Stilbene Compounds Inhibit Tumor Growth by the Induction of Cellular Senescence and the Inhibition of Telomerase Activity
Abstract
:1. Introduction
2. Senescence in Cancer Cells and Its Mechanisms
2.1. Characteristics of Senescence
2.2. Effector Signaling Pathways Involved in Senescence
2.3. Senescence in Cancer Cells
3. Senescence Is a Novel Target for Anticancer Therapy
3.1. Telomerase Inhibition by Chemotherapeutic Drugs
3.2. DNA Damage Triggered Senescence
3.3. Permanent Cell Cycle Arrest by Cell Cycle Regulators
3.4. Mitotic Inhibition-Induced Senescence
3.5. The Latest Therapy-Induced Senescence (TIS) Strategies for Cancer Cells
4. Targeting of Telomerase as an Attractive Anticancer Strategy
4.1. Inhibition of Telomerase Components in Cancer Therapy
4.2. Inhibition of Telomere Extension by Anticancer Drugs
4.3. Inhibition of Telomerase Complex-Related Proteins Could Be a Promising Anticancer Strategy
5. Anticancer Effects of Stilbene Compounds Are Mediated by the Targeting of Telomerase and Cellular Senescence
5.1. Classification of Stilbene Compounds and Their Anticancer Mechanisms
5.2. Anticancer Mechanisms of RSV, RSV Derivatibes, or Combined Therapy by Targeting to Telomerase and Cellular Senescence
5.3. Anticancer Mechanisms of PT Are Mediated by the Targeting of Telomerase and Cellular Senescence
6. Conclusion and Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ATM | ataxia-telangiectasia mutated |
ATR | ATM- and Rad3-related |
AZT | azidothymidine |
BA | benzoquinone ansamycin |
BLM | bleomycin |
CDK | cyclin-dependent kinase |
CHK | checkpoint kinase |
CIS | cytokine-induced senescence |
DDR | DNA damage response |
EGCG | (-)-epigallocatechin-3-gallate |
GA | geldanamycin |
GBM | glioblastoma; |
GR | glucocorticoid receptor |
HPMC | human peritoneal mesothelial cell |
HSP90 | heat shock protein 90 |
IFN | interferon |
IFN-γ | interferon gamma |
IR | ionizing radiation |
NE | norepinephrine |
NSCLC | non-small cell lung cancer |
OIS | oncogene-induced senescence |
Par-4 | prostate apoptosis response-4 |
PARP | poly (ADP-ribose) polymerase |
PLK | polo-like kinase |
PT | pterostilbene |
Rb | retinoblastoma |
ROS | reactive oxygen species |
RSV | resveratrol |
SASP | senescence-associated secretory phenotype |
TERT | telomerase reverse transcriptase |
TIS | therapy-induced senescence |
TMZ | temozolomide |
TNF | tumor necrosis factor |
TNKS | tankyrase |
TNKS1 | tankyrase 1 |
TNKS2 | tankyrase 2 |
TRF1 | telomeric repeat binding factor 1 |
TRF2 | telomeric repeat binding factor 2 |
TSG | tumor suppressor gene |
XRT | radiation therapy |
ZDV | zidovudine |
References
- Calcinotto, A.; Kohli, J.; Zagato, E.; Pellegrini, L.; Demaria, M.; Alimonti, A. Cellular senescence: Aging, cancer, and injury. Physiol. Rev. 2019, 99, 1047–1078. [Google Scholar] [CrossRef] [PubMed]
- Blasco, M.A.; Lee, H.W.; Hande, M.P.; Samper, E.; Lansdorp, P.M.; DePinho, R.A.; Greider, C.W. Telomere shortening and tumor formation by mouse cells lacking telomerase rna. Cell 1997, 91, 25–34. [Google Scholar] [CrossRef]
- Counter, C.M.; Avilion, A.A.; Lefeuvre, C.E.; Stewart, N.G.; Greider, C.W.; Harley, C.B.; Bacchetti, S. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992, 11, 1921–1929. [Google Scholar] [CrossRef] [PubMed]
- Ewald, J.A.; Desotelle, J.A.; Wilding, G.; Jarrard, D.F. Therapy-induced senescence in cancer. JNCI J. Natl. Cancer Inst. 2010, 102, 1536–1546. [Google Scholar] [CrossRef] [PubMed]
- Greider, C.W.; Blackburn, E.H. Identification of a specific telomere terminal transferase-activity in tetrahymena extracts. Cell 1985, 43, 405–413. [Google Scholar] [CrossRef]
- Kim, N.W.; Piatyszek, M.A.; Prowse, K.R.; Harley, C.B.; West, M.D.; Ho, P.L.C.; Coviello, G.M.; Wright, W.E.; Weinrich, S.L.; Shay, J.W. Specific association of human telomerase activity with immortal cells and cancer. Science 1994, 266, 2011–2015. [Google Scholar] [CrossRef] [PubMed]
- Mocellin, S.; Pooley, K.A.; Nitti, D. Telomerase and the search for the end of cancer. Trends Mol. Med. 2013, 19, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Sundin, T.; Hentosh, P. Intertesting association between telomerase, mTOR and phytochemicals. Expert Rev. Mol. Med. 2012, 14, e8. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.R.; Nelson, P.S. Cellular senescence and cancer chemotherapy resistance. Drug Resist. Update 2012, 15, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Hoenicke, L.; Zender, L. Immune surveillance of senescent cells–biological significance in cancer–and non-cancer pathologies. Carcinogenesis 2012, 33, 1123–1126. [Google Scholar] [CrossRef]
- Davaapil, H.; Brockes, J.P.; Yun, M.H. Conserved and novel functions of programmed cellular senescence during vertebrate development. Development 2017, 144, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Provinciali, M.; Cardelli, M.; Marchegiani, F.; Pierpaoli, E. Impact of cellular senescence in aging and cancer. Curr. Pharm. Des. 2013, 19, 1699–1709. [Google Scholar] [PubMed]
- Malavolta, M.; Bracci, M.; Santarelli, L.; Sayeed, M.A.; Pierpaoli, E.; Giacconi, R.; Costarelli, L.; Piacenza, F.; Basso, A.; Cardelli, M.; et al. Inducers of senescence, toxic compounds, and senolytics: The multiple faces of nrf2-activating phytochemicals in cancer adjuvant therapy. Mediat. Inflamm. 2018, 2018, 4159013. [Google Scholar] [CrossRef] [PubMed]
- Calcinotto, A.; Alimonti, A. Aging tumour cells to cure cancer: “Pro-senescence” therapy for cancer. Swiss Med. Wkly. 2017, 147, w14367. [Google Scholar] [PubMed]
- Collado, M.; Blasco, M.A.; Serrano, M. Cellular senescence in cancer and aging. Cell 2007, 130, 223–233. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed]
- Cazzalini, O.; Scovassi, A.I.; Savio, M.; Stivala, L.A.; Prosperi, E. Multiple roles of the cell cycle inhibitor p21cdkn1a in the DNA damage response. Mutat. Res. Rev. Mutat. Res. 2010, 704, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Campisi, J.; d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729. [Google Scholar] [CrossRef]
- Braig, M.; Lee, S.; Loddenkemper, C.; Rudolph, C.; Peters, A.H.F.M.; Schlegelberger, B.; Stein, H.; Dörken, B.; Jenuwein, T.; Schmitt, C.A. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 2005, 436, 660–665. [Google Scholar] [CrossRef]
- Serrano, M.; Lin, A.W.; McCurrach, M.E.; Beach, D.; Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16ink4a. Cell 1997, 88, 593–602. [Google Scholar] [CrossRef]
- Schmitt, C.A.; Fridman, J.S.; Yang, M.; Lee, S.; Baranov, E.; Hoffman, R.M.; Lowe, S.W. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 2002, 109, 335–346. [Google Scholar] [CrossRef]
- Revandkar, A.; Perciato, M.L.; Toso, A.; Alajati, A.; Chen, J.; Gerber, H.; Dimitrov, M.; Rinaldi, A.; Delaleu, N.; Pasquini, E.; et al. Inhibition of notch pathway arrests pten-deficient advanced prostate cancer by triggering p27-driven cellular senescence. Nat. Commun. 2016, 7, 13719. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Ziwen, L.; Yanfang, W.; Dongsheng, S.; Zhicong, Z.; Yanting, S.; Yafei, Z.; Feifei, Z.; Hanqing, L.; Zhigang, T. Cellular senescence-inducing small molecules for cancer treatment. Curr. Cancer Drug Targets 2019, 19, 109–119. [Google Scholar]
- Multani, A.S.; Li, C.; Ozen, M.; Imam, A.S.; Wallace, S.; Pathak, S. Cell-killing by paclitaxel in a metastatic murine melanoma cell line is mediated by extensive telomere erosion with no decrease in telomerase activity. Oncol. Rep. 1999, 6, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Woo, S.R.; Kang, C.M.; Juhn, K.M.; Ju, Y.J.; Shin, H.J.; Joo, H.Y.; Park, E.R.; Park, I.C.; Hong, S.H.; et al. Paclitaxel stimulates chromosomal fusion and instability in cells with dysfunctional telomeres: Implication in multinucleation and chemosensitization. Biochem. Biophys Res. Commun 2011, 404, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Stubbe, J. Bleomycins: Towards better therapeutics. Nat. Rev. Cancer 2005, 5, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Povirk, L.F.; Austin, M.J. Genotoxicity of bleomycin. Mutat. Res. 1991, 257, 127–143. [Google Scholar] [CrossRef]
- Paviolo, N.S.; Quiroga, I.Y.; Castrogiovanni, D.C.; Bianchi, M.S.; Bolzan, A.D. Telomere instability is present in the progeny of mammalian cells exposed to bleomycin. Mutat. Res. 2012, 734, 5–11. [Google Scholar] [CrossRef]
- Abbas, T.; Dutta, A. Regulation of mammalian DNA replication via the ubiquitin-proteasome system. Adv. Exp. Med. Biol. 2017, 1042, 421–454. [Google Scholar]
- Machida, Y.J.; Hamlin, J.L.; Dutta, A. Right place, right time, and only once: Replication initiation in metazoans. Cell 2005, 123, 13–24. [Google Scholar] [CrossRef]
- Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature 2009, 461, 1071–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertel, L.W.; Kroin, J.S.; Misner, J.W.; Tustin, J.M. Synthesis of 2-deoxy-2,2-difluoro-d-ribose and 2-deoxy-2,2’-difluoro-d-ribofuranosyl nucleosides. J. Org. Chem. 1988, 53, 2406–2409. [Google Scholar] [CrossRef]
- Song, Y.; Baba, T.; Mukaida, N. Gemcitabine induces cell senescence in human pancreatic cancer cell lines. Biochem. Biophys. Res. Commun. 2016, 477, 515–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, S.-B.; Courtin, A.; Boyce, R.J.; Boyle, R.G.; Richards, F.M.; Jodrell, D.I. Chk1 inhibition synergizes with gemcitabine initially by destabilizing the DNA replication apparatus. Cancer Res. 2015, 75, 3583. [Google Scholar] [CrossRef] [PubMed]
- Wansleben, S.; Davis, E.; Peres, J.; Prince, S. A novel role for the anti-senescence factor tbx2 in DNA repair and cisplatin resistance. Cell Death Amp. Dis. 2013, 4, e846. [Google Scholar] [CrossRef] [PubMed]
- Jacks, T.; Weinberg, R.A. The expanding role of cell cycle regulators. Science 1998, 280, 1035–1036. [Google Scholar] [CrossRef] [PubMed]
- Sherr, C.J.; Kato, J.; Quelle, D.E.; Matsuoka, M.; Roussel, M.F. D-type cyclins and their cyclin-dependent kinases: G1 phase integrators of the mitogenic response. Cold Spring Harb. Symp. Quant. Biol. 1994, 59, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.W.; Barradas, M.; Stone, J.C.; van Aelst, L.; Serrano, M.; Lowe, S.W. Premature senescence involving p53 and p16 is activated in response to constitutive mek/mapk mitogenic signaling. Genes Dev. 1998, 12, 3008–3019. [Google Scholar] [CrossRef]
- Rusthoven, J.J.; Eisenhauer, E.; Butts, C.; Gregg, R.; Dancey, J.; Fisher, B.; Iglesias, J. Multitargeted antifolate ly231514 as first-line chemotherapy for patients with advanced non-small-cell lung cancer: A phase ii study. National cancer institute of canada clinical trials group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1999, 17, 1194. [Google Scholar] [CrossRef] [PubMed]
- Scagliotti, G.; Hanna, N.; Fossella, F.; Sugarman, K.; Blatter, J.; Peterson, P.; Simms, L.; Shepherd, F.A. The differential efficacy of pemetrexed according to nsclc histology: A review of two phase iii studies. Oncologist 2009, 14, 253–263. [Google Scholar] [CrossRef]
- Patki, M.; McFall, T.; Rosati, R.; Huang, Y.; Malysa, A.; Polin, L.; Fielder, A.; Wilson, M.R.; Lonardo, F.; Back, J.; et al. Chronic p27(kip1) induction by dexamethasone causes senescence phenotype and permanent cell cycle blockade in lung adenocarcinoma cells over-expressing glucocorticoid receptor. Sci. Rep. 2018, 8, 16006. [Google Scholar] [CrossRef] [PubMed]
- Hebbar, N.; Shrestha-Bhattarai, T.; Rangnekar, V.M. Cancer-selective apoptosis by tumor suppressor par-4. Adv. Exp. Med. Biol. 2014, 818, 155–166. [Google Scholar] [PubMed]
- El-Guendy, N.; Zhao, Y.; Gurumurthy, S.; Burikhanov, R.; Rangnekar, V.M. Identification of a unique core domain of par-4 sufficient for selective apoptosis induction in cancer cells. Mol. Cell. Biol. 2003, 23, 5516–5525. [Google Scholar] [CrossRef] [PubMed]
- Sherr, C.J.; Beach, D.; Shapiro, G.I. Targeting cdk4 and cdk6: From discovery to therapy. Cancer Discov. 2016, 6, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.F.; Wang, N.N.; Xu, L.X.; Li, Z.H.; Li, X.L.; Xu, Y.Y.; Fang, F.; Li, M.; Qian, G.H.; Li, Y.H.; et al. Molecular mechanism of g1 arrest and cellular senescence induced by lee011, a novel cdk4/cdk6 inhibitor, in leukemia cells. Cancer Cell Int. 2017, 17, 35. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Diehl, J.A. Cdk4/6 inhibitor: From quiescence to senescence. Oncoscience 2015, 2, 896–897. [Google Scholar] [PubMed]
- Axel, D.I.; Kunert, W.; Goggelmann, C.; Oberhoff, M.; Herdeg, C.; Kuttner, A.; Wild, D.H.; Brehm, B.R.; Riessen, R.; Koveker, G.; et al. Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation 1997, 96, 636–645. [Google Scholar] [CrossRef]
- Prencipe, M.; Fitzpatrick, P.; Gorman, S.; Tosetto, M.; Klinger, R.; Furlong, F.; Harrison, M.; O’Connor, D.; Roninson, I.B.; O’Sullivan, J.; et al. Cellular senescence induced by aberrant mad2 levels impacts on paclitaxel responsiveness in vitro. Br. J. Cancer 2009, 101, 1900–1908. [Google Scholar] [CrossRef]
- Yasuhira, S.; Shibazaki, M.; Nishiya, M.; Maesawa, C. Paclitaxel-induced aberrant mitosis and mitotic slippage efficiently lead to proliferative death irrespective of canonical apoptosis and p53. Cell Cycle 2016, 15, 3268–3277. [Google Scholar] [CrossRef] [Green Version]
- Demaria, M.; O’Leary, M.N.; Chang, J.; Shao, L.; Liu, S.; Alimirah, F.; Koenig, K.; Le, C.; Mitin, N.; Deal, A.M.; et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 2017, 7, 165–176. [Google Scholar] [CrossRef]
- King, C.; Diaz, H.; Barnard, D.; Barda, D.; Clawson, D.; Blosser, W.; Cox, K.; Guo, S.; Marshall, M. Characterization and preclinical development of ly2603618: A selective and potent chk1 inhibitor. Investig. New Drugs 2014, 32, 213–226. [Google Scholar] [CrossRef]
- King, C.; Diaz, H.B.; McNeely, S.; Barnard, D.; Dempsey, J.; Blosser, W.; Beckmann, R.; Barda, D.; Marshall, M.S. Ly2606368 causes replication catastrophe and antitumor effects through chk1-dependent mechanisms. Mol. Cancer Ther. 2015, 14, 2004–2013. [Google Scholar] [CrossRef]
- Wang, F.Z.; Fei, H.R.; Cui, Y.J.; Sun, Y.K.; Li, Z.M.; Wang, X.Y.; Yang, X.Y.; Zhang, J.G.; Sun, B.L. The checkpoint 1 kinase inhibitor ly2603618 induces cell cycle arrest, DNA damage response and autophagy in cancer cells. Apoptosis Int. J. Program. Cell Death 2014, 19, 1389–1398. [Google Scholar] [CrossRef]
- Calvo, E.; Chen, V.J.; Marshall, M.; Ohnmacht, U.; Hynes, S.M.; Kumm, E.; Diaz, H.B.; Barnard, D.; Merzoug, F.F.; Huber, L.; et al. Preclinical analyses and phase i evaluation of ly2603618 administered in combination with pemetrexed and cisplatin in patients with advanced cancer. Investig. New Drugs 2014, 32, 955–968. [Google Scholar] [CrossRef]
- Prashanth Kumar, B.N.; Rajput, S.; Bharti, R.; Parida, S.; Mandal, M. Bi2536—A plk inhibitor augments paclitaxel efficacy in suppressing tamoxifen induced senescence and resistance in breast cancer cells. Biomed. Pharmacother. 2015, 74, 124–132. [Google Scholar] [CrossRef]
- Smith, L.; Farzan, R.; Ali, S.; Buluwela, L.; Saurin, A.T.; Meek, D.W. The responses of cancer cells to plk1 inhibitors reveal a novel protective role for p53 in maintaining centrosome separation. Sci. Rep. 2017, 7, 16115. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, D.L.; Chakravarty, A.; Bowman, D.; Shinde, V.; Lasky, K.; Shi, J.; Vos, T.; Stringer, B.; Amidon, B.; D’Amore, N.; et al. Plk1 inhibition causes post-mitotic DNA damage and senescence in a range of human tumor cell lines. PLoS ONE 2014, 9, e111060. [Google Scholar] [CrossRef]
- Hinds, P.; Pietruska, J. Senescence and tumor suppression. F1000 Research 2017, 6, 2121. [Google Scholar] [CrossRef] [Green Version]
- Toso, A.; Revandkar, A.; Di Mitri, D.; Guccini, I.; Proietti, M.; Sarti, M.; Pinton, S.; Zhang, J.; Kalathur, M.; Civenni, G.; et al. Enhancing chemotherapy efficacy in pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 2014, 9, 75–89. [Google Scholar] [CrossRef]
- Ventura, A.; Kirsch, D.G.; McLaughlin, M.E.; Tuveson, D.A.; Grimm, J.; Lintault, L.; Newman, J.; Reczek, E.E.; Weissleder, R.; Jacks, T. Restoration of p53 function leads to tumour regression in vivo. Nature 2007, 445, 661–665. [Google Scholar] [CrossRef]
- Rakhra, K.; Bachireddy, P.; Zabuawala, T.; Zeiser, R.; Xu, L.; Kopelman, A.; Fan, A.C.; Yang, Q.; Braunstein, L.; Crosby, E.; et al. Cd4(+) t cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 2010, 18, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Braumuller, H.; Wieder, T.; Brenner, E.; Assmann, S.; Hahn, M.; Alkhaled, M.; Schilbach, K.; Essmann, F.; Kneilling, M.; Griessinger, C.; et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 2013, 494, 361–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rentschler, M.; Chen, Y.; Pahl, J.; Soria-Martinez, L.; Braumuller, H.; Brenner, E.; Bischof, O.; Rocken, M.; Wieder, T. Nuclear translocation of argonaute 2 in cytokine-induced senescence. Cell. Physiol. Biochem. 2018, 51, 1103–1118. [Google Scholar] [CrossRef] [PubMed]
- Saleh, T.; Tyutynuk-Massey, L.; Cudjoe, E.K.; Idowu, M.O.; Landry, J.W.; Gewirtz, D.A. Non-cell autonomous effects of the senescence-associated secretory phenotype in cancer therapy. Front. Oncol. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, J.S. Cellular senescence: A promising strategy for cancer therapy. Bmb Rep. 2019, 52, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Leite de Oliveira, R.; Wang, C.; Fernandes Neto, J.M.; Mainardi, S.; Evers, B.; Lieftink, C.; Morris, B.; Jochems, F.; Willemsen, L.; et al. High-throughput functional genetic and compound screens identify targets for senescence induction in cancer. Cell Rep. 2017, 21, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Tchkonia, T.; Fuhrmann-Stroissnigg, H.; Dai, H.M.; Ling, Y.Y.; Stout, M.B.; Pirtskhalava, T.; Giorgadze, N.; Johnson, K.O.; Giles, C.B.; et al. Identification of a novel senolytic agent, navitoclax, targeting the bcl-2 family of anti-apoptotic factors. Aging Cell 2016, 15, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Lujambio, A.; Banito, A. Functional screening to identify senescence regulators in cancer. Curr. Opin. Genet. Dev. 2019, 54, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Tabori, U.; Vukovic, B.; Zielenska, M.; Hawkins, C.; Braude, I.; Rutka, J.; Bouffet, E.; Squire, J.; Malkin, D. The role of telomere maintenance in the spontaneous growth arrest of pediatric low-grade gliomas. Neoplasia 2006, 8, 136–142. [Google Scholar] [CrossRef]
- Akincilar, S.C.; Unal, B.; Tergaonkar, V. Reactivation of telomerase in cancer. Cell Mol. Life Sci. 2016, 73, 1659–1670. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, A.P.; Love, W.K.; Zhang, R.W.; Andrews, L.G.; Tollefsbol, T.O. Telomerase inhibition in cancer therapeutics: Molecular-based approaches. Curr. Med. Chem. 2006, 13, 2875–2888. [Google Scholar] [PubMed]
- Shammas, M.A.; Koley, H.; Batchu, R.B.; Bertheau, R.C.; Protopopov, A.; Munshi, N.C.; Goyal, R.K. Telomerase inhibition by sirna causes senescence and apoptosis in barrett’s adenocarcinoma cells: Mechanism and therapeutic potential. Mol. Cancer 2005, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- Leao, R.; Apolonio, J.D.; Lee, D.; Figueiredo, A.; Tabori, U.; Castelo-Branco, P. Mechanisms of human telomerase reverse transcriptase (htert) regulation: Clinical impacts in cancer. J. Biomed. Sci. 2018, 25, 22. [Google Scholar] [CrossRef] [PubMed]
- Olivero, O.A.; Poirier, M.C. Preferential incorporation of 3’-azido-2’,3’-dideoxythymidine into telomeric DNA and z-DNA-containing regions of chinese hamster ovary cells. Mol. Carcinog. 1993, 8, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.; Kassim, A.; Olivero, O. Preferential incorporation of 3’-azido-2’,3’-dideoxythymidine (azt) in telomeric sequences of cho cells. Int. J. Oncol. 1995, 7, 1057–1060. [Google Scholar] [CrossRef] [PubMed]
- Strahl, C.; Blackburn, E.H. Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalized human cell lines. Mol. Cell. Biol. 1996, 16, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Yegorov, Y.E.; Chernov, D.N.; Akimov, S.S.; Bolsheva, N.L.; Krayevsky, A.A.; Zelenin, A.V. Reverse transcriptase inhibitors suppress telomerase function and induce senescence-like processes in cultured mouse fibroblasts. Febs Lett. 1996, 389, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.G.; Zhang, R.P.; Wang, X.W.; Xie, H. Effects of cisplatin on telomerase activity and telomere length in bel-7404 human hepatoma cells. Cell Res. 2002, 12, 55–62. [Google Scholar] [CrossRef]
- Lee, B.J.; Lee, B.H.; Wang, S.G.; Lee, J.C.; Roh, H.J.; Goh, E.K.; Kim, C.M.; Jun, E.S. Change of the expression of human telomerase reverse transcriptase mrna and human telomerase rna after cisplatin and 5-fluorouracil exposure in head and neck squamous cell carcinoma cell lines. J. Korean Med. Sci. 2007, 22, S73–S78. [Google Scholar] [CrossRef]
- Pascolo, E.; Wenz, C.; Lingner, J.; Hauel, N.; Priepke, H.; Kauffmann, I.; Garin-Chesa, P.; Rettig, W.J.; Damm, K.; Schnapp, A. Mechanism of human telomerase inhibition by bibr1532, a synthetic, non-nucleosidic drug candidate. J. Biol. Chem. 2002, 277, 15566–15572. [Google Scholar] [CrossRef]
- El-Daly, H.; Kull, M.; Zimmermann, S.; Pantic, M.; Waller, C.F.; Martens, U.M. Selective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor bibr1532. Blood 2005, 105, 1742–1749. [Google Scholar] [CrossRef] [PubMed]
- Damm, K.; Hemmann, U.; Garin-Chesa, P.; Hauel, N.; Kauffmann, I.; Priepke, H.; Niestroj, C.; Daiber, C.; Enenkel, B.; Guilliard, B.; et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J. 2001, 20, 6958–6968. [Google Scholar] [CrossRef] [PubMed]
- Parsch, D.; Brassat, U.; Brummendorf, T.H.; Fellenberg, J. Consequences of telomerase inhibition by bibr1532 on proliferation and chemosensitivity of chondrosarcoma cell lines. Cancer Investig. 2008, 26, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Pourbagheri-Sigaroodi, A.; Bashash, D.; Safaroghli-Azar, A.; Farshi-Paraasghari, M.; Momeny, M.; Mansoor, F.N.; Ghaffari, S.H. Contributory role of micrornas in anti-cancer effects of small molecule inhibitor of telomerase (bibr1532) on acute promyelocytic leukemia cell line. Eur. J. Pharm. 2019, 846, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.; Hartmann, U.; Mayer, F.; Balabanov, S.; Hartmann, J.T.; Brummendorf, T.H.; Bokemeyer, C. Targeting telomerase activity by bibr1532 as a therapeutic approach in germ cell tumors. Investig. New Drugs 2007, 25, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, K.; Xu, B.J. Telomerase inhibitors from natural products and their anticancer potential. Int. J. Mol. Sci. 2018, 19, 13. [Google Scholar] [CrossRef] [PubMed]
- Abliz, G.; Mijit, F.; Hua, L.; Abdixkur, G.; Ablimit, T.; Amat, N.; Upur, H. Anti-carcinogenic effects of the phenolic-rich extract from abnormal savda munziq in association with its cytotoxicity, apoptosis-inducing properties and telomerase activity in human cervical cancer cells (siha). Bmc Complem Altern M 2015, 15, 23. [Google Scholar] [CrossRef]
- Lee, J.H.; Chung, I.K. Curcumin inhibits nuclear localization of telomerase by dissociating the hsp90 co-chaperone p23 from htert. Cancer Lett. 2010, 290, 76–86. [Google Scholar] [CrossRef]
- Badrzadeh, F.; Akbarzadeh, A.; Zarghami, N.; Yamchi, M.R.; Zeighamian, V.; Tabatabae, F.S.; Taheri, M.; Kafil, H.S. Comparison between effects of free curcumin and curcumin loaded nipaam-maa nanoparticles on telomerase and pinx1 gene expression in lung cancer cells. Asian Pac. J. Cancer Prev. 2014, 15, 8931–8936. [Google Scholar] [CrossRef]
- Wang, X.H.; Wong, S.C.H.; Pan, J.; Tsao, S.W.; Fung, K.H.Y.; Kwong, D.L.W.; Sham, J.S.T.; Nicholls, J.M. Evidence of cisplatin-induced senescent-like growth arrest in nasopharyngeal carcinoma cells. Cancer Res. 1998, 58, 5019–5022. [Google Scholar]
- Liu, L.; Zuo, J.; Wang, G. Epigallocatechin-3-gallate suppresses cell proliferation and promotes apoptosis in ec9706 and eca109 esophageal carcinoma cells. Oncol. Lett. 2017, 14, 4391–4395. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Pate, M.S.; Wylie, R.C.; Tollefsbol, T.O.; Katiyar, S.K. Egcg down-regulates telomerase in human breast carcinoma mcf-7 cells, leading to suppression of cell viability and induction of apoptosis. Int. J. Oncol. 2004, 24, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Oyama, J.; Shiraki, A.; Nishikido, T.; Maeda, T.; Komoda, H.; Shimizu, T.; Makino, N.; Node, K. Egcg, a green tea catechin, attenuates the progression of heart failure induced by the heart/muscle-specific deletion of mnsod in mice. J. Cardiol 2017, 69, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Nagle, D.G.; Ferreira, D.; Zhou, Y.D. Epigallocatechin-3-gallate (egcg): Chemical and biomedical perspectives. Phytochemistry 2006, 67, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.C.; Li, W.C.; Shih, J.W.; Hong, K.F.; Pan, Y.R.; Lin, J.J. The tea polyphenols egcg and egc repress mrna expression of human telomerase reverse transcriptase (htert) in carcinoma cells. Cancer Lett. 2006, 236, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Kailashiya, C.; Sharma, H.B.; Kailashiya, J. Telomerase based anticancer immunotherapy and vaccines approaches. Vaccine 2017, 35, 5768–5775. [Google Scholar] [CrossRef]
- Kotsakis, A.; Vetsika, E.K.; Christou, S.; Hatzidaki, D.; Vardakis, N.; Aggouraki, D.; Konsolakis, G.; Georgoulias, V.; Christophyllakis, C.; Cordopatis, P.; et al. Clinical outcome of patients with various advanced cancer types vaccinated with an optimized cryptic human telomerase reverse transcriptase (tert) peptide: Results of an expanded phase ii study. Ann. Oncol. 2012, 23, 442–449. [Google Scholar] [CrossRef]
- Kyte, J.A.; Gaudernack, G.; Dueland, S.; Trachsel, S.; Julsrud, L.; Aamdal, S. Telomerase peptide vaccination combined with temozolomide: A clinical trial in stage iv melanoma patients. Clin. Cancer Res. 2011, 17, 4568–4580. [Google Scholar] [CrossRef]
- Inderberg-Suso, E.M.; Trachsel, S.; Lislerud, K.; Rasmussen, A.M.; Gaudernack, G. Widespread cd4+ t-cell reactivity to novel htert epitopes following vaccination of cancer patients with a single htert peptide gv1001. Oncoimmunology 2012, 1, 670–686. [Google Scholar] [CrossRef]
- Huppert, J.L. Hunting g-quadruplexes. Biochimie 2008, 90, 1140–1148. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, K.W.; Hao, Y.H.; Tan, Z. Reduced or diminished stabilization of the telomere g-quadruplex and inhibition of telomerase by small chemical ligands under molecular crowding condition. J. Am. Chem. Soc. 2009, 131, 10430–10438. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, J.Q.; Chen, Z.; Zheng, K.W.; Chen, C.Y.; Hao, Y.H.; Tan, Z. G-quadruplex formation at the 3’ end of telomere DNA inhibits its extension by telomerase, polymerase and unwinding by helicase. Nucleic Acids Res. 2011, 39, 6229–6237. [Google Scholar] [CrossRef]
- Tauchi, T.; Shin-ya, K.; Sashida, G.; Sumi, M.; Okabe, S.; Ohyashiki, J.H.; Ohyashiki, K. Telomerase inhibition with a novel g-quadruplex-interactive agent, telomestatin: In vitro and in vivo studies in acute leukemia. Oncogene 2006, 25, 5719–5725. [Google Scholar] [CrossRef]
- Maestroni, L.; Matmati, S.; Coulon, S. Solving the telomere replication problem. Genes 2017, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Szeberenyi, J. Problem-solving test: Telomere replication. Biochem. Mol. Biol. Educ. 2010, 38, 43–45. [Google Scholar] [CrossRef]
- Zamiri, B.; Reddy, K.; Macgregor, R.B., Jr.; Pearson, C.E. Tmpyp4 porphyrin distorts rna g-quadruplex structures of the disease-associated r(ggggcc)n repeat of the c9orf72 gene and blocks interaction of rna-binding proteins. J. Biol. Chem. 2014, 289, 4653–4659. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.J.; Wingate, K.L.; Silwal, J.; Leeper, T.C.; Basu, S. The porphyrin tmpyp4 unfolds the extremely stable g-quadruplex in mt3-mmp mrna and alleviates its repressive effect to enhance translation in eukaryotic cells. Nucleic Acids Res. 2012, 40, 4137–4145. [Google Scholar] [CrossRef]
- Berardinelli, F.; Sgura, A.; Facoetti, A.; Leone, S.; Vischioni, B.; Ciocca, M.; Antoccia, A. The g-quadruplex-stabilizing ligand rhps4 enhances sensitivity of u251mg glioblastoma cells to clinical carbon ion beams. Febs J. 2018, 285, 1226–1236. [Google Scholar] [CrossRef]
- Izbicka, E.; Wheelhouse, R.T.; Raymond, E.; Davidson, K.K.; Lawrence, R.A.; Sun, D.; Windle, B.E.; Hurley, L.H.; Von Hoff, D.D. Effects of cationic porphyrins as g-quadruplex interactive agents in human tumor cells. Cancer Res. 1999, 59, 639–644. [Google Scholar]
- Tahara, H.; Shin-Ya, K.; Seimiya, H.; Yamada, H.; Tsuruo, T.; Ide, T. G-quadruplex stabilization by telomestatin induces trf2 protein dissociation from telomeres and anaphase bridge formation accompanied by loss of the 3’ telomeric overhang in cancer cells. Oncogene 2006, 25, 1955–1966. [Google Scholar] [CrossRef]
- Gunaratnam, M.; Greciano, O.; Martins, C.; Reszka, A.P.; Schultes, C.M.; Morjani, H.; Riou, J.F.; Neidle, S. Mechanism of acridine-based telomerase inhibition and telomere shortening. Biochem. Pharmacol. 2007, 74, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Liu, X.; Li, Y.; Xu, S.; Ma, C.; Wu, X.; Cheng, Y.; Yu, Z.; Zhao, G.; Chen, Y. Telomere targeting with a novel g-quadruplex-interactive ligand braco-19 induces t-loop disassembly and telomerase displacement in human glioblastoma cells. Oncotarget 2016, 7, 14925–14939. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.W.Y.; Anantha, M.; Dragowska, W.H.; Wehbe, M.; Bally, M.B. Copper-cx-5461: A novel liposomal formulation for a small molecule rrna synthesis inhibitor. J. Control. Release 2018, 286, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y.; Vankayalapati, H.; Kazuo, S.; Wierzba, K.; Hurley, L.H. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular g-quadruplex. J. Am. Chem. Soc. 2002, 124, 2098–2099. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.E.; Aisner, D.L.; Baur, J.; Tesmer, V.M.; Dy, M.; Ouellette, M.; Trager, J.B.; Morin, G.B.; Toft, D.O.; Shay, J.W.; et al. Functional requirement of p23 and hsp90 in telomerase complexes. Genes Dev. 1999, 13, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.R.; Wood, E.; Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 1999, 402, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Den, R.B.; Lu, B. Heat shock protein 90 inhibition: Rationale and clinical potential. Ther. Adv. Med. Oncol. 2012, 4, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, H.L.; Jarvis, J.L.; Turner, J.W.; Elmore, L.W.; Holt, S.E. Stable association of hsp90 and p23, but not hsp70, with active human telomerase. J. Biol. Chem. 2001, 276, 15571–15574. [Google Scholar] [CrossRef] [PubMed]
- Toogun, O.A.; Dezwaan, D.C.; Freeman, B.C. The hsp90 molecular chaperone modulates multiple telomerase activities. Mol. Cell. Biol. 2008, 28, 457–467. [Google Scholar] [CrossRef]
- Holt, S.E.; Shay, J.W. Role of telomerase in cellular proliferation and cancer. J. Cell. Physiol. 1999, 180, 10–18. [Google Scholar] [CrossRef]
- Jurczyluk, J.; Nouwens, A.S.; Holien, J.K.; Adams, T.E.; Lovrecz, G.O.; Parker, M.W.; Cohen, S.B.; Bryan, T.M. Direct involvement of the ten domain at the active site of human telomerase. Nucleic Acids Res. 2011, 39, 1774–1788. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Park, S.M.; Kang, M.R.; Oh, S.Y.; Lee, T.H.; Muller, M.T.; Chung, I.K. Ubiquitin ligase mkrn1 modulates telomere length homeostasis through a proteolysis of htert. Genes Dev. 2005, 19, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Keppler, B.R.; Grady, A.T.; Jarstfer, M.B. The biochemical role of the heat shock protein 90 chaperone complex in establishing human telomerase activity. J. Biol. Chem. 2006, 281, 19840–19848. [Google Scholar] [CrossRef] [PubMed]
- Schulte, T.W.; Akinaga, S.; Soga, S.; Sullivan, W.; Stensgard, B.; Toft, D.; Neckers, L.M. Antibiotic radicicol binds to the n-terminal domain of hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones 1998, 3, 100–108. [Google Scholar] [CrossRef]
- Haikarainen, T.; Krauss, S.; Lehtio, L. Tankyrases: Structure, function and therapeutic implications in cancer. Curr. Pharm. Des. 2014, 20, 6472–6488. [Google Scholar] [CrossRef] [PubMed]
- Iwano, T.; Tachibana, M.; Reth, M.; Shinkai, Y. Importance of trf1 for functional telomere structure. J. Biol. Chem. 2004, 279, 1442–1448. [Google Scholar] [CrossRef]
- Yang, L.; Sun, L.; Teng, Y.; Chen, H.; Gao, Y.; Levine, A.S.; Nakajima, S.; Lan, L. Tankyrase1-mediated poly(adp-ribosyl)ation of trf1 maintains cell survival after telomeric DNA damage. Nucleic Acids Res. 2017, 45, 3906–3921. [Google Scholar] [CrossRef]
- Harvey, A.; Mielke, N.; Grimstead, J.W.; Jones, R.E.; Nguyen, T.; Mueller, M.; Baird, D.M.; Hendrickson, E.A. Parp1 is required for preserving telomeric integrity but is dispensable for a-nhej. Oncotarget 2018, 9, 34821–34837. [Google Scholar] [CrossRef]
- Chang, W.; Dynek, J.N.; Smith, S. Trf1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev. 2003, 17, 1328–1333. [Google Scholar] [CrossRef]
- Sheremet, M.; Kapoor, S.; Schroder, P.; Kumar, K.; Ziegler, S.; Waldmann, H. Small molecules inspired by the natural product withanolides as potent inhibitors of wnt signaling. Chembiochem 2017, 18, 1797–1806. [Google Scholar] [CrossRef]
- Montanaro, L. Dyskerin and cancer: More than telomerase. The defect in mrna translation helps in explaining how a proliferative defect leads to cancer. J. Pathol. 2010, 222, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Penzo, M.; Ludovini, V.; Trere, D.; Siggillino, A.; Vannucci, J.; Bellezza, G.; Crino, L.; Montanaro, L. Dyskerin and terc expression may condition survival in lung cancer patients. Oncotarget 2015, 6, 21755–21760. [Google Scholar] [CrossRef] [PubMed]
- Quan Wang, J.; Di Yang, M.; Chen, X.; Wang, Y.; Zeng Chen, L.; Cheng, X.; Hua Liu, X. Discovery of new chromen-4-one derivatives as telomerase inhibitors through regulating expression of dyskerin. J. Enzym. Inhib. Med. Chem. 2018, 33, 1199–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.J.; Wu, P.H.; Ho, C.T.; Way, T.D.; Pan, M.H.; Chen, H.M.; Ho, Y.S.; Wang, Y.J. P53-dependent downregulation of htert protein expression and telomerase activity induces senescence in lung cancer cells as a result of pterostilbene treatment. Cell Death Dis. 2017, 8, e2985. [Google Scholar] [CrossRef] [PubMed]
- Reinisalo, M.; Karlund, A.; Koskela, A.; Kaarniranta, K.; Karjalainen, R.O. Polyphenol stilbenes: Molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxidative Med. Cell. Longev. 2015, 2015, 340520. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, B.; Ammazzalorso, A.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Amoroso, R. Anticancer activity of stilbene-based derivatives. ChemMedChem 2017, 12, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.J.; Kuo, H.C.; Cheng, L.H.; Lee, Y.H.; Chang, W.T.; Wang, B.J.; Wang, Y.J.; Cheng, H.C. Apoptotic and nonapoptotic activities of pterostilbene against cancer. Int. J. Mol. Sci. 2018, 19, 287. [Google Scholar] [CrossRef]
- De Amicis, F.; Chimento, A.; Montalto, F.I.; Casaburi, I.; Sirianni, R.; Pezzi, V. Steroid receptor signallings as targets for resveratrol actions in breast and prostate cancer. Int. J. Mol. Sci. 2019, 20, 1087. [Google Scholar] [CrossRef]
- Kershaw, J.; Kim, K.H. The therapeutic potential of piceatannol, a natural stilbene, in metabolic diseases: A review. J. Med. Food 2017, 20, 427–438. [Google Scholar] [CrossRef]
- Mirzazadeh, A.; Kheirollahi, M.; Farashahi, E.; Sadeghian-Nodoushan, F.; Sheikhha, M.H.; Aflatoonian, B. Assessment effects of resveratrol on human telomerase reverse transcriptase messenger ribonucleic acid transcript in human glioblastoma. Adv. Biomed. Res. 2017, 6, 73. [Google Scholar]
- Fuggetta, M.P.; Lanzilli, G.; Tricarico, M.; Cottarelli, A.; Falchetti, R.; Ravagnan, G.; Bonmassar, E. Effect of resveratrol on proliferation and telomerase activity of human colon cancer cells in vitro. J. Exp. Clin. Cancer Res. 2006, 25, 189–193. [Google Scholar] [PubMed]
- Lanzilli, G.; Fuggetta, M.P.; Tricarico, M.; Cottarelli, A.; Serafino, A.; Falchetti, R.; Ravagnan, G.; Turriziani, M.; Adamo, R.; Franzese, O.; et al. Resveratrol down-regulates the growth and telomerase activity of breast cancer cells in vitro. Int. J. Oncol. 2006, 28, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Cho, K.H.; Kim, Y.N.; Jeong, B.Y.; Park, C.G.; Hur, G.M.; Lee, H.Y. Resveratrol attenuates norepinephrine-induced ovarian cancer invasiveness through downregulating htert expression. Arch. Pharmacal. Res. 2016, 39, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Marti-Centelles, R.; Falomir, E.; Murga, J.; Carda, M.; Marco, J.A. Inhibitory effect of cytotoxic stilbenes related to resveratrol on the expression of the vegf, htert and c-myc genes. Eur. J. Med. Chem. 2015, 103, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Mikula-Pietrasik, J.; Sosinska, P.; Wierzchowski, M.; Piwocka, K.; Ksiazek, K. Synthetic resveratrol analogue, 3,3’,4,4’,5,5’-hexahydroxy-trans-stilbene, accelerates senescence in peritoneal mesothelium and promotes senescence-dependent growth of gastrointestinal cancers. Int. J. Mol. Sci. 2013, 14, 22483–22498. [Google Scholar] [CrossRef] [PubMed]
- Biasutto, L.; Zoratti, M. Prodrugs of quercetin and resveratrol: A strategy under development. Curr. Drug Metab. 2014, 15, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; DeMarco, V.G.; Nicholl, M.B. Resveratrol enhances radiation sensitivity in prostate cancer by inhibiting cell proliferation and promoting cell senescence and apoptosis. Cancer Sci. 2012, 103, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Wang, L.; Schulte, B.A.; Yang, A.; Tang, S.; Wang, G.Y. Resveratrol enhances ionizing radiation-induced premature senescence in lung cancer cells. Int. J. Oncol. 2013, 43, 1999–2006. [Google Scholar] [CrossRef] [PubMed]
- Zamin, L.L.; Filippi-Chiela, E.C.; Dillenburg-Pilla, P.; Horn, F.; Salbego, C.; Lenz, G. Resveratrol and quercetin cooperate to induce senescence-like growth arrest in c6 rat glioma cells. Cancer Sci. 2009, 100, 1655–1662. [Google Scholar] [CrossRef]
- Li, Y.R.; Li, S.; Lin, C.C. Effect of resveratrol and pterostilbene on aging and longevity. BioFactors 2018, 44, 69–82. [Google Scholar] [CrossRef]
- Chung, S.S.; Dutta, P.; Austin, D.; Wang, P.; Awad, A.; Vadgama, J.V. Combination of resveratrol and 5-flurouracil enhanced anti-telomerase activity and apoptosis by inhibiting STAT3 and Akt signaling pathways in human colorectal cancer cells. Oncotarget 2018, 9, 32943–32957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippi-Chiela, E.C.; Thome, M.P.; Bueno e Silva, M.M.; Pelegrini, A.L.; Ledur, P.F.; Garicochea, B.; Zamin, L.L.; Lenz, G. Resveratrol abrogates the temozolomide-induced g2 arrest leading to mitotic catastrophe and reinforces the temozolomide-induced senescence in glioma cells. BMC Cancer 2013, 13, 147. [Google Scholar] [CrossRef] [PubMed]
- Tippani, R.; Prakhya, L.J.; Porika, M.; Sirisha, K.; Abbagani, S.; Thammidala, C. Pterostilbene as a potential novel telomerase inhibitor: Molecular docking studies and its in vitro evaluation. Curr. Pharm. Biotechnol. 2014, 14, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, Y.; Jeong, J.H.; Ryu, J.H.; Kim, W.Y. Atm/chk/p53 pathway dependent chemopreventive and therapeutic activity on lung cancer by pterostilbene. PLoS ONE 2016, 11, e0162335. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.; Tollefsbol, T.O. Pterostilbene down-regulates htert at physiological concentrations in breast cancer cells: Potentially through the inhibition of cmyc. J. Cell. Biochem. 2018, 119, 3326–3337. [Google Scholar] [CrossRef] [PubMed]
- Torres-Hernandez, A.; Wang, W.; Nikiforov, Y.; Tejada, K.; Torres, L.; Kalabin, A.; Wu, Y.; Haq, M.I.U.; Khan, M.Y.; Zhao, Z.; et al. Targeting syk signaling in myeloid cells protects against liver fibrosis and hepatocarcinogenesis. Oncogene. 2019, 38, pp. 4512–4526. Available online: https://www.nature.com/articles/s41388-019-0734-5 (accessed on 11 February 2019).
- Yang, Q.; Wang, B.; Zang, W.; Wang, X.; Liu, Z.; Li, W.; Jia, J. Resveratrol inhibits the growth of gastric cancer by inducing g1 phase arrest and senescence in a sirt1-dependent manner. PLoS ONE 2013, 8, e70627. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Hou, D.; Guo, H.; Zhou, H.; Zhang, S.; Xu, X.; Liu, Q.; Zhang, X.; Zou, Y.; Gong, Y.; et al. Resveratrol sequentially induces replication and oxidative stresses to drive p53-cxcr2 mediated cellular senescence in cancer cells. Sci. Rep. 2017, 7, 208. [Google Scholar] [CrossRef]
- Heiss, E.H.; Schilder, Y.D.; Dirsch, V.M. Chronic treatment with resveratrol induces redox stress- and ataxia telangiectasia-mutated (atm)-dependent senescence in p53-positive cancer cells. J. Biol. Chem. 2007, 282, 26759–26766. [Google Scholar] [CrossRef]
- Murias, M.; Jager, W.; Handler, N.; Erker, T.; Horvath, Z.; Szekeres, T.; Nohl, H.; Gille, L. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: Structure-activity relationship. Biochem. Pharmacol. 2005, 69, 903–912. [Google Scholar] [CrossRef]
- Falomir, E.; Lucas, R.; Penalver, P.; Marti-Centelles, R.; Dupont, A.; Zafra-Gomez, A.; Carda, M.; Morales, J.C. Cytotoxic, antiangiogenic and antitelomerase activity of glucosyl- and acyl- resveratrol prodrugs and resveratrol sulfate metabolites. Chembiochem 2016, 17, 1343–1348. [Google Scholar] [CrossRef]
- Estrela, J.M.; Ortega, A.; Mena, S.; Rodriguez, M.L.; Asensi, M. Pterostilbene: Biomedical applications. Crit. Rev. Clin. Lab. Sci. 2013, 50, 65–78. [Google Scholar] [CrossRef]
- Gomez, D.L.M.; Armando, R.G.; Cerrudo, C.S.; Ghiringhelli, P.D.; Gomez, D.E. Telomerase as a cancer target. Development of new molecules. Curr. Top Med. Chem. 2016, 16, 2432–2440. [Google Scholar] [CrossRef] [PubMed]
Stilbene Compounds | Cell Models | Target/Mechanism | Outcome | Reference |
---|---|---|---|---|
Resveratrol | ||||
RSV | U-87MG | hTERT mRNA↓ | cell growth↓, cell death↑ | [140] |
RSV | HT-29, WiDr | Telomerase activity↓ | cell proliferation↓ | [141] |
RSV | MCF-7 | Telomerase activity↓ hTERT expression↓ | S phase arrest↑ apoptosis↑ | [142] |
RSV | Ovaria cancer cells | hTERT expression↓ Slug↓, pScr and HIF-1α↓ | EMT↓ invasion↓ | [143] |
Resveratrol Derivatives | ||||
RSV derivative (E)-4-(4-methoxystyryl) aniline | Colon cancer cells | hTERT expression↓ cMyc expression↓ | cytotoxicity↑ | [144] |
RSV derivative 3,3’,4,4’,5,5’-Hexahydroxy-trans-Stilbene (M8) | Human peritoneal mesothelial cells | mitochondrial reactive oxygen species↑ | senescence↑, cell cycle arrest↑ | [145] |
RSV sulfate metabolites | HT29, MCF-7 | hTERT mRNA↓, cMyc ↓ | cell death↑ | [146] |
Resveratrol Combined Therapy | ||||
RSV + XRT | Prostate cancer cells | p21CIP1/WAF1, p27Kip1, p53↑ Fas, TRAIL1↑, p-H2AX↑ | senescence↑ apoptosis↑ | [147] |
RSV + IR | Lung cancer cells | ROS↑, DDR↑ | senescence | [148] |
RSV + quercetin | Rat glimoma cells | caspase 3/7 activation↑ | senescence | [149] |
RSV + 5-FU | Colon cancer cells | Telomerase activity↓ Stat3 and Akt↓ | apoptosis | [150,151] |
RSV + TMZ | Glioblastoma cells | Mitotic catastrophe p-ATM, p-Chk2↑ | senescence↑ autophagy↑ | [152] |
Pterostilbene | ||||
PT | Lung cancer cells | Molecular docking to hTERT | cell death | [153] |
PT | Lung cancer cells | ATM-CHK-p53 | senescence↑ | [154] |
PT | Breast cancer cells | cMyc expression↓ hTERT expression↓ | apoptosis cell cycle arrest | [155] |
PT | Lung cancer cells | hTERT activity↓, hTERT expression↓, DDR↑, p53-dependent | S phase arrest↑ senescence↑ | [134] |
PIC | Hepatic stellate cell | p16INK4a↑, p53↑ Bcl-xl↓, SMAD↓ | Inflammation↓ hepatocarcinogenesis↓ | [156] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-H.; Chen, Y.-Y.; Yeh, Y.-L.; Wang, Y.-J.; Chen, R.-J. Stilbene Compounds Inhibit Tumor Growth by the Induction of Cellular Senescence and the Inhibition of Telomerase Activity. Int. J. Mol. Sci. 2019, 20, 2716. https://doi.org/10.3390/ijms20112716
Lee Y-H, Chen Y-Y, Yeh Y-L, Wang Y-J, Chen R-J. Stilbene Compounds Inhibit Tumor Growth by the Induction of Cellular Senescence and the Inhibition of Telomerase Activity. International Journal of Molecular Sciences. 2019; 20(11):2716. https://doi.org/10.3390/ijms20112716
Chicago/Turabian StyleLee, Yu-Hsuan, Yu-Ying Chen, Ya-Ling Yeh, Ying-Jan Wang, and Rong-Jane Chen. 2019. "Stilbene Compounds Inhibit Tumor Growth by the Induction of Cellular Senescence and the Inhibition of Telomerase Activity" International Journal of Molecular Sciences 20, no. 11: 2716. https://doi.org/10.3390/ijms20112716
APA StyleLee, Y.-H., Chen, Y.-Y., Yeh, Y.-L., Wang, Y.-J., & Chen, R.-J. (2019). Stilbene Compounds Inhibit Tumor Growth by the Induction of Cellular Senescence and the Inhibition of Telomerase Activity. International Journal of Molecular Sciences, 20(11), 2716. https://doi.org/10.3390/ijms20112716