From Landfills to the Dinner Table: Red Grape Pomace Waste as a Nutraceutical for Broiler Chickens
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Sites
2.2. Diet Formulation
2.3. Chemical Analyses
2.4. Feeding Trial
2.5. Feed Intake, Growth Performance and Blood Analyses
2.6. Carcass Characteristics and Size of Internal Organs
2.7. Breast Meat Quality Traits
2.8. Statistical Analysis
3. Results
4. Discussion
4.1. Feed Intake, Utilization Efficiency, and Growth Performance
4.2. Blood Parameters, Size of Internal Organs, and Meat Quality
5. Conclusions, Limitations, and Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WWF. Food Loss and Waste: Facts and Futures. WWF South Africa. 2017. Available online: http://awsassets.wwf.org.za/downloads/WWF_Food_Loss_and_Waste_WEB.pdf (accessed on 3 March 2019).
- Ong, K.L.; Kaur, G.; Pensupa, N.; Uisan, K.; Lin, C.S.K. Trends in food waste valorization for the production of chemicals, materials and fuels: Case study South and Southeast Asia. Bioresour. Technol. 2018, 248, 100–112. [Google Scholar] [CrossRef]
- Dwyer, K.; Hosseinian, F.; Rod, M. The market potential of grape waste alternatives. J. Food Res. 2014, 3, 91–106. [Google Scholar] [CrossRef]
- Dillon, C. Waste Management in the South African Wine Industry. Master’ Thesis, Cape Wine Academy, Cape Town, South Africa, 2011. [Google Scholar]
- Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. Waste Manag. 2018, 72, 99–118. [Google Scholar] [CrossRef]
- Aditya, S.; Jip Ohh, S.; Ahammed, M.; Lohakare, J. Supplementation of grape pomace (Vitis vinifera) in broiler diets and its effect on growth performance, apparent total tract digestibility of nutrients, blood profile, and meat quality. J. Anim. Nutr. 2018, 4, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.M.; Guillén, D.A.; Barroso, C.G.; Puertas, B.; García, A. Determination of antioxidant activity of wine byproducts and its correlation with polyphenolic content. J. Agric. Food Chem. 2002, 50, 5832–5836. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Y.; Toledo, R.T. Health aspects of functional grape seed constituents. Trends Food Sci. Technol. 2004, 15, 422–433. [Google Scholar] [CrossRef]
- Goni, I.; Brenes, A.; Centeno, C.; Viveros, A.; Saura-Calixto, F.; Rebolé, A.; Arija, I.; Estevez, R. Effect of dietary grape pomace and vitamin E on growth performance, nutrient digestibility, and susceptibility to meat lipid oxidation in chickens. J. Poult. Sci. 2007, 86, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, S.; Viveros, A.; Rebole, A.; Rica, A.; Arija, B.D.; Brenes, A.A. Influence of dietary enzyme addition on polyphenol utilization and meat lipid oxidation of chicks fed grape pomace. Food Res. Int. 2015, 73, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Chamorro, S.; Viveros, A.; Alvárez, I.; Vega, E.; Brenes, A. Changes in polyphenol and polysaccharide content of grape seed extract and grape pomace after enzymatic treatment. Food Chem. 2012, 133, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, A. Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Anim. Feed Sci. Technol. 2016, 211, 1–17. [Google Scholar] [CrossRef] [Green Version]
- NRC. Nutrient Requirement of Poultry, Ninth Revised ed.; National Research Council: Washington, DC, USA, 1994. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; Association of Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Agri-LASA. Feed and Plant Analysis Methods; Agri-Laboratory Association of Southern Africa: Sasolburg, South Africa, 1998. [Google Scholar]
- Buetow, B.S.; Treuting, P.M.; van Hoosier, G.L. The hamster. In The Clinical Chemistry of Laboratory Animals; Loeb, W.F., Quimby, F.W., Eds.; Taylor and Francis: Philadelphia, PA, USA, 1999; pp. 49–63. [Google Scholar]
- Priolo, A.; Moorhead, D.; Agabriel, J. Effects of grass feeding systems on ruminant meat colour and flavour: A review. Anim. Res. 2002, 50, 185–200. [Google Scholar] [CrossRef]
- Trout, G.R. Techniques for measuring water-binding capacity in muscle foods—A review of methodology. Meat Sci. 1988, 23, 235–252. [Google Scholar] [CrossRef]
- Zhang, L.; Yue, H.Y.; Zhang, H.J.; Xu, L.; Wu, S.G.; Yan, H.J.; Gong, Y.S.; Qi, G.H. Transport stress in broilers: I. Blood metabolism, glycolytic potential, and meat quality. Poult. Sci. 2009, 88, 2033–2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- SAS. Users Guide; Statistical Analysis System Institute Inc.: Carry, NC, USA, 2010. [Google Scholar]
- Singh, A.K.; Berrocoso, J.F.D.; Dersjant-Li, Y.; Awati, A.; Jha, R. Effect of a combination of xylanase, amylase and protease on growth performance of broilers fed low and high fiber diets. Anim. Feed Sci. Technol. 2017, 232, 16–20. [Google Scholar] [CrossRef]
- Lau, D.W.; King, A.J. Pre- and post-mortem use of grape seed extract in dark poultry meat to inhibit development of thiobarbituric acid reactive substances. J. Agric. Food Chem. 2003, 51, 1602–1607. [Google Scholar] [CrossRef]
- Owusu-Asiedu, A.; Patience, J.F.; Laarveld, B.; Van Kessel, A.G.; Simmins, P.H.; Zijlstra, R.T. Effects of guar gum and cellulose on digesta passage rate, ileal microbial populations, energy and protein digestibility, and performance of grower pigs. J. Anim. Sci. 2006, 84, 843–852. [Google Scholar] [CrossRef]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef]
- Kara, K.; Kocaoglu-Guclu, B. The effects of different molting methods and supplementation of grape pomace to the diet of molted hens on postmolt performance, egg quality and peroxidation of egg lipids. J. Fac. Vet. Med. Univ. Erciyes 2012, 9, 183–196. [Google Scholar] [CrossRef]
- Pascariu, S.M.I.; Pop, I.M.I.; Simeanu, D.I.; Pavel, G.I.; Solcan, C.I.E. Effects of wine by-products on growth performance, complete blood count and total antioxidant status in broilers. Braz. J. Poultry Sci. 2017, 9, 191–202. [Google Scholar] [CrossRef]
- Kara, K.; Guclu, B.K.; Baytok, E.; Senturk, M. Effects of grape pomace supplementation to laying hen diet on performance, egg quality, egg lipid peroxidation and some biochemical parameters. J. Appl. Anim. Res. 2016, 44, 303–310. [Google Scholar] [CrossRef]
- Ebrahimzadeh, S.K.; Navidshad, B.; Farhoomand, P.; Mirzaei Aghjehgheshlagh, F. Effects of grape pomace and vitamin E on performance, antioxidant status, immune response, gut morphology and histopathological responses in broiler chickens. S. Afr. J. Anim. Sci. 2018, 48, 324–336. [Google Scholar] [CrossRef]
- Hajati, H.; Hassanabadi, A.; Golian, A.; Nassiri-Moghaddam, H.; Nassiri, M.R. The effect of grape seed extract and vitamin C feed supplementation on some blood parameters and HSP70 gene expression of broiler chickens suffering from chronic heat stress. Ital. J. Anim. Sci. 2015, 14, 3273–3282. [Google Scholar] [CrossRef]
Ingredients | 1Dietary Treatments | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Grower | Finisher | |||||||||
GP0 | GP25 | GP45 | GP55 | GP75 | GP0 | GP25 | GP45 | GP55 | GP75 | |
Grape pomace | 0 | 25 | 45 | 55 | 75 | 0 | 25 | 45 | 55 | 75 |
Soy oilcake | 245 | 197 | 149 | 124 | 74 | 168 | 110 | 72 | 40 | 0 |
Full fat soya | 10 | 10 | 55 | 86 | 151 | 55 | 125 | 168 | 210 | 259 |
Lysine | 1.4 | 2.5 | 2.8 | 2.8 | 2.8 | 1.7 | 1.9 | 1.8 | 1.8 | 1.7 |
Methionine | 1.4 | 1.3 | 1.1 | 1.1 | 0.9 | 1.5 | 1.5 | 1.3 | 1.2 | 1.1 |
Threonine | 0 | 0.1 | 0.1 | 0.1 | 0 | 0.1 | 0.1 | 0 | 0 | 0 |
Yellow maize | 709 | 712 | 686 | 668 | 633 | 751 | 714 | 690 | 670 | 640 |
Feed lime | 14.0 | 14.3 | 14.0 | 14.3 | 13.4 | 12.5 | 12.3 | 12.1 | 11.9 | 11.7 |
Monocalcium phosphate | 7 | 7.4 | 7.6 | 7.6 | 7.7 | 2.2 | 2.3 | 2.3 | 2.3 | 2.3 |
NaCl (fine salt) | 3.3 | 3.3 | 3.2 | 3.2 | 3.3 | 2.8 | 2.9 | 2.5 | 2.9 | 3.0 |
Sodium bicarbonate | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.9 | 1.9 | 1.7 | 1.6 | 1.6 |
Axtra Phytase | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Olaquindox | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Premix | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Gluten 60 | 5.0 | 23.2 | 32.3 | 34.0 | 35.0 | |||||
Choline chloride | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | |||||
Salinomycin | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | |||||
Zinc bacitracin | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | |||||
Soy crude oil | 1.3 |
Parameters | 1Dietary Treatments | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Grower | Finisher | |||||||||
GP0 | GP25 | GP45 | GP55 | GP75 | GP0 | GP25 | GP45 | GP55 | GP75 | |
Dry matter | 893.7 | 895.0 | 897.7 | 899.3 | 902.6 | 888.6 | 892.9 | 895.5 | 898.1 | 901.4 |
Organic matter | 844.1 | 846.9 | 849.7 | 851.1 | 853.9 | 848.9 | 852.7 | 854.9 | 857.3 | 860.1 |
2ME (MJ/kg) | 119.0 | 118.9 | 119.0 | 119.0 | 119.0 | 122.0 | 121.9 | 121.9 | 122.0 | 121.9 |
Crude protein | 170.0 | 170.0 | 170.1 | 170.0 | 170.0 | 160.0 | 160.0 | 160.0 | 160.0 | 160.0 |
Crude fat | 33.5 | 34.3 | 42.2 | 47.7 | 58.9 | 42.7 | 54.2 | 61.2 | 68.1 | 77.5 |
Crude fibre | 25.0 | 35.6 | 45.4 | 50.7 | 61.4 | 35.2 | 46.7 | 53.7 | 60.6 | 69.7 |
Calcium | 8.21 | 8.19 | 8.20 | 8.19 | 8.19 | 6.59 | 6.60 | 6.62 | 6.61 | 6.62 |
Phosphorus | 4.99 | 4.91 | 4.86 | 4.83 | 4.77 | 3.41 | 3.40 | 3.38 | 3.35 | 3.33 |
Sodium | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.60 | 1.60 | 1.60 | 1.60 | 1.60 |
Chloride | 2.81 | 3.00 | 3.00 | 3.00 | 3.00 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 |
Potassium | 7.52 | 6.95 | 6.91 | 6.99 | 7.18 | 6.55 | 6.75 | 6.87 | 6.98 | 7.15 |
Week | 1Dietary Treatments | 3Significance | |||||
---|---|---|---|---|---|---|---|
GP0 | GP25 | GP45 | GP55 | GP75 | 2SEM | ||
3 | 454.8 b | 396.3 a | 381.3 a | 369.6 a | 370.3 a | 7.70 | *** |
4 | 505.9 d | 484.4 cd | 456.1 bc | 421.7 ab | 387.8 a | 10.70 | *** |
5 | 574.9 c | 554.2 bc | 581.1 c | 504.8 b | 426.6 a | 13.10 | *** |
6 | 702.0 b | 672.6 b | 694.4 b | 564.7 a | 521.8 a | 17.50 | *** |
Parameters | 1Dietary Treatments | 3SEM | 4Significance | ||||
---|---|---|---|---|---|---|---|
GP0 | GP25 | GP45 | GP55 | GP75 | |||
2Overall WG | 1253.2 | 1205.9 | 1204.8 | 1172.1 | 1176.3 | 40.30 | NS |
3Overall FCR | 1.79 a | 1.75 ab | 1.75 ab | 1.58 bc | 1.45 c | 0.105 | *** |
1Dietary Treatments | 2SEM | |||||
---|---|---|---|---|---|---|
GP0 | GP25 | GP45 | GP55 | GP75 | ||
Haematology | ||||||
Erythrocytes (×1012/L) | 1.58 | 1.28 | 1.47 | 1.41 | 1.29 | 0.30 |
Haematocrit (%) | 11.30 | 12.55 | 11.61 | 11.69 | 11.78 | 0.82 |
Haemoglobin (g/dL) | 9.41 | 9.20 | 9.33 | 9.56 | 8.93 | 0.22 |
Neutrophils (×109/L) | 7.53 | 8.42 | 6.82 | 7.75 | 13.17 | 2.26 |
Lymphocytes (×109/L) | 22.43 | 11.78 | 11.55 | 19.43 | 16.42 | 5.87 |
Monocytes (×109/L) | 21.97 | 10.58 | 9.36 | 20.62 | 12.05 | 7.03 |
Eosinophils (×109/L) | 1.18 | 1.06 | 1.05 | 1.00 | 1.36 | 0.18 |
Reticulocytes (×109/L) | 314.5 | 335.1 | 293.8 | 211.2 | 166.1 | 87.9 |
White blood cells (×109/L) | 52.80 | 30.79 | 28.93 | 48.97 | 43.12 | 15.27 |
Basophils (×109/L) | 0.16 | 0.17 | 0.15 | 0.17 | 0.13 | 0.03 |
Serum biochemistry | ||||||
Glucose (mg/dL) | 17.31 | 17.07 | 17.25 | 19.59 | 17.72 | 1.593 |
Calcium (mmol/L) | 3.34 | 3.48 | 3.20 | 3.46 | 3.18 | 0.212 |
Creatinine (µmol/L) | 9.64 | 9.57 | 9.67 | 9.71 | 9.00 | 0.444 |
Albumin (g/L) | 0.64 | 0.69 | 0.68 | 0.64 | 0.66 | 0.026 |
Phosphorus (mmol/L) | 2.66 | 2.93 | 2.77 | 2.71 | 2.64 | 0.207 |
Globulin (g/L) | 30.13 | 29.44 | 28.42 | 31.25 | 27.83 | 2.578 |
Total bilirubin (µmol/L) | 9.69 | 8.94 | 7.75 | 10.25 | 10.25 | 1.567 |
Alanine aminotransferase (IU/L) | 30,69 | 27.69 | 19.75 | 30.88 | 35.36 | 6.906 |
Alkaline phosphatase (IU/L) | 754.6 | 805.9 | 731.4 | 695.0 | 727.2 | 90.92 |
Gamma-glutamyl transferase (IU/L) | 31.64 | 29.06 | 31.33 | 34.44 | 24.00 | 3.037 |
Cholesterol (mg/dL) | 5.12 | 5.28 | 4.62 | 4.90 | 4.76 | 0.460 |
Amylase (IU/L) | 433.6 | 321.3 | 356.5 | 356.5 | 321.3 | 43.39 |
Lipase (IU/L) | 135.3 | 142.4 | 142.8 | 161.8 | 144.3 | 14.50 |
1Dietary Treatments | 2SEM | |||||
---|---|---|---|---|---|---|
GP0 | GP25 | GP45 | GP55 | GP75 | ||
Carcass traits | ||||||
Dressing percentage | 69.64 | 70.98 | 72.43 | 71.31 | 70.94 | 2.052 |
Hot carcass weight (g) | 1299.6 | 1218.9 | 1256.5 | 1184.6 | 1155.6 | 43.19 |
Cold carcass weight (g) | 1270.7 | 1229.2 | 1237.1 | 1161.9 | 1153.1 | 38.51 |
Breast | 21.39 | 21.92 | 27.60 | 23.09 | 17.08 | 3.114 |
Wing | 5.84 | 6.22 | 5.87 | 5.99 | 6.25 | 0.395 |
Drumstick | 6.48 | 6.97 | 6.85 | 6.80 | 6.65 | 0.425 |
Thigh | 8.01 | 8.61 | 8.11 | 7.94 | 6.68 | 0.529 |
Internal organs | ||||||
Gizzards | 3.03 | 3.17 | 3.28 | 3.13 | 3.34 | 0.101 |
Proventriculi | 0.49 | 0.57 | 0.55 | 0.54 | 0.56 | 0.032 |
Livers | 3.23 | 3.12 | 2.97 | 3.60 | 3.12 | 0.255 |
Small intestines (cm) | 150.4 | 153.0 | 152.8 | 148.6 | 148.4 | 3.760 |
Large intestines (cm) | 9.78 | 8.45 | 9.90 | 9.39 | 9.69 | 0.801 |
Meat Quality Traits | 1Dietary Treatments | 2SEM | 3Significance | ||||
---|---|---|---|---|---|---|---|
GP0 | GP25 | GP45 | GP55 | GP75 | |||
Meat pH | 6.37 | 6.31 | 6.31 | 6.41 | 6.36 | 0.061 | NS |
Temperature (°C) | 25.90 | 26.56 | 26.47 | 26.30 | 26.38 | 0.480 | NS |
L* | 55.92 | 57.31 | 56.34 | 55.53 | 56.32 | 0.786 | NS |
a* | 0.49 a | 0.62 b | 0.62 b | 0.66 b | 0.75 c | 0.020 | *** |
b* | 16.34 | 15.94 | 16.75 | 16.20 | 16.11 | 0.501 | NS |
Chroma | 16.35 | 15.95 | 16.77 | 16.21 | 16.13 | 0.500 | NS |
Hue angle | 1.54 c | 1.53 b | 1.53 b | 1.53 b | 1.52 a | 0.002 | *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumanda, C.; Mlambo, V.; Mnisi, C.M. From Landfills to the Dinner Table: Red Grape Pomace Waste as a Nutraceutical for Broiler Chickens. Sustainability 2019, 11, 1931. https://doi.org/10.3390/su11071931
Kumanda C, Mlambo V, Mnisi CM. From Landfills to the Dinner Table: Red Grape Pomace Waste as a Nutraceutical for Broiler Chickens. Sustainability. 2019; 11(7):1931. https://doi.org/10.3390/su11071931
Chicago/Turabian StyleKumanda, Cebisa, Victor Mlambo, and Caven Mguvane Mnisi. 2019. "From Landfills to the Dinner Table: Red Grape Pomace Waste as a Nutraceutical for Broiler Chickens" Sustainability 11, no. 7: 1931. https://doi.org/10.3390/su11071931
APA StyleKumanda, C., Mlambo, V., & Mnisi, C. M. (2019). From Landfills to the Dinner Table: Red Grape Pomace Waste as a Nutraceutical for Broiler Chickens. Sustainability, 11(7), 1931. https://doi.org/10.3390/su11071931