Seasonal Variation in Diurnal Photosynthesis and Chlorophyll Fluorescence of Four Genotypes of Cassava (Manihot esculenta Crantz) under Irrigation Conditions in a Tropical Savanna Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Plant Materials
2.3. Physiological Measurement
2.4. Data and Statistical Analysis
3. Results
3.1. Environment and Plant Growth
3.2. Diurnal Variation in Environmental Conditions during Field Measurements of Photosynthesis
3.3. Diurnal Chl Fluorescence of Cassava Leaves
3.4. Diurnal Leaf Gas Exchange
3.5. The Relationship between Cassava Leaf Photosynthesis and Environmental Field Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
APAR | absorbed photosynthetically active radiation |
Ca | ambient CO2 concentration |
Ci | intercellular CO2 concentration |
Chl | chlorophyll |
Tr | transpiration rate |
ETR | electron transfer rate |
F0 | minimal fluorescence yield of the dark-adapted state |
F′ | steady state fluorescence in the light-adapted state |
Fm | the maximal fluorescence of the dark-adapted state |
Fm′ | the maximal fluorescence of the light-adapted state |
Fv/Fm | the maximal photochemical quantum yield of PSII |
Gs | stomatal conductance |
LUE | light-use efficiency (=Pn/APAR) |
LAI | leaf area index |
NPQ | nonphotochemical quenching |
Pn | net photosynthetic rate |
ΦPSII | effective quantum yield of PSII photochemistry |
PAR | photosynthetically active radiation |
PARleaf | photosynthetically active radiation on the leaf surface |
PARA | ambient photosynthetically active radiation |
PSII | photosystem II |
r | correlation coefficient |
R | respiration rate |
RHair | air relative humidity |
RHC | canopy relative humidity |
Tair | air temperature |
Tleaf | leaf temperature |
VPDA | air vapor pressure deficit |
VPDL | leaf-to-air vapor pressure deficit |
WUE | water-use efficiency (=Pn/Tr) |
References
- Burns, A.; Gleadow, R.; Cliff, J.; Zacarias, A.; Cavagnaro, T. Cassava: The drought, war and famine crop in a changing world. Sustainability 2010, 2, 3572–3670. [Google Scholar] [CrossRef]
- Rosenthal, D.M.; Ort, D.R. Examining cassava’s potential to enhance food security under climate change. Trop Plant Biol. 2011, 4, 30–38. [Google Scholar] [CrossRef]
- Tonukari, N.; Ezedom, T.; Enuma, C.C.; Sakpa, S.O.; Avwioroko, O.J.; Eraga, L.; Odiyoma, E. White gold: Cassava as an industrial base. Am. J. Plant Sci. 2015, 6, 972–979. [Google Scholar] [CrossRef]
- Food and Agriculture Organization Corporate Statistical Database. Crops. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 7 April 2019).
- Ministry of Agriculture and Cooperative, Thailand. Status of Cassava in Thailand: Implications for Future Research and Development. Available online: http://www.fao.org/3/y1177e/Y1177E04.htm (accessed on 24 January 2019).
- Thailand Ministry of Agriculture and Cooperative. Good Agricultural Practices for Cassava; National Bureau of Agricultural Commodity and Food Standards Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2008.
- Hammer, G.L.; Hobman, F.R.; Shepherd, R.K. Effects of planting time and harvest age on cassava (Manihot esculenta) in northern Australia. I. Crop growth and yield in moist environments. Exp. Agric. 1987, 23, 401–414. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Prospects of photosynthetic research for increasing agricultural productivity, with emphasis on the tropical C4 Amaranthus and the cassava C3-C4 crops. Photosynthetica 2016, 54, 161–184. [Google Scholar] [CrossRef]
- Cock, J.H.; Franklin, D.; Sandoval, G.; Juri, P. The ideal cassava planting for maximum yield. Crop Sci. 1979, 19, 271–279. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Effect of humidity and wind on leaf conductance of field growth cassava. Rev. Bras. Fisiol. Veg. 1990, 2, 17–22. [Google Scholar]
- Office of Agricultural Economics. Agricultural Production Index. Available online: http://www.oae.go.th/view/1/Home/EN-US (accessed on 23 January 2019).
- Phoncharoen, P.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P.; Hoogenboom, G. Growth rates and yields of cassava at different planting dates in a tropical savanna climate. Sci. Agric. 2018, in press. [Google Scholar]
- Furbank, R.T.; Quick, W.P.; Sirault, X.R.R. Improving photosynthesis and yield potential in cereal crops by targeted genetic manipulation: Prospects, progress and challenges. Field Crops Res. 2015, 182, 19–29. [Google Scholar] [CrossRef]
- De Souza, A.P.; Massenburg, L.N.; Jaiswal, D.; Jaiswal, D.L.; Cheng, S.L.; Shekar, R.L.; Long, S.P. Rooting for cassava: Insights into photosynthesis and associated physiology as photosynthesis and associated physiology as a route to improve yield potential. New Phytol. 2016, 213, 50–65. [Google Scholar] [CrossRef] [PubMed]
- El-Sharkawy, A.M.; Lopez, Y.; Bernal, L.M. Genotypic variations in activities of phosphoenolpyruvate carboxylase and correlations with leaf photosynthetic characteristics and crop productivity of cassava grown in low-land seasonally-dry tropics. Photosynthetica 2008, 46, 238–247. [Google Scholar] [CrossRef]
- De Tafur, S.M.; El-Sharkawy, A.M.; Calle, F. Photosynthesis and yield performance of cassava in seasonally dry and semiarid environments. Photosynthetica 1997, 33, 249–257. [Google Scholar] [CrossRef]
- Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 403, 1607–1621. [Google Scholar] [CrossRef] [PubMed]
- Brestic, M.; Zivcak, M.; Kunderlikova, K.; Allakhverdiev, S.I. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynth. Res. 2016, 130, 251–266. [Google Scholar] [CrossRef]
- Loomis, R.S.; Rabbinge, R.; Ng, E. Explanatory models in crop physiology. Annu. Rev. Plant Physiol. 1979, 30, 339–367. [Google Scholar] [CrossRef]
- Polthanee, A.; Janthajam, C.; Promkhambut, A. Growth, yield and starch content of cassava following rainfed lowland rice in Northeast Thailand. Int. J. Environ. Res. 2014, 9, 319–324. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 5, 259–263. [Google Scholar] [CrossRef]
- Thai Meteorological Department. Climate of Thailand Report. Available online: https://www.tmd.go.th/en/archive/thailand_climate.pdf (accessed on 11 September 2018).
- Howeler, R.H. Cassava mineral nutrition and fertilization. In Cassava: Biology, Production and Utilization; Hillocks, R.J., Thresh, J.M., Bellotti, A.C., Eds.; CABI Publishing: New York, NY, USA, 2002; pp. 149–166. [Google Scholar]
- Phoncharoen, P.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P.; Hoogenboom, G. The impact of seasonal environments in a tropical savanna climate on forking, leaf area index, and biomass of cassava genotypes. Agron. J. 2019, 9, 19. [Google Scholar] [CrossRef]
- Welles, J.M.; Cohen, S. Canopy structure measurement by gap fraction analysis using commercial instrumentation. J. Exp. Bot. 1996, 47, 1335–1342. [Google Scholar] [CrossRef]
- Alves, A.A.C. Cassava Botany and Physiology. In Cassava: Biology, Production and Utilization; Hillock, R.J., Thres, J.M., Bellotti, A.C., Eds.; CABI Publishing: New York, NY, USA, 2002; pp. 67–89. [Google Scholar]
- Kalaji, H.M.; Schansker, G.; Ladle, R.J.; Goltsev, V.; Bosa, K.; Allakhverdiev, S.I.; Brestic, M.; Bussotti, F.; Calatayud, A.; Dabrowski, P.; et al. Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. Photosynth. Res. 2014, 122, 121–158. [Google Scholar] [CrossRef]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef]
- Sigmaplot Version 11.0; Systat Software, Inc.: San Jose, CA, USA, 1996.
- MSTAT-C Version 1.42; Michigan State University: East Lansing, MI, USA, 1992.
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley and Sons: New York, NY, USA, 1984. [Google Scholar]
- Jarvis, A.; Ramirez-Villegas, J.; Herrera Campo, J.B.; Navarro-Racines, C. Is cassava the answer to African climate change adaptation? Trop. Plant Biol. 2012, 51, 9–29. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Global warming: Causes and impacts on agroecosystems productivity and food security with emphasis on cassava comparative advantage in the tropics/subtropics. Photosynthetica 2014, 52, 161–178. [Google Scholar] [CrossRef]
- Rosenthal, D.M.; Slattery, R.A.; Miller, R.E.; Grennan, A.K.; Cavagnaro, T.R.; Fauquet, C.M.; Gleadow, R.M.; Ort, D.R. Cassava about-FACE: Greater than expected yield stimulation of cassava (Manihot esculenta) by future CO2 levels. Glob. Chang. Biol. 2012, 18, 2661–2675. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Cassava biology and physiology. Plant Mol. Biol. 2004, 56, 481–501. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.M.; Forseth, I.N. Diurnal patterns of soybean leaf inclination angles and azimuthal orientation under different levels of ultraviolet-B radiation. Agric. For. Meteorol. 1995, 78, 107–119. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Utility of basic research in plant/crop physiology in relation to crop improvement: A review and a personal account. Braz. J. Plant Physiol. 2007, 18, 419–446. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Physiological characteristics of cassava tolerance to prolonged drought in the tropics: Implication for breeding cultivars adapted to seasonally dry and semiarid environments. Braz. J. Plant Physiol. 2007, 19, 257–286. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A.; De Tafur, S.M. Genotypic and within canopy variation in leaf carbon isotope discrimination and its relation to short-term leaf gas exchange characteristics in cassava grown under rain-fed conditions in the tropics. Photosynthetica 2007, 45, 515–526. [Google Scholar] [CrossRef]
- De Souza, A.P.; Long, S.P. Toward improving photosynthesis in cassava: Characterizing photosynthetic limitations in four current African cultivars. Food Energy Secur. 2018, 7, 1–14. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. Photosynthetica 2006, 44, 481–512. [Google Scholar] [CrossRef]
- Song, Y.; Chen, Q.; Ci, D.; Shao, X.; Zhang, D. Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol. 2014, 14. [Google Scholar] [CrossRef] [PubMed]
- Vongchareon, K.; Santanoo, S.; Banterng, P.; Jogloy, S.; Vorasoot, N.; Theerakulpisut, P. Seasonal variation in photosynthesis performance of cassava at two different growth stages under irrigated and rain-fed conditions in a tropical savanna climate. Photosynthetica 2018, 56, 1398–1413. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Stress-tolerant cassava: The role of integrative ecophysiology-breeding research in crop improvement. OJSS 2012, 2, 162–186. [Google Scholar] [CrossRef]
- Grassi, G.; Magnani, F. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ. 2005, 28, 834–849. [Google Scholar] [CrossRef]
- Stitt, M.; Schulze, D. Does Rubisco control the rate of photosynthesis and plant growth—An exercise in molecular ecophysiology. Plant Cell Environ. 1994, 17, 465–487. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A.; Cock, J.H. The humidity factor in stomatal control and its effect on crop productivity. In Biological Control of Photosynthesis; Marcelle, R., Clijsters, H., Van Poucke, M., Eds.; Springer: Dordrecht, The Netherlands, 1986; pp. 187–198. [Google Scholar]
- Flexas, J.; Medrano, H. Drought inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Flexas, J.; Bota, J.; Cifre, J.; Escalona, J.M.; Galmes, J.; Gulias, J.; Lefi, E.; Martinez-Canellas, S.F.; Moreno, M.T.; Ribas-Carbo, M.; et al. Understanding down regulation of photosynthesis under water stress: Future prospects and searching for physiological tools for irrigation management. Ann. Appl. Biol. 2004, 144, 273–283. [Google Scholar] [CrossRef]
- Ribeiro, R.V.; Machado, E.C.; Santos, M.G.; Oliveira, R.F. Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions. Photosynthetic 2009, 47, 215–222. [Google Scholar] [CrossRef]
- Breatic, M.; Zivcak, M. PSII Fluorescence techniques for measurement of drought and hight temperatures stress signal in crop plants: Protocols and application. In Molecular Stress Physiology of Plants; Rout, G.R., Das, A.B., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 87–131. [Google Scholar]
- Pompodakis, N.E.; Terry, L.A.; Joyce, D.C.; Lydakis, D.E.; Papadimitriou, M.D. Effect of seasonal variation and storage temperature on leaf chlorophyll fluorescence and vase life of cut roses. Postharvest Biol. Technol. 2005, 36, 1–8. [Google Scholar] [CrossRef]
- Van Goethem, D.; De Smedt, S.; Valcke, R.; Potters, G.; Samson, R. Seasonal, diurnal and vertical variation of chlorophyll fluorescence on Phyllostachys humilis in Ireland. PLoS ONE 2013, 8, e72145. [Google Scholar] [CrossRef]
- Brestic, M.; Zivcak, M.; Kalaji, M.H.; Carpentier, R.; Allakhverdiev, S.I. Photosystem II themostability in situ: Enviromentally induced acclimation and genotype-specific reaction in Triticum aeativum L. Plant Physiol. Biochem. 2012, 57, 93–105. [Google Scholar] [CrossRef]
- Vongchareon, K.; Santanoo, S.; Banterng, P.; Jogloy, S.; Vorasoot, N.; Theerakulpisut, P. Diurnal and seasonal variations in the photosynthetic performance and chlorophyll fluorescence of cassava ‘Rayong 9’ under irrigated and rainfed conditions. Photosynthetica 2019, 57, 268–285. [Google Scholar] [CrossRef]
- Huang, L.F.; Zheng, J.H.; Zhang, Y.Y.; Hu, W.H.; Mao, W.H.; Zhou, Y.H.; Yu, J.Q. Diurnal variations in gas exchange, chlorophyll fluorescence quenching and light allocation in soybean leaves: The cause for midday depression in CO2 assimilation. Sci. Hortic. 2006, 110, 214–218. [Google Scholar] [CrossRef]
- Tucci, M.L.S.; Erismann, N.M.; Machado, E.C.; Ribeiro, R.V. Diurnal and seasonal variation in photosynthesis of peach palms grown under subtropical conditions. Photosynthetica 2010, 48, 421–429. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence: A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Yamori, W. Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. J. Plant Res. 2016, 129, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Alric, J.; Johnson, X. Alternative electron transport pathways in photosynthesis: A confluence of regulation. Curr. Opin. Plant Biol. 2017, 37, 78–86. [Google Scholar] [CrossRef]
- Björkman, O.; Demmig, B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 779 77k among vascular plants of diverse origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [PubMed]
- Murchie, E.H.; Niyogi, K.K. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol. 2011, 155, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Li, X.P.; Muller-Moule, P.; Gilmore, A.M.; Niyogi, K.K. PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc. Natl. Acad. Sci. USA 2002, 99, 15222–15227. [Google Scholar] [CrossRef]
- Hubbart, S.; Smillie, I.R.A.; Heatley, M.; Swarup, R.; Foo, C.C.; Zhao, L.; Murchie, E.H. Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice. Commun. Biol. 2018, 1. [Google Scholar] [CrossRef] [PubMed]
- Berg, V.S.; El-Sharkawy, M.A.; Hernandez, A.D.P.; Cock, J.H. Leaf orientation and water relations in cassava. In Annual Meeting of the American Society of Plant Physiologists; Louisiana State University: Baton Rouge, LA, USA, 1986; p. 186. [Google Scholar]
- Sawatraksa, W.; Banterng, P.; Jogloy, S. Chlorophyll fluorescence and biomass of four cassava genotypes grown under rain-fed upper paddy field conditions in the tropics. J. Agron. Crop Sci. 2018, 204, 554–565. [Google Scholar] [CrossRef]
Parameter | Genotype | Rainy | Cool | Hot | F-Test | Critical P | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
min | max | mean | min | max | mean | min | max | mean | Value 2 | Value 2 | ||
PARA (µmol/m2/s) | 35 | 2498 | 704 | 26 | 1794 | 950 | 116 | 2038 | 1105 | 2.184 | 0.12 | |
PARleaf (µmol/m2/s) | RY9 | 27 | 2115 | 678 | 28 | 1528 | 909 | 75 | 1812 | 974 | 1.426 | 0.247 |
RY11 | 12 | 2002 | 497 B | 6 | 1517 | 877 AB | 108 | 1868 | 956 A | 3.822 | 0.027 | |
KU50 | 17 | 2114 | 423 B | 12 | 1521 | 800 AB | 41 | 1817 | 875 A | 4.34 | 0.017 | |
CMR38-125-77 | 25 | 1964 | 473 B | 44 | 1516 | 875 AB | 61 | 1777 | 913 A | 4.339 | 0.017 | |
F-test value 1 | 0.947 | 0.148 | 0.11 | |||||||||
Critical-P value 1 | 0.421 | 0.931 | 0.954 | |||||||||
mean | 20 | 2049 | 518 B | 23 | 1521 | 863 A | 71 | 1819 | 930 A | 13.385 | <0.001 | |
Tair (°C) | 25.10 | 33.00 | 28.68 B | 16.00 | 32.80 | 26.44 B | 24.40 | 40.30 | 35.04 A | 22.687 | <0.001 | |
Tleaf (°C) | RY9 | 26.45 | 37.78 | 31.26 B | 14.85 | 33.61 | 28.05 B | 25.34 | 42.52 | 35.00 A | 12.796 | <0.001 |
RY11 | 25.60 | 36.06 | 29.81 C | 15.71 | 33.02 | 26.57 B | 26.14 | 41.12 | 35.55 A | 19.516 | <0.001 | |
KU50 | 25.80 | 37.15 | 30.68 AB | 16.02 | 32.94 | 27.48 B | 23.24 | 41.00 | 33.45 A | 9.703 | <0.001 | |
CMR38-125-77 | 26.21 | 37.09 | 31 B | 16.66 | 33.99 | 28.69 B | 24.26 | 44.30 | 34.90 A | 10.311 | <0.001 | |
F-test value 1 | 0.92 | 0.729 | 0.417 | |||||||||
Critical-P value 1 | 0.434 | 0.538 | 0.741 | |||||||||
mean | 26.02 | 37.02 | 31.51 * B | 15.81 | 33.39 | 27.70 C | 24.75 | 42.24 | 34.48 A | 41.177 | <0.001 | |
RHair (%) | 59 | 100 | 77 A | 27 | 68 | 42 B | 19 | 82 | 37 B | 45.802 | <0.001 | |
RHC (%) | RY9 | 45 | 76 | 59 A | 1 | 66 | 23 C | 19 | 75 | 38 B | 23.805 | <0.001 |
RY11 | 44 | 86 | 64 A | 1 | 88 | 32 B | 19 | 73 | 37 B | 16.350 | <0.001 | |
KU50 | 45 | 82 | 62 A | 1 | 90 | 30 B | 19 | 84 | 41 B | 13.872 | <0.001 | |
CMR38-125-77 | 45 | 78 | 60 A | 3 | 90 | 30 B | 19 | 78 | 40 B | 14.917 | <0.001 | |
F-test value 1 | 0.975 | 0.49 | 0.201 | |||||||||
Critical-P value 1 | 0.408 | 0.69 | 0.895 | |||||||||
mean | 45 | 81 | 61 * A | 2 | 84 | 29 * C | 19 | 78 | 39 B | 67.503 | <0.001 | |
VPDair (kPa) | 0.01 | 2.07 | 0.99 C | 0.59 | 3.37 | 2.19 B | 0.55 | 6.2 | 3.97 A | 33.359 | <0.001 | |
VPDL (kPa) | RY9 | 0.28 | 2.14 | 1.17 B | 0.3 | 4.04 | 2.47 A | 0.41 | 5.61 | 2.94 A | 12.421 | <0.001 |
RY11 | 0.23 | 1.76 | 0.94 B | 0.2 | 4.08 | 2.12 A | 0.49 | 4.53 | 2.51 A | 14.424 | <0.001 | |
KU50 | 0.26 | 2.08 | 1.08 B | 0.3 | 4.65 | 2.46 A | 0.16 | 5.15 | 2.47 A | 11.041 | <0.001 | |
CMR38-125-77 | 0.28 | 2.09 | 1.10 B | 0.6 | 4.15 | 2.76 A | 0.24 | 7.33 | 3.15 A | 14.401 | <0.001 | |
F-test value 1 | 1.061 | 1.000 | 0.99 | |||||||||
Critical-P value 1 | 0.37 | 0.397 | 0.401 | |||||||||
mean | 0.26 | 2.02 | 1.07 B | 0.35 | 4.23 | 2.45 A | 0.33 | 5.66 | 2.77 * A | 51.156 | <0.001 |
Parameter | Genotype | Rainy | Cool | Hot | F-test | Critical-P | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
min | max | mean | min | max | mean | min | max | mean | Value 2 | Value 2 | ||
Fv/Fm | RY9 | 0.862 | 0.871 | 0.866 a | 0.823 | 0.878 | 0.845 | 0.848 | 0.856 | 0.852 | 2.681 | 0.122 |
RY11 | 0.842 | 0.849 | 0.845 b | 0.828 | 0.836 | 0.833 | 0.829 | 0.862 | 0.845 | 2.765 | 0.116 | |
KU50 | 0.844 | 0.85 | 0.847 ab A | 0.829 | 0.846 | 0.837 B | 0.842 | 0.854 | 0.847 A | 4.915 | 0.036 | |
CMR38-125-77 | 0.85 | 0.866 | 0.858 ab A | 0.833 | 0.843 | 0.838 B | 0.848 | 0.862 | 0.854 A | 9.950 | 0.005 | |
F-test value 1 | 15.126 | 0.374 | 0.974 | |||||||||
Critical-P value 1 | <0.001 | 0.773 | 0.437 | |||||||||
mean | 0.854 A | 0.838 B | 0.849 A | 11.142 | <0.001 | |||||||
ΦPSII | RY9 | 0.51 | 0.81 | 0.71 A | 0.41 | 0.82 | 0.58 B | 0.43 | 0.81 | 0.59 B | 8.852 | <0.001 |
RY11 | 0.34 | 0.82 | 0.70 A | 0.33 | 0.82 | 0.54 B | 0.38 | 0.8 | 0.59 AB | 7.105 | 0.002 | |
KU50 | 0.41 | 0.85 | 0.69 A | 0.37 | 0.82 | 0.54 B | 0.35 | 0.81 | 0.60 AB | 6.476 | 0.003 | |
CMR38-125-77 | 0.39 | 0.82 | 0.69 A | 0.35 | 0.83 | 0.56 B | 0.19 | 0.8 | 0.53 B | 6.850 | 0.002 | |
F-test value 1 | 0.135 | 0.250 | 1.059 | |||||||||
Critical-P value 1 | 0.939 | 0.861 | 0.352 | |||||||||
mean | 0.70 A | 0.56 B | 0.58 B | 27.745 | <0.001 | |||||||
ETR | RY9 | 8 | 304 | 94 B | 2 | 304 | 173 A | 16 | 343 | 190 A | 6.758 | 0.002 |
[µmol(e-)/m2/s] | RY11 | 5 | 353 | 92 B | 1 | 257 | 144 AB | 19 | 310 | 158 A | 3.351 | 0.041 |
KU50 | 4 | 327 | 77 B | 1 | 260 | 152 A | 11 | 309 | 155 A | 6.325 | 0.003 | |
CMR38-125-77 | 6 | 310 | 97 | 2 | 256 | 158 | 14 | 307 | 134 | 3.079 | 0.052 | |
F-test value 1 | 0.252 | 0.481 | 1.300 | |||||||||
Critical-P value 1 | 0.860 | 0.696 | 0.279 | |||||||||
mean | 90 B | 157 A | 159 A | 18.251 | <0.001 | |||||||
NPQ | RY9 | 0.08 | 0.61 | 0.37 | 0.04 | 0.64 | 0.42 | 0.06 | 0.64 | 0.44 | 0.956 | 0.389 |
RY11 | 0.05 | 0.71 | 0.32 | 0.01 | 0.74 | 0.42 | 0.09 | 0.67 | 0.44 | 2.825 | 0.066 | |
KU50 | 0.12 | 0.59 | 0.31 | 0.02 | 0.63 | 0.39 | 0.03 | 0.65 | 0.41 | 2.36 | 0.102 | |
CMR38-125-77 | 0.04 | 0.66 | 0.34 B | 0.03 | 0.65 | 0.40 AB | 0.06 | 0.8 | 0.50 A | 4.255 | 0.018 | |
F-test value 1 | 0.951 | 0.128 | 1.100 | |||||||||
Critical-P value 1 | 0.419 | 0.943 | 0.353 | |||||||||
mean | 0.34 B | 0.41 A | 0.45 A | 9.55 | <0.001 | |||||||
R | RY9 | 1.27 | 1.94 | 1.63 B | 0.85 | 1.7 | 1.26 ab B | 2.25 | 3.03 | 2.61 a A | 14.37 | 0.002 |
[µmolCO2/m2/s] | RY11 | 1.18 | 2.41 | 1.65 AB | 1.13 | 1.91 | 1.52 ab B | 2.23 | 2.64 | 2.39 ab A | 5.296 | 0.03 |
KU50 | 0.74 | 1.81 | 1.38 AB | 0.68 | 1.05 | 0.84 b B | 1.3 | 2.32 | 1.82 b A | 6.599 | 0.017 | |
CMR38-125-77 | 0.97 | 1.58 | 1.23 B | 1.59 | 4.26 | 2.96 a A | 1.95 | 2.26 | 2.14 ab AB | 6.164 | 0.021 | |
F-test value 1 | 1.048 | 7.544 | 4.95 | |||||||||
Critical-P value 1 | 0.407 | 0.004 | 0.018 | |||||||||
mean | 1.47 B | 1.65B | 2.24A | 5.701 | 0.006 | |||||||
Pn | RY9 | 0.20 | 36.00 | 14.00 | 0.78 | 32.02 | 16.77 | 1.33 | 31.57 | 14.67 | 0.895 | 0.413 |
(µmolCO2/m2/s) | RY11 | 0.70 | 31.70 | 11.20 | 0.72 | 30.09 | 17.19 | 1.81 | 33.31 | 17.02 | 2.036 | 0.138 |
KU50 | 0.10 | 28.40 | 9.54 | 0.22 | 23.14 | 11.77 | 0.1 | 31.78 | 14.64 | 1.835 | 0.167 | |
CMR38-125-77 | 0.90 | 27.50 | 12.30 | 0.46 | 26.51 | 12.86 | 0.14 | 31.99 | 10.97 | 0.281 | 0.756 | |
F-test value 1 | 0.397 | 1.51 | 1.471 | |||||||||
Critical-P value 1 | 0.755 | 0.217 | 0.228 | |||||||||
mean | 11.75 B | 14.60 A | 14.32 AB | 3.157 | 0.044 | |||||||
Gs | RY9 | 0.10 | 1.24 | 0.58 A | 0.01 | 0.57 | 0.23 B | 0.05 | 0.59 | 0.27 B | 18.141 | <0.001 |
(molH2O/m2/s) | RY11 | 0.11 | 1.71 | 0.57 A | 0.05 | 0.59 | 0.26 B | 0.08 | 0.69 | 0.40 A | 9.266 | <0.001 |
KU50 | 0.08 | 1.97 | 0.53 A | 0.00 | 0.41 | 0.18 B | 0.05 | 0.75 | 0.34 A | 8.253 | <0.001 | |
CMR38-125-77 | 0.02 | 1.03 | 0.44 A | 0.01 | 0.36 | 0.17 B | 0.02 | 1.11 | 0.26 B | 9.397 | <0.001 | |
F-test value 1 | 0.67 | 1.525 | 2.156 | |||||||||
Critical-P value 1 | 0.572 | 0.213 | 0.099 | |||||||||
mean | 0.53 A | 0.21 C | 0.32 B | 40.295 | <0.001 | |||||||
Tr | RY9 | 1.43 | 10.33 | 5.28 | 0.09 | 12.87 | 5.36 | 0.74 | 11.26 | 6.36 ab | 0.730 | 0.486 |
[mmolH2O/m2/s) | RY11 | 0.75 | 8.76 | 4.23 B | 0.07 | 13.33 | 5.15 B | 1.34 | 15.22 | 8.52 a A | 8.695 | <0.001 |
KU50 | 1.02 | 8.95 | 4.08 AB | 0.03 | 11.13 | 3.88 B | 0.34 | 12.09 | 6.74 ab A | 6.484 | 0.003 | |
CMR38-125-77 | 1.11 | 8.68 | 4.52 | 0.1 | 9.44 | 4.24 | 0.53 | 11.75 | 4.74 b | 0.149 | 0.862 | |
F-test value 1 | 1.074 | 0.868 | 3.719 | |||||||||
Critical-P value 1 | 0.364 | 0.461 | 0.014 | |||||||||
mean | 4.52 B | 4.65 B | 6.58 A | 11.227 | <0.001 | |||||||
Ci | RY9 | 183 | 436 | 328 A | 104 | 548 | 250 B | 137 | 455 | 267 B | 4.663 | 0.013 |
(µmolCO2/mol air] | RY11 | 198 | 493 | 338 | 97 | 563 | 275 | 201 | 433 | 292 | 2.967 | 0.058 |
KU50 | 215 | 482 | 341 A | 107 | 504 | 257 B | 190 | 476 | 300 AB | 5.795 | 0.005 | |
CMR38-125-77 | 213 | 443 | 334 A | 92 | 579 | 252 B | 96 | 468 | 265 B | 4.731 | 0.012 | |
F-test value 1 | 0.131 | 0.243 | 0.961 | |||||||||
Critical-P value 1 | 0.941 | 0.866 | 0.415 | |||||||||
mean | 335 A | 258 B | 281 B | 17.73 | <0.001 | |||||||
Ci/Ca | RY9 | 0.56 | 1.00 | 0.86 A | 0.28 | 1.31 | 0.64 B | 0.37 | 0.98 | 0.68 B | 7.825 | <0.001 |
RY11 | 0.52 | 0.99 | 0.85 A | 0.26 | 1.33 | 0.69 B | 0.57 | 0.96 | 0.76 AB | 4.239 | 0.018 | |
KU50 | 0.64 | 0.99 | 0.87 A | 0.28 | 1.20 | 0.65 B | 0.52 | 0.99 | 0.75 AB | 9.781 | <0.001 | |
CMR38-125-77 | 0.64 | 0.99 | 0.86 A | 0.28 | 1.20 | 0.65 B | 0.25 | 0.99 | 0.67 B | 8.91 | <0.001 | |
F-test value 1 | 0.0875 | 0.215 | 2.036 | |||||||||
Critical-P value 1 | 0.967 | 0.886 | 0.114 | |||||||||
mean | 0.85 A | 0.70 B | 0.71 B | 29.177 | <0.001 | |||||||
LUE | RY9 | 0.009 | 0.034 | 0.023 b | 0.016 | 0.04 | 0.025 | 0.01 | 0.035 | 0.020 ab | 1.845 | 0.166 |
(µmolCO2/µmol photon) | RY11 | 0.015 | 0.097 | 0.035 a | 0.012 | 0.116 | 0.029 | 0.014 | 0.036 | 0.023 a | 1.596 | 0.210 |
KU50 | 0.016 | 0.056 | 0.030 ab A | 0.011 | 0.039 | 0.021 AB | 0.002 | 0.038 | 0.020 ab B | 3.509 | 0.035 | |
CMR38-125-77 | 0.016 | 0.058 | 0.033 a A | 0.01 | 0.035 | 0.020 B | 0.001 | 0.043 | 0.016 b B | 11.196 | <0.001 | |
F-test value 1 | 2.791 | 1.592 | 2.871 | |||||||||
Critical-P value 1 | 0.045 | 0.197 | 0.041 | |||||||||
mean | 0.030 A | 0.023 B | 0.019 B | 9.46 | <0.001 | |||||||
WUE | RY9 | 0.09 | 5.26 | 2.21 B | 1.14 | 10.98 | 4.76 A | 0.84 | 3.86 | 2.26 B | 14.508 | <0.001 |
(µmolCO2/mmol H2O) | RY11 | 0.26 | 6.15 | 2.34 B | 0.62 | 12.36 | 4.79 A | 0.55 | 3.41 | 1.92 B | 7.374 | 0.001 |
KU50 | 0.14 | 6.54 | 2.28 B | 0.48 | 13.79 | 4.30 A | 0.21 | 3.14 | 1.86 B | 7.770 | <0.001 | |
CMR38-125-77 | 0.37 | 5.9 | 2.52 B | 1.43 | 14.82 | 4.25 A | 0.18 | 4.64 | 2.18 B | 6.903 | 0.002 | |
F-test value 1 | 1.118 | 0.299 | 1.135 | |||||||||
Critical-P value 1 | 0.346 | 0.826 | 0.339 | |||||||||
mean | 2.33 B | 4.52 A | 2.05 B | 26.604 | <0.001 |
Parameter | Season | Pn | Gs | Tr | Ci | PARleaf | Tleaf | RHC |
---|---|---|---|---|---|---|---|---|
Gs | Rainy | 0.59 ** | ||||||
Cool | 0.74 ** | |||||||
Hot | 0.50 ** | |||||||
Tr | Rainy | 0.67 ** | 0.39 ** | |||||
Cool | 0.74 ** | 0.73 ** | ||||||
Hot | 0.75 ** | 0.45 ** | ||||||
Ci | Rainy | −0.84 ** | 0.27 ** | −0.50 ** | ||||
Cool | −0.63 ** | −0.21 | −0.37 ** | |||||
Hot | −0.50 ** | 0.18 | −0.54 ** | |||||
PARleaf | Rainy | 0.93 ** | −0.01 | 0.69 ** | −0.79 ** | |||
Cool | 0.82 ** | 0.53 ** | 0.62 ** | −0.67 ** | ||||
Hot | 0.73 ** | 0.18 | 0.77 ** | −0.79 ** | ||||
Tleaf | Rainy | 0.76 ** | −0.34 ** | 0.49 ** | −0.90 ** | 0.80 ** | ||
Cool | 0.48 ** | 0.28 ** | 0.66 ** | −0.74 ** | 0.58 ** | |||
Hot | 0.46 ** | −0.22 | 0.58 ** | −0.90 ** | 0.76 ** | |||
RHC | Rainy | −0.30 ** | −0.19 ** | −0.76 ** | 0.37 ** | −0.31 ** | −0.34 ** | |
Cool | −0.54 ** | −0.32 ** | −0.69 ** | 0.69 ** | −0.61 ** | −0.93 ** | ||
Hot | −0.50 ** | −0.13 | −0.56 ** | 0.63 ** | −0.48 ** | −0.71 ** | ||
VPDL | Rainy | 0.57 ** | −0.35 ** | 0.53 ** | −0.78 ** | 0.65 ** | 0.86 ** | −0.63 ** |
Cool | 0.33 ** | 0.04 | 0.48 ** | −0.61 ** | 0.43 ** | 0.85 ** | −0.83 ** | |
Hot | 0.16 | −0.50 ** | 0.26 ** | −0.79 ** | 0.57 ** | 0.91 ** | −0.44 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santanoo, S.; Vongcharoen, K.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Roytrakul, S.; Theerakulpisut, P. Seasonal Variation in Diurnal Photosynthesis and Chlorophyll Fluorescence of Four Genotypes of Cassava (Manihot esculenta Crantz) under Irrigation Conditions in a Tropical Savanna Climate. Agronomy 2019, 9, 206. https://doi.org/10.3390/agronomy9040206
Santanoo S, Vongcharoen K, Banterng P, Vorasoot N, Jogloy S, Roytrakul S, Theerakulpisut P. Seasonal Variation in Diurnal Photosynthesis and Chlorophyll Fluorescence of Four Genotypes of Cassava (Manihot esculenta Crantz) under Irrigation Conditions in a Tropical Savanna Climate. Agronomy. 2019; 9(4):206. https://doi.org/10.3390/agronomy9040206
Chicago/Turabian StyleSantanoo, Supranee, Kochaphan Vongcharoen, Poramate Banterng, Nimitr Vorasoot, Sanun Jogloy, Sittiruk Roytrakul, and Piyada Theerakulpisut. 2019. "Seasonal Variation in Diurnal Photosynthesis and Chlorophyll Fluorescence of Four Genotypes of Cassava (Manihot esculenta Crantz) under Irrigation Conditions in a Tropical Savanna Climate" Agronomy 9, no. 4: 206. https://doi.org/10.3390/agronomy9040206
APA StyleSantanoo, S., Vongcharoen, K., Banterng, P., Vorasoot, N., Jogloy, S., Roytrakul, S., & Theerakulpisut, P. (2019). Seasonal Variation in Diurnal Photosynthesis and Chlorophyll Fluorescence of Four Genotypes of Cassava (Manihot esculenta Crantz) under Irrigation Conditions in a Tropical Savanna Climate. Agronomy, 9(4), 206. https://doi.org/10.3390/agronomy9040206