Dietary Fiber, Atherosclerosis, and Cardiovascular Disease
Abstract
:1. Introduction
2. Chemistry and Metabolism of Fiber
3. Dietary Fiber and Functional Fiber
4. Recommended Dietary Fiber Intakes
5. Fiber, Blood Cholesterol, and Atherosclerosis
5.1. Animal Studies
5.2. Human Studies
5.2.1. Observational Studies
5.2.2. Randomized Control Trials
6. Other Fiber Functions
7. Summary
Author Contributions
Funding
Conflicts of Interest
References
- CDC: Mortality in the United States (2017). Center for Disease Prevention and Control. Available online: https://www.cdc.gov/nchs/products/databriefs/db328.htm (accessed on 1 May 2019).
- Jia, X.; Lorenz, P. Ballantyne CM: Poststatin Lipid Therapeutics: A Review. Methodist Debakey Cardiovasc. J. 2019, 15, 32–38. [Google Scholar] [PubMed]
- Banach, M.; Mikhailidis, D.P. Statin Intolerance: Some Practical Hints. Cardiol. Clin. 2018, 36, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Toth, P.P.; Banach, M. Statins: Then and Now. Methodist Debakey Cardiovasc. J. 2019, 15, 23–31. [Google Scholar]
- Brum, J.; Ramsey, D.; McRorie, J.; Bauer, B.; Kopecky, S.L. Meta-Analysis of Usefulness of Psyllium Fiber as Adjuvant Antilipid Therapy to Enhance Cholesterol Lowering Efficacy of Statins. Am. J. Cardiol. 2018, 122, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lichtenstein, A.H.; Lamon-Fava, S.; Jacques, P.F. Association between statin use and serum cholesterol concentrations is modified by whole-grain consumption: NHANES 2003-2006. Am. J. Clin. Nutr. 2014, 100, 1149–1157. [Google Scholar] [PubMed]
- Gropper, S.S.; Smith, J. Advanced Nutrition and Human Metabolism, 6th ed.; Wadsworth Publishing: Belmont, CA, USA, 2013. [Google Scholar]
- Higginson, J.; Pepler, W.J. Fat intake, serum cholesterol concentration, and atherosclerosis in the South African Bantu. II. Atherosclerosis and coronary artery disease. J. Clin. Investig. 1954, 33, 1366–1371. [Google Scholar] [CrossRef]
- Fisher, H.; Griminger, P.; Weiss, H.S.; Siller, W.G. Avian Atherosclerosis: Retardation by Pectin. Science 1964, 146, 1063–1064. [Google Scholar] [CrossRef]
- Eastwood, M.A.; Kay, R.M. An hypothesis for the action of dietary fiber along the gastrointestinal tract. Am. J. Clin. Nutr. 1979, 32, 364–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, R.; Ferrieres, D. Biochemistry, Lippincott’s Illustrated Reviews, Lippincott Williams and Wilkins (Publisher), 5th ed.; Harvey, R.A., Ed.; Lippincott Williams, & Wilkins: Baltimore, MD, USA, 2011. [Google Scholar]
- Sun, N.X.; Tong, L.T.; Liang, T.T.; Wang, L.L.; Liu, L.Y.; Zhou, X.R.; Zhou, S.M. Effect of Oat and Tartary Buckwheat—Based Food on Cholesterol—Lowering and Gut Microbiota in Hypercholesterolemic Hamsters. J. Oleo Sci. 2019, 68, 251–259. [Google Scholar] [CrossRef]
- Smith, U.; Holm, G. Effect of a modified guar gum preparation on glucose and lipid levels in diabetics and healthy volunteers. Atherosclerosis 1982, 45, 1–10. [Google Scholar] [CrossRef]
- Anderson, J.W. Dietary fiber, lipids and atherosclerosis. Am. J. Cardiol. 1987, 60, 17–22. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H., Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef]
- Chang, S.; Koegel, K. Back to Basics: All About MyPlate Food Groups. J. Acad. Nutr. Diet. 2017, 117, 1351–1353. [Google Scholar] [CrossRef] [PubMed]
- Back to Basics: All About My Plate Food Groups. Available online: https://www.usda.gov/media/blog/2017/09/26/back-basics-all-about-myplate-food-groups (accessed on 5 March 2019).
- Gibson, G.R.; Probert, H.M.; Loo, J.V.; Rastall, R.A.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004, 17, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Food and Nutrition Board. Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Protein, and Aminoacids; National Academy of Sciences: Washington, DC, USA, 2002. [Google Scholar]
- Takagaki, R.; Ishida, Y.; Sadakiyo, T.; Taniguchi, Y.; Sakurai, T.; Mitsuzumi, H.; Watanabe, H.; Fukuda, S.; Ushio, S. Effects of isomaltodextrin in postprandial lipid kinetics: Rat study and human randomized crossover study. PLoS ONE 2018, 13, e0196802. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.L.; Vergara-Jimenez, M.; Conde, K.; Behr, T.; Abdel-Fattah, G. Regulation of apolipoprotein B-containing lipoproteins by dietary soluble fiber in guinea pigs. Am. J. Clin. Nutr. 1997, 65, 814–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, R.J.; Fernandez, M.L.; Sharman, M.J.; Silvestre, R.; Greene, C.M.; Zern, T.L.; Shrestha, S.; Judelson, D.A.; Gomez, A.L.; Kraemer, W.J.; et al. Effects of a carbohydrate-restricted diet with and without supplemental soluble fiber on plasma low-density lipoprotein cholesterol and other clinical markers of cardiovascular risk. Metabolism 2007, 56, 58–67. [Google Scholar] [CrossRef]
- Fernandez, M.L.; Trejo, A.; McNamara, D.J. Pectin isolated from prickly pear (Opuntia sp.) modifies low density lipoprotein metabolism in cholesterol-fed guinea pigs. J. Nutr. 1990, 120, 1283–1290. [Google Scholar] [CrossRef]
- Fernandez, M.L.; Lin, E.C.; Trejo, A.; McNamara, D.J. Prickly pear (Opuntia sp.) pectin reverses low density lipoprotein receptor suppression induced by a hypercholesterolemic diet in guinea pigs. J. Nutr. 1992, 122, 2330–2340. [Google Scholar] [CrossRef]
- Fernandez, M.L.; Lin, E.C.; Trejo, A.; McNamara, D.J. Prickly pear (Opuntia sp.) pectin alters hepatic cholesterol metabolism without affecting cholesterol absorption in guinea pigs fed a hypercholesterolemic diet. J. Nutr. 1994, 124, 817–824. [Google Scholar] [CrossRef]
- Lo, G.S.; Evans, R.H.; Phillips, K.S.; Dahlgren, R.R.; Steinke, F.H. Effect of soy fiber and soy protein on cholesterol metabolism and atherosclerosis in rabbits. Atherosclerosis 1987, 64, 47–54. [Google Scholar] [CrossRef]
- Baekey, P.A.; Cerda, J.J.; Burgin, C.W.; Robbins, F.L.; Rice, R.W.; Baumgartner, T.G. Grapefruit pectin inhibits hypercholesterolemia and atherosclerosis in miniature swine. Clin. Cardiol. 1988, 11, 597–600. [Google Scholar] [CrossRef]
- McCall, M.R.; Mehta, T.; Leathers, C.W.; Foster DM: Psyllium husk, I. Effect on plasma lipoproteins, cholesterol metabolism, and atherosclerosis in African green monkeys. Am. J. Clin. Nutr. 1992, 56, 376–384. [Google Scholar] [CrossRef]
- McCall, M.R.; Mehta, T.; Leathers, C.W.; Foster, D.M. Psyllium husk. II: Effect on the metabolism of apolipoprotein B in African green monkeys. Am. J. Clin. Nutr. 1992, 56, 385–393. [Google Scholar] [CrossRef]
- Topping, D.L.; Illman, R.J.; Roach, P.D.; Trimble, R.P.; Kambouris, A.; Nestel, P.J. Modulation of the hypolipidemic effect of fish oils by dietary fiber in rats: Studies with rice and wheat bran. J. Nutr. 1990, 120, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Roach, P.D.; Dowling, K.; Balasubramaniam, S.; Illman, R.J.; Kambouris, A.M.; Nestel, P.J.; Topping, D.L. Fish oil and oat bran in combination effectively lower plasma cholesterol in the rat. Atherosclerosis 1992, 96, 219–226. [Google Scholar] [CrossRef]
- Wilson, T.A.; Romano, C.; Liang, J.; Nicolosi, R.J. The hypocholesterolemic and antiatherogenic effects of Cholazol H, a chemically functionalized insoluble fiber with bile acid sequestrant properties in hamsters. Metabolism 1998, 47, 959–964. [Google Scholar] [CrossRef]
- Wilson, T.A.; Nicolosi, R.J.; Delaney, B.; Chadwell, K.; Moolchandani, V.; Kotyla, T.; Ponduru, S.; Zheng, G.H.; Hess, R.; Knutson, N.; et al. Reduced and high molecular weight barley beta-glucans decrease plasma total and non-HDL-cholesterol in hypercholesterolemic Syrian golden hamsters. J. Nutr. 2004, 134, 2617–2622. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.A.; DeSimone, A.P.; Romano, C.A.; Nicolosi, R.J. Corn fiber oil lowers plasma cholesterol levels and increases cholesterol excretion greater than corn oil and similar to diets containing soy sterols and soy stanols in hamsters. J. Nutr. Biochem. 2000, 11, 443–449. [Google Scholar] [CrossRef]
- Han, S.; Zhang, W.; Zhang, R.; Jiao, J.; Fu, C.; Tong, X.; Zhang, W.; Qin, L. Cereal fiber improves blood cholesterol profiles and modulates intestinal cholesterol metabolism in C57BL/6 mice fed a high-fat, high-cholesterol diet. Food Nutr. Res. 2019, 63. [Google Scholar] [CrossRef]
- Zhang, R.; Han, S.; Zhang, Z.; Zhang, W.; Yang, J.; Wan, Z.; Qin, L. Cereal Fiber Ameliorates High-Fat/Cholesterol-Diet-Induced Atherosclerosis by Modulating the NLRP3 Inflammasome Pathway in ApoE-/- Mice. J. Agric. Food Chem. 2018, 66, 4827–4834. [Google Scholar] [CrossRef]
- Perez-Ternero, C.; Herrera, M.D.; Laufs, U.; Alvarez de Sotomayor, M.; Werner, C. Food supplementation with rice bran enzymatic extract prevents vascular apoptosis and atherogenesis in ApoE-/- mice. Eur. J. Nutr. 2017, 56, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ternero, C.; Claro, C.; Parrado, J.; Herrera, M.D.; Alvarez de Sotomayor, M. Rice bran enzymatic extract reduces atherosclerotic plaque development and steatosis in high-fat fed ApoE-/- mice. Nutrition 2017, 37, 22–29. [Google Scholar] [CrossRef]
- Matziouridou, C.; Marungruang, N.; Nguyen, T.D.; Nyman, M.; Fak, F. Lingonberries reduce atherosclerosis in ApoE-/- mice in association with altered gut microbiota composition and improved lipid profile. Mol. Nutr. Food Res. 2016, 60, 1150–1160. [Google Scholar] [CrossRef]
- Matsumoto, K.; Maekawa, M.; Nakaya, M.; Takemitsu, H.; Satoh, H.; Kitamura, S. Wx/ae double-mutant brown rice prevents the rise in plasma lipid and glucose levels in mice. Biosci. Biotechnol. Biochem. 2012, 76, 2112–2117. [Google Scholar] [CrossRef] [PubMed]
- Auclair, S.; Silberberg, M.; Gueux, E.; Morand, C.; Mazur, A.; Milenkovic, D.; Scalbert, A. Apple polyphenols and fibers attenuate atherosclerosis in apolipoprotein E-deficient mice. J. Agric. Food Chem. 2008, 56, 5558–5563. [Google Scholar] [CrossRef]
- Streppel, M.T.; Ocke, M.C.; Boshuizen, H.C.; Kok, F.J.; Kromhout, D. Dietary fiber intake in relation to coronary heart disease and all-cause mortality over 40 y: The Zutphen Study. Am. J. Clin. Nutr. 2008, 88, 1119–1125. [Google Scholar] [CrossRef]
- Streppel, M.T.; Arends, L.R.; van’t Veer, P.; Grobbee, D.E.; Geleijnse, J.M. Dietary fiber and blood pressure: A meta-analysis of randomized placebo-controlled trials. Arch. Intern. Med. 2005, 165, 150–156. [Google Scholar] [CrossRef]
- Pereira, M.A.; O’Reilly, E.; Augustsson, K.; Fraser, G.E.; Goldbourt, U.; Heitmann, B.L.; Hallmans, G.; Knekt, P.; Liu, S.; Pietinen, P.; et al. Dietary fiber and risk of coronary heart disease: A pooled analysis of cohort studies. Arch. Intern. Med. 2004, 164, 370–376. [Google Scholar] [CrossRef]
- Pietinen, P.; Rimm, E.B.; Korhonen, P.; Hartman, A.M.; Willett, W.C.; Albanes, D.; Virtamo, J. Intake of dietary fiber and risk of coronary heart disease in a cohort of Finnish men. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Circulation 1996, 94, 2720–2727. [Google Scholar] [CrossRef] [PubMed]
- Pietinen, P.; Hartman, A.M.; Haapa, E.; Rasanen, L.; Haapakoski, J.; Palmgren, J.; Albanes, D.; Virtamo, J.; Huttunen, J.K. Reproducibility and validity of dietary assessment instruments. I. A self-administered food use questionnaire with a portion size picture booklet. Am. J. Epidemiol. 1988, 128, 655–666. [Google Scholar] [CrossRef]
- Akbaraly, T.N.; Ferrie, J.E.; Berr, C.; Brunner, E.J.; Head, J.; Marmot, M.G.; Singh-Manoux, A.; Ritchie, K.; Shipley, M.J.; Kivimaki, M. Alternative Healthy Eating Index and mortality over 18 y of follow-up: Results from the Whitehall II cohort. Am. J. Clin. Nutr. 2011, 94, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Bazzano, L.A.; Song, Y.; Bubes, V.; Good, C.K.; Manson, J.E.; Liu, S. Dietary intake of whole and refined grain breakfast cereals and weight gain in men. Obes. Res. 2005, 13, 1952–1960. [Google Scholar] [CrossRef]
- Bazzano, L.A. Effects of soluble dietary fiber on low-density lipoprotein cholesterol and coronary heart disease risk. Curr. Atheroscler. Rep. 2008, 10, 473–477. [Google Scholar] [CrossRef]
- Bazzano, L.A.; Serdula, M.K.; Liu, S. Dietary intake of fruits and vegetables and risk of cardiovascular disease. Curr. Atheroscler. Rep. 2003, 5, 492–499. [Google Scholar] [CrossRef]
- Bazzano, L.A.; He, J.; Ogden, L.G.; Loria, C.M.; Whelton, P.K. Dietary fiber intake and reduced risk of coronary heart disease in US men and women: The National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study. Arch. Intern. Med. 2003, 163, 1897–1904. [Google Scholar] [CrossRef] [PubMed]
- Crowe, F.L.; Key, T.J.; Appleby, P.N.; Overvad, K.; Schmidt, E.B.; Egeberg, R.; Tjonneland, A.; Kaaks, R.; Teucher, B.; Boeing, H.; et al. Dietary fibre intake and ischaemic heart disease mortality: The European Prospective Investigation into Cancer and Nutrition-Heart study. Eur. J. Clin. Nutr. 2012, 66, 950–956. [Google Scholar] [CrossRef]
- Eshak, E.S.; Iso, H.; Date, C.; Kikuchi, S.; Watanabe, Y.; Wada, Y.; Wakai, K.; Tamakoshi, A.; Group, J.S. Dietary fiber intake is associated with reduced risk of mortality from cardiovascular disease among Japanese men and women. J. Nutr. 2010, 140, 1445–1453. [Google Scholar]
- Threapleton, D.E.; Greenwood, D.C.; Evans, C.E.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Cade, J.E.; Gale, C.P.; Burley, V.J. Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2013, 347, f6879. [Google Scholar] [CrossRef]
- Buil-Cosiales, P.; Zazpe, I.; Toledo, E.; Corella, D.; Salas-Salvado, J.; Diez-Espino, J.; Ros, E.; Fernandez-Creuet Navajas, J.; Santos-Lozano, J.M.; Aros, F.; et al. Fiber intake and all-cause mortality in the Prevencion con Dieta Mediterranea (PREDIMED) study. Am. J. Clin. Nutr. 2014, 100, 1498–1507. [Google Scholar] [CrossRef]
- Mirmiran, P.; Bahadoran, Z.; Khalili Moghadam, S.; Zadeh Vakili, A.; Azizi, F. A Prospective Study of Different Types of Dietary Fiber and Risk of Cardiovascular Disease: Tehran Lipid and Glucose Study. Nutrients 2016, 8, 686. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef]
- Threapleton, D.E.; Greenwood, D.C.; Burley, V.J.; Aldwairji, M.; Cade, J.E. Dietary fibre and cardiovascular disease mortality in the UK Women’s Cohort Study. Eur. J. Epidemiol. 2013, 28, 335–346. [Google Scholar] [CrossRef]
- Harris, K.A.; Kris-Etherton, P.M. Effects of whole grains on coronary heart disease risk. Curr. Atheroscler. Rep. 2010, 12, 368–376. [Google Scholar] [CrossRef]
- Ros, E. Nuts and novel biomarkers of cardiovascular disease. Am. J. Clin. Nutr. 2009, 89, 1649S–1656S. [Google Scholar] [CrossRef] [Green Version]
- Salas-Salvado, J.; Bullo, M.; Perez-Heras, A.; Ros, E. Dietary fibre, nuts and cardiovascular diseases. Br. J. Nutr. 2006, 96, 46–51. [Google Scholar] [CrossRef]
- Vajifdar, B.U.; Goyal, V.S.; Lokhandwala, Y.Y.; Mhamunkar, S.R.; Mahadik, S.P.; Gawad, A.K.; Halankar, S.A.; Kulkarni, H.L. Is dietary fiber beneficial in chronic ischemic heart disease? J. Assoc. Phys. India 2000, 48, 871–876. [Google Scholar]
- Kritchevsky, D. The role of dietary fiber in health and disease. J. Environ. Pathol. Toxicol. Oncol. 1986, 6, 273–284. [Google Scholar]
- Kritchevsky, D. Diet and atherosclerosis. Am. J. Pathol. 1976, 84, 615–632. [Google Scholar]
- Hernan, M.A.; Hernandez-Diaz, S.; Robins, J.M. A structural approach to selection bias. Epidemiology 2004, 15, 615–625. [Google Scholar] [CrossRef]
- Brumback, B.A.; Hernan, M.A.; Haneuse, S.J.; Robins, J.M. Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures. Stat. Med. 2004, 23, 749–767. [Google Scholar] [CrossRef]
- Li, L.; Lietz, G.; Bal, W.; Watson, A.; Morfey, B.; Seal, C. Effects of Quinoa (Chenopodium quinoa Willd.) Consumption on Markers of CVD Risk. Nutrients 2018, 10, 777. [Google Scholar] [CrossRef]
- Wang, Y.; Harding, S.V.; Thandapilly, S.J.; Tosh, S.M.; Jones, P.J.H.; Ames, N.P. Barley beta-glucan reduces blood cholesterol levels via interrupting bile acid metabolism. Br. J. Nutr. 2017, 118, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Misra, A.; Pandey, R.M. Effects of 3 g of soluble fiber from oats on lipid levels of Asian Indians—A randomized controlled, parallel arm study. Lipids Health Dis. 2017, 16, 71. [Google Scholar] [CrossRef]
- Yen, C.H.; Tseng, Y.H.; Kuo, Y.W.; Lee, M.C.; Chen, H.L. Long-term supplementation of isomalto-oligosaccharides improved colonic microflora profile, bowel function, and blood cholesterol levels in constipated elderly people—A placebo-controlled, diet-controlled trial. Nutrition 2011, 27, 445–450. [Google Scholar] [CrossRef]
- Nhung, B.T.; Tuyen, L.D.; Linh, V.A.; Anh, N.D.; Nga, T.T.; Thuc, V.T.; Yui, K.; Ito, Y.; Nakashima, Y.; Yamamoto, S. Rice Bran Extract Reduces the Risk of Atherosclerosis in Post-Menopausal Vietnamese Women. J. Nutr. Sci. Vitaminol. (Tokyo) 2016, 62, 295–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, D.J.; Kendall, C.W.; Nguyen, T.H.; Marchie, A.; Faulkner, D.A.; Ireland, C.; Josse, A.R.; Vidgen, E.; Trautwein, E.A.; Lapsley, K.G.; et al. Effect of plant sterols in combination with other cholesterol-lowering foods. Metabolism 2008, 57, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Ramprasath, V.R.; Jenkins, D.J.; Lamarche, B.; Kendall, C.W.; Faulkner, D.; Cermakova, L.; Couture, P.; Ireland, C.; Abdulnour, S.; Patel, D.; et al. Consumption of a dietary portfolio of cholesterol lowering foods improves blood lipids without affecting concentrations of fat soluble compounds. Nutr. J. 2014, 13, 101. [Google Scholar] [CrossRef] [PubMed]
- Labonte, M.E.; Jenkins, D.J.; Lewis, G.F.; Chiavaroli, L.; Wong, J.M.; Kendall, C.W.; Hogue, J.C.; Couture, P.; Lamarche, B. Adding MUFA to a dietary portfolio of cholesterol-lowering foods reduces apoAI fractional catabolic rate in subjects with dyslipidaemia. Br. J. Nutr. 2013, 110, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, D.J.; Jones, P.J.; Lamarche, B.; Kendall, C.W.; Faulkner, D.; Cermakova, L.; Gigleux, I.; Ramprasath, V.; de Souza, R.; Ireland, C.; et al. Effect of a dietary portfolio of cholesterol-lowering foods given at 2 levels of intensity of dietary advice on serum lipids in hyperlipidemia: A randomized controlled trial. JAMA 2011, 306, 831–839. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Chiavaroli, L.; Wong, J.M.; Kendall, C.; Lewis, G.F.; Vidgen, E.; Connelly, P.W.; Leiter, L.A.; Josse, R.G.; Lamarche, B. Adding monounsaturated fatty acids to a dietary portfolio of cholesterol-lowering foods in hypercholesterolemia. CMAJ 2010, 182, 1961–1967. [Google Scholar] [CrossRef] [Green Version]
- Crowe, F.L.; Balkwill, A.; Cairns, B.J.; Appleby, P.N.; Green, J.; Reeves, G.K.; Key, T.J.; Beral, V. Source of dietary fibre and diverticular disease incidence: A prospective study of UK women. Gut 2014, 63, 1450–1456. [Google Scholar] [CrossRef]
- Crowe, F.L.; Appleby, P.N.; Allen, N.E.; Key, T.J. Diet and risk of diverticular disease in Oxford cohort of European Prospective Investigation into Cancer and Nutrition (EPIC): Prospective study of British vegetarians and non-vegetarians. BMJ 2011, 343, d4131. [Google Scholar] [CrossRef]
- Sanjoaquin, M.A.; Appleby, P.N.; Spencer, E.A.; Key, T.J. Nutrition and lifestyle in relation to bowel movement frequency: A cross-sectional study of 20630 men and women in EPIC-Oxford. Public Health Nutr. 2004, 7, 77–83. [Google Scholar] [CrossRef]
- Appleby, P.N.; Thorogood, M.; Mann, J.I.; Key, T.J. Low body mass index in non-meat eaters: The possible roles of animal fat, dietary fibre and alcohol. Int. J. Obes. Relat. Metab. Disord. 1998, 22, 454–460. [Google Scholar] [CrossRef]
- Park, Y.; Hunter, D.J.; Spiegelman, D.; Bergkvist, L.; Berrino, F.; van den Brandt, P.A.; Buring, J.E.; Colditz, G.A.; Freudenheim, J.L.; Fuchs, C.S.; et al. Dietary fiber intake and risk of colorectal cancer: A pooled analysis of prospective cohort studies. JAMA 2005, 294, 2849–2857. [Google Scholar] [CrossRef]
- Miller, A.B.; Berrino, F.; Hill, M.; Pietinen, P.; Riboli, E.; Wahrendorf, J. Diet in the aetiology of cancer: A review. Eur. J. Cancer 1994, 30, 207–220. [Google Scholar] [CrossRef]
- Adams, S.; Che, D.; Qin, G.; Rui, H.; Sello, C.T.; Hailong, J. Interactions of Dietary Fibre with Nutritional Components on Gut Microbial Composition, Function and Health in Monogastrics. Curr. Protein Pept. Sci. 2018, 19, 1011–1023. [Google Scholar] [CrossRef]
- Cicero, A.F.; Colletti, A. Role of phytochemicals in the management of metabolic syndrome. Phytomedicine 2016, 23, 1134–1144. [Google Scholar] [CrossRef]
- Kritchevsky, D. Diet and atherosclerosis. J. Nutr. Health Aging 2001, 5, 155–159. [Google Scholar]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.; de Boeck, G.; Becker, K. Dietary roles of non-starch polysaccharides in human nutrition: A review. Crit. Rev. Food Sci. Nut.r 2012, 52, 899–935. [Google Scholar] [CrossRef]
- Rao, T.P. Role of guar fiber in appetite control. Physiol. Behav. 2016, 164, 277–283. [Google Scholar] [CrossRef]
- Hall, W.L.; Vafeiadou, K.; Hallund, J.; Bugel, S.; Reimann, M.; Koebnick, C.; Zunft, H.J.; Ferrari, M.; Branca, F.; Dadd, T.; et al. Soy-isoflavone-enriched foods and markers of lipid and glucose metabolism in postmenopausal women: Interactions with genotype and equol production. Am. J. Clin. Nutr. 2006, 83, 592–600. [Google Scholar] [CrossRef]
- Dahl, W.J.; Stewart, M.L. Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber. J. Acad. Nutr. Diet. 2015, 115, 1861–1870. [Google Scholar] [CrossRef]
Fiber Content in The Food Groups ** | Food Item | * NDB ID | Grams/Cup |
1. Grain | Corn bran, crude | 20015 | 60 |
Barley, hulled | 20004 | 31.8 | |
Rye flour, dark | 20063 | 30 | |
Wheat bran, crude | 20077 | 24 | |
Rice bran, crude | 20060 | 24.8 | |
Bulgur, dry | 20021 | 17.5 | |
Oats | 20038 | 16 | |
Sorghum grain | 20067 | 12.9 | |
Cereal, ready to eat (granola) | 08037 | 10.9 | |
Cornmeal, self-rising | 20324 | 10.7 | |
Wild rice, raw | 20088 | 9.9 | |
Pasta, whole grain | 20135 | 9.2 | |
Couscous, dry | 20028 | 8.7 | |
Rice, brown, long grain | 20036 | 6.7 | |
2. Protein Foods | Beans, kidney, all types | 16027 | 45.8 |
Soybeans, mature, roasted | 16410 | 30.4 | |
Peas, green, split, raw | 16085 | 43 | |
Seeds, sesame seed | 12029 | 21.6 | |
Lentils, pink or red, raw | 16144 | 20 | |
Nuts, almond, oil roasted | 12065 | 16.5 | |
Peanuts, oil roasted | 16389 | 13.5 | |
Chickpeas (garbanzo beans) canned | 16360 | 10.6 | |
3. Fruits | Passion fruit, purple, raw | 09231 | 24.5 |
Blueberries, canned, heavy syrup, drained | 09353 | 15 | |
Figs, dried, uncooked | 09094 | 14.6 | |
The Fiber Content in the Food Groups | Food Item | * NDB ID | Grams/Cup |
3. Fruits | Peaches, dried, sulfured, uncooked | 09246 | 13 |
(Continued) | Plums, dried (prunes), uncooked | 09279 | 12.4 |
Raisins, seeded | 09299 | 11.2 | |
Apricots, dried, sulfured, stewed with added sugar | 09034 | 11.1 | |
Avocado, raw | 09037 | 10.1 | |
Prunes (dried plum) | 09293 | 9.4 | |
Guava, common, raw | 09139 | 8.9 | |
Oranges, raw with peel | 09205 | 7.7 | |
Plantain, green, raw | 09542 | 5.9 | |
Kiwi fruit, green, raw | 09148 | 5.4 | |
Blueberry, raw | 09050 | 3.6 | |
Apple, granny smith, raw | 09502 | 3.1 | |
Strawberry, raw | 09316 | 3 | |
Peaches, yellow, raw | 09236 | 2.3 | |
Plum, raw | 09279 | 2.3 | |
4. Vegetables | Potatoes, mashed, dehydrated granules | 11380 | 14.2 |
Mixed vegetables | 11579 | 9.3 | |
Sweet potatoes, cooked, boiled | 11510 | 8.2 | |
Edamame, frozen, prepared | 11212 | 8.1 | |
Artichokes, frozen, cooked, boiled, drained | 11703 | 7.7 | |
Collard, cooked, boiled | 11162 | 7.6 | |
Tomato (sun-dried) | 11955 | 6.6 | |
Brussel Sprouts, frozen, chopped | 11093 | 6.4 | |
Corn (yellow, dried) | 35183 | 5.8 | |
Broccoli, frozen, chopped | 11093 | 5.5 | |
Squash, winter, hubbard, raw | 11489 | 4.5 | |
Carrots, cooked (frozen) | 11131 | 4.8 | |
Pea, raw | 09252 | 4.3 | |
Gums, guar, seed gums | 42281 | 21 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soliman, G.A. Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients 2019, 11, 1155. https://doi.org/10.3390/nu11051155
Soliman GA. Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients. 2019; 11(5):1155. https://doi.org/10.3390/nu11051155
Chicago/Turabian StyleSoliman, Ghada A. 2019. "Dietary Fiber, Atherosclerosis, and Cardiovascular Disease" Nutrients 11, no. 5: 1155. https://doi.org/10.3390/nu11051155
APA StyleSoliman, G. A. (2019). Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients, 11(5), 1155. https://doi.org/10.3390/nu11051155