, L.; Hornero-Méndez, D. Chlorophyll and carotenoid pigments in the peel and flesh of commercial apple fruit varieties. Food Res. Int. 2014, 65, 272–281. [Google Scholar] [CrossRef]
- Guillén, S.; Mir-Bel, J.; Oria, R.; Salvador, M.L. Influence of cooking conditions on organoleptic and health-related properties of artichokes, green beans, broccoli and carrots. Food Chem. 2017, 217, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Romo-Hualde, A.; Sáiz-Abajo, M.; Yetano-Cunchillos, A.; González-Ferrero, C.; Alonso-Santibañez, D.; Salvadó-Casadevall, M.; Lahoz, I.; Macua, J. Characterization of Bioactive Substances in Various Artichoke Varieties. Acta Hortic. 2012, 942, 395–400. [Google Scholar] [CrossRef]
- Moglia, A.; Lanteri, S.; Comino, C.; Acquadro, A.; de Vos, R.; Beekwilder, J. Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke. J. Agric. Food Chem. 2008, 56, 8641–8649. [Google Scholar] [CrossRef]
- Sanchez-Rabaneda, F.; Jauregui, O.; Lamuela-Raventos, R.M.; Bastida, J.; Viladomat, F.; Codina, C. Identification of phenolic compounds in artichoke waste by high-performance liquid chromatography—Tandem mass spectrometry. J. Chromatogr. A 2003, 1008, 57–72. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC–DAD-ESI-QTOF-MS. Food Chem. 2013, 141, 2269–2277. [Google Scholar] [CrossRef]
- Deshpande, S.; El-Abassy, R.M.; Jaiswal, R.; Eravuchira, P.; Von Der Kammer, B.; Materny, A.; Kuhnert, N. Which spectroscopic technique allows the best differentiation of coffee varieties: Comparing principal component analysis using data derived from CD-, NMR-and IR-spectroscopies and LC-MS in the analysis of the chlorogenic acid fraction in green coffee beans. Anal. Methods 2014, 6, 3268–3276. [Google Scholar]
- Petropoulos, S.A.; Pereira, C.; Barros, L.; Ferreira, I.C. Leaf parts from Greek artichoke genotypes as a good source of bioactive compounds and antioxidants. Food Funct. 2017, 8, 2022–2029. [Google Scholar] [CrossRef] [Green Version]
- Negro, D.; Montesano, V.; Grieco, S.; Crupi, P.; Sarli, G.; De Lisi, A.; Sonnante, G. Polyphenol compounds in artichoke plant tissues and varieties. J. Food Sci. 2012, 77, C244–C252. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauromicale, G.; Williamson, G. Phenolic acids and flavonoids in leaf and floral stem of cultivated and wild Cynara cardunculus L. genotypes. Food Chem. 2011, 126, 417–422. [Google Scholar] [CrossRef]
- Morales-Soto, A.; García-Salas, P.; Rodríguez-Pérez, C.; Jiménez-Sánchez, C.; de la Luz Cádiz-Gurrea, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Antioxidant capacity of 44 cultivars of fruits and vegetables grown in Andalusia (Spain). Food Res. Int. 2014, 58, 35–46. [Google Scholar] [CrossRef]
- Price, J.A.; Sanny, C.G.; Shevlin, D. Application of manual assessment of oxygen radical absorbent capacity (ORAC) for use in high throughput assay of “total” antioxidant activity of drugs and natural products. J. Pharmacol. Toxicol. Methods 2006, 54, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-S.; Yeum, K.-J.; Chen, C.-Y.; Beretta, G.; Tang, G.; Krinsky, N.I.; Yoon, S.; Lee-Kim, Y.C.; Blumberg, J.B.; Russell, R.M. Phytonutrients affecting hydrophilic and lipophilic antioxidant activities in fruits, vegetables and legumes. J. Sci. Food Agric. 2007, 87, 1096–1107. [Google Scholar] [CrossRef]
- Choi, D.-Y.; Lee, Y.-J.; Hong, J.T.; Lee, H.-J. Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res. Bull. 2012, 87, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Honarvar, N.M.; Saedisomeolia, A.; Abdolahi, M.; Shayeganrad, A.; Sangsari, G.T.; Rad, B.H.; Muench, G. Molecular anti-inflammatory mechanisms of retinoids and carotenoids in Alzheimer’s disease: A review of current evidence. J. Mol. Neurosci. 2017, 61, 289–304. [Google Scholar] [CrossRef]
- Wojdyło, A.; Figiel, A.; Lech, K.; Nowicka, P.; Oszmiański, J. Effect of convective and vacuum–Microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food Bioprocess Technol. 2014, 7, 829–841. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Oszmiański, J.; Golis, T. Phytochemical compounds and biological effects of Actinidia fruits. J. Funct. Foods 2017, 30, 194–202. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of lyophilized artichoke are available from the authors. |
Blanca de Tudela | Symphony | Opera | Calico | Sambo | |
---|---|---|---|---|---|
Dry matter (%) | 15.79 ± 0.24 c | 14.98 ± 0.09 b | 15.37 ± 0.62 bc | 13.90 ± 0.02 a | 13.74 ± 0.06 a |
SSC (°Bx) | 10.30 ± 0.00 a | 10.55 ± 0.07 b | 10.70 ± 0.00 c | 11.50 ± 0.00 e | 11.25 ± 0.07 d |
Sugars (g/100 g FW) | |||||
Glucose | 0.17 ± 0.20 | 0.47 ± 0.10 | 0.42 ± 0.22 | 0.11 ± 0.28 | 0.20 ± 0.27 |
Sucrose | 0.10 ± 0.44 | 0.17 ± 0.11 | 0.21 ± 0.22 | 0.18 ± 0.18 | 0.16 ± 0.10 |
Fructose | 0.04 ± 0.91 | 0.05 ± 0.52 | 0.03 ± 0.50 | 0.03 ± 0.55 | 0.02 ± 0.11 |
Total | 0.31 a | 0.69 b | 0.67 b | 0.32 a | 0.38 a |
Organic acids (g/100 g DW) | |||||
Oxalic | 0.07 ± 0.01 | 0.07 ± 0.11 | 0.06 ± 0.00 | 0.04 ± 0.00 | 0.07 ± 0.09 |
Maleic | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.24 | 0.01 ± 0.00 | 0.01 ± 0.00 |
Citric | 0.12 ± 0.01 | 0.02 ± 0.06 | 0.07 ± 0.09 | 0.16 ± 0.31 | 0.10 ± 0.00 |
Malic | 0.22 ± 0.08 | 0.07 ± 0.00 | 0.19 ± 0.33 | 0.44 ± 0.52 | 0.37 ± 0.28 |
Quinic | 0.09 ± 0.00 | 0.14 ± 0.01 | 0.19 ± 0.01 | 0.07 ± 0.19 | 0.07 ± 0.37 |
Shikimic | 0.01 ± 0.02 | 0.02 ± 0.11 | 0.01 ± 0.11 | 0.02 ± 0.00 | 0.02 ± 0.00 |
Succimic | 0.02 ± 0.03 | 0.06 ± 0.50 | 0.02 ± 0.25 | 0.03 ± 0.65 | 0.02 ± 0.14 |
Formic | 0.09 ± 0.00 | 0.06 ± 0.41 | 0.05 ± 0.18 | 0.09 ± 0.28 | 0.07 ± 0.17 |
Adipic | 1.21 ± 0.08 | 1.10 ± 0.12 | 1.21 ± 0.09 | 2.20 ± 0.07 | 1.18 ± 0.00 |
Total | 1.84 b | 1.50 a | 1.81 b | 3.05 c | 1.18 b |
Peak No. | Rt (min) | Λmax (nm) | [M + H]+ (m/z) | MS/MS (m/z) | Identified Compounds | Blanca de Tudela | Symphony | Opera | Calico | Sambo |
---|---|---|---|---|---|---|---|---|---|---|
Carotenoids | ||||||||||
1 | 2.896 | 412/436/464 | 601.54 | 583.53 | Neoxantin | 8.94 ± 0.00 | 6.69 ± 0.01 | 7.19 ± 0.00 | 2.65 ± 0.02 | 6.38 ± 0.11 |
2 | 5.113 | 445/474 | 551.15 | 476.45 | Lutein | 131.58 ± 0.00 | 146.60 ± 0.11 | 123.42 ± 0.00 | 62.99 ± 0.00 | 95.75 ± 0.05 |
7 | 8.737 | 452/478 | 537.54 | 444.46 | β-caroten | 369.61 ± 0.01 | 274.36 ± 0.00 | 245.52 ± 0.00 | 143.04 ± 0.01 | 208.38 ± 0.01 |
Sum | 510.13 e | 427.65 d | 376.13 c | 208.68 a | 310.51 b | |||||
Chlorophylls | ||||||||||
3 | 7.44 | 453/593/642 | 907.67 | 780.69/629.10[M-278]+ | Chlorophyll b | 894.87 ± 0.01 | 595.38 ± 0.10 | 697.05 ± 0.22 | 251.06 ± 0.24 | 778.08 ± 0.32 |
4 | 7.66 | 433/599/654 | 885.56 | 553[M-354 + Na] | Pheophytin b | 48.74 ± 0.00 | 32.01 ± 0.11 | 35.17 ± 0.02 | 13.59 ± 0.20 | 32.04 ± 0.11 |
5 | 8.08 | 430/615/661 | 892.69 | 615.13[M-278]+/555.34 [M-338]+ | Chlorophyll a | 1250.40 ± 0.05 | 922.15 ± 0.30 | 850.07 ± 0.00 | 380.98 ± 0.65 | 946.56 ± 0.011 |
6 | 8.26 | 430/615/662 | 893.69 | 615.13[M-278]+/555.34 [M-338]+ | Chlorophyll a’ | 46.25 ± 0.17 | 37.66 ± 0.03 | 28.88 ± 0.00 | 9.57 ± 0.18 | 21.09 ± 0.09 |
8 | 9.14 | 453/593/642 | 907.69 | 629.10 [M-278]+ | Chlorophyll b’ | 63.96 ± 0.11 | 13.42 ± 0.00 | 88.44 ± 0.35 | 18.36 ± 0.12 | 17.90 ± 0.13 |
9 | 9.50 | 433/599/654 | 885.72 | 553[M-354 + Na] | Pheophytin b’ | 24.41 ± 0.09 | 4.04 ± 0.22 | 36.94 ± 0.21 | 3.84 ± 0.00 | 9.11 ± 0.22 |
10 | 9.81 | 408/503/667 | 871.72 | 593.20 [M-278]+ | Pheophytin a | 832.74 ± 0.26 | 467.94 ± 0.11 | 776.47 ± 0.19 | 250.46 ± 0.11 | 575.96 ± 0.07 |
11 | 10.09 | 408/503/667 | 871.72 | 623.36/593.20 [M-278]+ | Pheophytin a’ | 90.41 ± 0.07 | 32.66 ± 0.08 | 63.20 ± 0.08 | 20.86 ± 0.26 | 45.33 ± 0.00 |
Sum | 3251.78 e | 2105.26 b | 2576.22 d | 948.72 a | 2426.07 c | |||||
Total | 3761.91 e | 2532.91 b | 2952.35 d | 1157.40 a | 2736.58 c |
Peak No. | Rt (min) | Λmax (nm) | [M − H]− | MS/MS | Identified Compounds | Blanca de Tudela | Symphony | Opera | Calico | Sambo |
---|---|---|---|---|---|---|---|---|---|---|
1 | 2.84 | 326 | 353.01 | 190.99 | 1-O-Caffeoylquinic acid | nd | nd | nd | 107.32 ± 0.54 | 230.08 ± 0.00 |
2 | 3.31 | 323 | 353.01 | 190.99 | 3-O-Caffeoylquinic acid (neochlorogenic acid) | nd | nd | nd | 63.15 ± 0.11 | 36.04 ± 0.08 |
3 | 3.79 | 330 | 513.05 | 338.96/190.99 | 3-O-p-Coumaroyl-4-O-feruloylquinic acid | nd | nd | nd | 0.80 ± 0.88 | 2.76 ± 0.02 |
4 | 4.22 | 323 | 353.01 | 190.99 | 5-O-Caffeoylquinic acid (chlorogenic acid) | 62.16 ± 0.22 | 121.72 ± 0.54 | 174.45 ± 0.31 | 1149.06 ± 0.32 | 390.44 ± 0.00 |
5 | 4.50 | 326 | 353.01 | 190.99 | 4-O-Caffeoylquinic acid (cryptochlorogenic acid) | 58.67 ± 0.09 | 62.28 ± 0.22 | 73.45 ± 0.00 | nd | nd |
6 | 4.62 | 323 | 705.03 | 513.00/339.07/191.00 | Caffeoylquinic acid dimer | 2.42 ± 0.00 | 1.10 ± 0.75 | 2.19 ± 0.09 | 6.71 ± 0.00 | nd |
7 | 4.90 | 367 | 367.00 | 191.00 | 3-O-Feruloylquinic acid I | nd | 3.81 ± 1,65 | 3.92 ± 0.05 | nd | 7.96 ± 0.12 |
8 | 5.17 | 312 | 337.01 | 190.99 | p-coumaroylquinic acid | 3.65 ± 0.13 | 1590.84 ± 0.32 | 1407.32 ± 0.00 | nd | nd |
9 | 5.48 | 325 | 513.01 | 338.96/190.00 | 4-O-p-Coumaroyl-5-O-feruloylquinic acid | 1.44 ± 0.11 | 0.51 ± 0.12 | 1.97 ± 0.00 | 20.92 ± 0.24 | 8.61 ± 0.09 |
10 | 5.53 | 513.01 | 338.96/190.00 | p-Coumaroyl-O-feruloylquinic acid I | 1826.95 ± 0.01 | 25.28 ± 0.55 | 6.34 ± 0.45 | nd | 6.92 ± 0.07 | |
11 | 5.60 | 326 | 513.01 | 338.96/190.00 | p-Coumaroyl-O-feruloylquinic acid II | 16.98 ± 0.28 | 1.10 ± 0.00 | 1.05 ± 0.37 | nd | nd |
12 | 5.81 | 326 | 515.01 | 190.99 | di-Caffeoylquinic acid I | 1.35 ± 0.66 | 19.91 ± 0.11 | 0.82 ± 0.13 | nd | nd |
13 | 6.30 | 326 | 367.00 | 191.00/178.97 | 3-O-Feruloylquinic acid II | 15.44 ± 0.21 | 12.42 ± 0.05 | 17.82 ± 0.11 | nd | 4.19 ± 1.12 |
14 | 6.90 | 325 | 515.01 | 323.00/190.99 | di-Caffeoylquinic VI | 3.89 ± 1.14 | 2.18 ± 0.27 | 4.09 ± 1.21 | nd | 1.41 ± 0.32 |
16 | 7.43 | 326 | 515.01 | 353.01/190.99/179.00 | di-Caffeoylquinic acid II | 0.72 ± 0.65 | 9.63 ± 0.14 | 5.50 ± 0.18 | nd | 692.56 ± 0.45 |
18 | 7.67 | 327 | 515.01 | 353.00/190.99 | di-Caffeoylquinic acid III | nd | 2.19 ± 0.02 | nd | 12.10 ± 0.08 | 69.00 ± 0.15 |
19 | 7.71 | 327 | 515.01 | 353.00/190.99 | di-Caffeoylquinic acid IV | 2.17 ± 0.25 | 6.73 ± 0.02 | 3.55 ± 0.03 | 1244.44 ± 0.07 | 110.11 ± 0.16 |
22 | 8.25 | 325 | 515.01 | 190.99/179.00/172.98 | di-Caffeoylquinic acid V | 11.59 ± 0.09 | 1577.93 ± 0.00 | 1561.85 ± 0.65 | 8.36 ± 0.00 | 6.53 ± 0.02 |
Sum | 2007.42 b | 3437.64 d | 3264.32 d | 2618.88 c | 1567.60 a | |||||
15 | 7.20 | 254, 268 | 461.09 | 285.09 | Luteolin-7-O-glucuronide | 5.58 ± 0.65 | 4.18 ± 1.22 | 8.37 ± 0.46 | nd | 40.93 ± 0.11 |
17 | 7.58 | 345 | 431.09 | 269.00 | Apigenin-7-glucoside | 3.33 ± 0.50 | 10.85 ± 0.69 | 12.27 ± 0.27 | 75.51 ± 0.01 | 15.77 ± 0.11 |
20 | 7.98 | 271, 341 | 593.08 | 285.09 | Luteolin-7-rutinoside (scolymoside) | 71.34 ± 0.11 | 77.08 ± 0.36 | 95.11 ± 0.06 | 7.19 ± 0.25 | 44.00 ± 0.32 |
21 | 8.10 | 265, 339 | 445.09 | 269.09 | Apigenin-7-glucuronide | 36.48 ± 0.09 | 106.45 ± 0.12 | 44.61 ± 0.00 | 12.74 ± 0.03 | 13.19 ± 0.54 |
23 | 8.44 | 265, 339 | 596.01 | 269.07 | Derivatives of apigenin | 3.85 ± 0.22 | nd | 9.39 ± 0.19 | nd | nd |
24 | 8.49 | 265, 339 | 543.02 | 269.07 | Derivatives of apigenin | 8.42 ± 0.36 | 2.71 ± 0.22 | nd | 42.51 ± 0.41 | nd |
Sum | 129.01 b | 201.27 d | 169.75 c | 137.95 b | 113.89 a | |||||
Total | 2136.43 b | 3638.91 e | 3434.07 d | 2756.83 c | 1681.49 a |
Cultivar/Hybrid | Antioxidant Activity | Antidiabetic Activity | Anticholinoesterase Activity | ||||
---|---|---|---|---|---|---|---|
ABTS | FRAP | ORAC | α-amylase | α-glucosidase | AChE | BuChE | |
Blanca de Tudela | 20.74 ± 0.75 c | 9.15 ± 0.34 a | 39.98 ± 1.21 e | 3.20 ± 0.02 c | 2.51 ± 0.29 b | 0.09 ± 0.05 a | 0.07 ± 0.04 a |
Symphony | 15.80 ± 1.15 b | 13.78 ± 0.85 d | 34.16 ± 3.14 d | 3.49 ± 0.28 d | 1.21 ± 0.04 a | 0.09 ± 0.05 a | 0.08 ± 0.04 a |
Opera | 16.73 ± 0.45 b | 11.94 ± 0.68 c | 26.77 ± 0.53 c | 2.74 ± 0.43 c | 3.31 ± 0.26 c | 0.11 ± 0.06 a | 0.08 ± 0.05 a |
Calico | 12.49 ± 0.51 a | 10.33 ± 0.56 b | 21.45 ± 1.35 b | 2.22 ± 0.39 b | 4.05 ± 0.05 e | 0.12 ± 0.06 a | 0.09 ± 0.05 a |
Sambo | 17.20 ± 1.02 b | 11.35 ± 0.67 bc | 16.80 ± 1.35 a | 1.38 ± 0.28 a | 3.55 ± 0.20 d | 0.12 ± 0.01 a | 0.09 ± 0.01 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turkiewicz, I.P.; Wojdyło, A.; Tkacz, K.; Nowicka, P.; Hernández, F. Antidiabetic, Anticholinesterase and Antioxidant Activity vs. Terpenoids and Phenolic Compounds in Selected New Cultivars and Hybrids of Artichoke Cynara scolymus L. Molecules 2019, 24, 1222. https://doi.org/10.3390/molecules24071222
Turkiewicz IP, Wojdyło A, Tkacz K, Nowicka P, Hernández F. Antidiabetic, Anticholinesterase and Antioxidant Activity vs. Terpenoids and Phenolic Compounds in Selected New Cultivars and Hybrids of Artichoke Cynara scolymus L. Molecules. 2019; 24(7):1222. https://doi.org/10.3390/molecules24071222
Chicago/Turabian StyleTurkiewicz, Igor Piotr, Aneta Wojdyło, Karolina Tkacz, Paulina Nowicka, and Francisca Hernández. 2019. "Antidiabetic, Anticholinesterase and Antioxidant Activity vs. Terpenoids and Phenolic Compounds in Selected New Cultivars and Hybrids of Artichoke Cynara scolymus L." Molecules 24, no. 7: 1222. https://doi.org/10.3390/molecules24071222
APA StyleTurkiewicz, I. P., Wojdyło, A., Tkacz, K., Nowicka, P., & Hernández, F. (2019). Antidiabetic, Anticholinesterase and Antioxidant Activity vs. Terpenoids and Phenolic Compounds in Selected New Cultivars and Hybrids of Artichoke Cynara scolymus L. Molecules, 24(7), 1222. https://doi.org/10.3390/molecules24071222