Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils
Abstract
:1. Introduction
2. Results
2.1. Screening
2.2. Minimum Inhibitory Concentrations
2.3. Minimum Bactericidal Concentration
2.4. Time-kill Curve Studies
2.5. Scanning Electron Microscopy
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Screening
4.3. Minimum Inhibitory Concentrations
4.4. Minimal Bactericidal Concentration (MBC)
4.5. Time-kill Curve Studies
4.6. Scanning Electron Microscopy (SEM)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chouhan:, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M.; Colnaghi, G.; Chemat, F.; Smadja, J.; Faoro, F.; Visinoni, F.A. Histo-cytochemistry and scanning electron microscopy of lavander glandular trichomes following conventional and microwave-assisted hydrodistillation of essential oils: A comparative study. Flavour Fragr. J. 2006, 21, 704–712. [Google Scholar] [CrossRef]
- IUPAC Compendium of Chemical Terminology-Gold Book: Version 2.3.3 2014-02-24. Available online: https://goldbook.iupac.org/src/src_PAC1995671307.html (accessed on 2 December 2019).
- Tripathi, N.N.; Kumar, N. Putranjiva roxburghii oil-A potential herbal preservative for peanuts during storage. J. Stored Prod. Res. 2007, 43, 435–442. [Google Scholar] [CrossRef]
- Pandey, A.K.; Mohan, M.; Singh, P.; Palni, U.T.; Tripathi, N.N. Chemical composition, antibacterial and antioxidant activity of essential oil of Eupatorium adenophorum Spreng. from Eastern Uttar Pradesh, India. Food Biosci. 2014, 7, 80–87. [Google Scholar] [CrossRef]
- Sonker, N.; Pandey, A.K.; Singh, P. Efficiency of Artemisia nilagirica (Clarke) Pamp. essential oil as a mycotoxicant against postharvest mycobiota of table grapes. J. Sci. Food Agric. 2015, 95, 1932–1939. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P.D.; Harvey, P.W. Parabens can enable hallmarks and characteristics of cancer in human breast epithelial cells: A review of the literature with reference to new exposure data and regulatory status. J. Appl. Toxicol. 2014, 34, 925–938. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, A.M.; Gregoraszczuk, E.Ł. Actions of methyl-, propyl- and butylparaben on estrogen receptor-α and -β and the progesterone receptor in MCF-7 cancer cells and non-cancerous MCF-10A cells. Toxicol. Lett. 2014, 230, 375–381. [Google Scholar] [CrossRef]
- Song, P.; Wu, L.; Guan, W. Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: A meta-analysis. Nutrients 2015, 7, 9872–9895. [Google Scholar] [CrossRef]
- Puah, S.M.; Chua, K.H.; Mary Anne Tan, J.A. Virulence factors and antibiotic susceptibility of Staphylococcus aureus isolates in ready-to-eat foods: Detection of S. aureus contamination and a high prevalence of virulence genes. Int. J. Environ. Res. Public Health 2016, 13. [Google Scholar] [CrossRef]
- Walker-York-Moore, L.; Moore, S.C.; Fox, E.M. Characterization of Enterotoxigenic Bacillus cereus sensu lato and Staphylococcus aureus Isolates and Associated Enterotoxin Production Dynamics in Milk or Meat-Based Broth. Toxins (Basel) 2017, 9, 225. [Google Scholar] [CrossRef]
- Adams, A.M.; Leja, L.L.; Jinneman, K.; Beeh, J.; Yuen, G.A.; Wekell, M.M. Anisakid Parasites, Staphylococcus aureus and Bacillus cereus in Sushi and Sashimi from Seattle Area Restaurants. J. Food Prot. 2016, 57, 311–317. [Google Scholar]
- Atanassova, V.; Reich, F.; Klein, G. Microbiological Quality of Sushi from Sushi Bars and Retailers. J. Food Prot. 2016, 71, 860–864. [Google Scholar]
- Muscolino, D.; Giarratana, F.; Beninati, C.; Tornambene, A.; Panebianco, A.; Ziino, G. Hygienic-sanitary evaluation of sushi and sashimi sold in Messina and Catania, Italy. Ital. J. Food Saf. 2014, 3, 134–136. [Google Scholar] [CrossRef] [PubMed]
- Hammad, A.M.; Watanabe, W.; Fujii, T.; Shimamoto, T. Occurrence and characteristics of methicillin-resistant and -susceptible Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci from Japanese retail ready-to-eat raw fish. Int. J. Food Microbiol. 2012, 156, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Gaur, A.H.; Patrick, C.C.; McCullers, J.A.; Flynn, P.M.; Pearson, T.A.; Razzouk, B.I.; Thompson, S.J.; Shenep, J.L. Bacillus cereus Bacteremia and Meningitis in Immunocompromised Children. Clin. Infect. Dis. 2002, 32, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Dabscheck, G.; Silverman, L.; Ullrich, N.J. Bacillus cereus cerebral abscess during induction chemotherapy for childhood acute leukemia. J. Pediatr. Hematol. Oncol. 2015, 37, 568–569. [Google Scholar] [CrossRef] [PubMed]
- Hansford, J.R.; Phillips, M.; Cole, C.; Francis, J.; Blyth, C.C.; Gottardo, N.G. Bacillus cereus bacteremia and multiple brain abscesses during acute lymphoblastic leukemia induction therapy. J. Pediatr. Hematol. Oncol. 2014, 36, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Manges, A.R. Escherichia coli and urinary tract infections: The role of poultry-meat. Clin. Microbiol. Infect. 2016, 22, 122–129. [Google Scholar] [CrossRef]
- Tarabees, R.; Elsayed, M.S.A.; Shawish, R.; Basiouni, S.; Shehata, A.A. Isolation and characterization of Salmonella Enteritidis and Salmonella Typhimurium from chicken meat in Egypt. J. Infect. Dev. Ctries. 2017, 11, 314–319. [Google Scholar] [CrossRef]
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro “proof-of-concept.”. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Campos-Requena, V.H.; Rivas, B.L.; Pérez, M.A.; Figueroa, C.R.; Sanfuentes, E.A. The synergistic antimicrobial effect of carvacrol and thymol in clay/polymer nanocomposite films over strawberry gray mold. LWT Food Sci. Technol. 2015, 64, 390–396. [Google Scholar] [CrossRef]
- Guarda, A.; Rubilar, J.F.; Miltz, J.; Galotto, M.J. The antimicrobial activity of microencapsulated thymol and carvacrol. Int. J. Food Microbiol. 2011, 146, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Scherer, R.; Wagner, R.; Duarte, M.C.T.; Godoy, H.T. Composição e atividades antioxidante e antimicrobiana dos óleos essenciais de cravo-da-índia, citronela e palmarosa. Rev. Bras. Plantas Med. 2009, 11, 442–449. [Google Scholar] [CrossRef]
- Wattanasatcha, A.; Rengpipat, S.; Wanichwecharungruang, S. Thymol nanospheres as an effective anti-bacterial agent. Int. J. Pharm. 2012, 434, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Nostro, A.; Roccaro, A.S.; Bisignano, G.; Marino, A.; Cannatelli, M.A.; Pizzimenti, F.C.; Cioni, P.L.; Procopio, F.; Blanco, A.R. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol. 2007, 56, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Mazarei, Z.; Rafati, H. Nanoemulsification of Satureja khuzestanica essential oil and pure carvacrol; comparison of physicochemical properties and antimicrobial activity against food pathogens. LWT 2019, 100, 328–334. [Google Scholar] [CrossRef]
- Reyes-Jurado, F.; Franco-Vega, A.; Ramírez-Corona, N.; Palou, E.; López-Malo, A. Essential Oils: Antimicrobial Activities, Extraction Methods, and Their Modeling. Food Eng. Rev. 2014, 7, 275–297. [Google Scholar]
- Neta, M.C.S.; Vittorazzi, C.; Guimarães, A.C.; Martins, J.D.L.; Fronza, M.; Endringer, D.C.; Scherer, R. Effects of β-caryophyllene and Murraya paniculata essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time-kill curve studies. Pharm. Biol. 2017, 55, 190–197. [Google Scholar] [CrossRef]
- Oz, M.; Lozon, Y.; Sultan, A.; Yang, K.H.S.; Galadari, S. Effects of monoterpenes on ion channels of excitable cells. Pharmacol. Ther. 2015, 152, 83–97. [Google Scholar] [CrossRef]
- Ouattara, B.; Simard, R.E.; Holley, R.A.; Piette, G.J.P.; Bégin, A. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int. J. Food Microbiol. 1997, 37, 155–162. [Google Scholar] [CrossRef]
- Chauhan, A.K.; Kang, S.C. Thymol disrupts the membrane integrity of Salmonella ser. Typhimurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo model. Res. Microbiol. 2014, 165, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Marshall, M.R.; Wei, C. Antibacterial activity of some essential oil components against five foodborne pathogens. J. Agric. Food Chem. 1995, 43, 2839–2845. [Google Scholar] [CrossRef]
- Bhatti, H.N.; Khan, S.S.; Khan, A.; Rani, M.; Ahmad, V.U.; Choudhary, M.I. Biotransformation of monoterpenoids and their antimicrobial activities. Phytomedicine 2014, 21, 1597–1626. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Henika, P.R.; Levin, C.E.; Mandrell, R.E. Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice. J. Agric. Food Chem. 2004, 52, 6042–6048. [Google Scholar] [CrossRef] [PubMed]
- Magiatis, P.; Skaltsounis, A.L.; Chinou, I.; Haroutounian, S.A. Chemical composition and in-vitro antimicrobial activity of the essential oils of three Greek Achillea species. Zeitschrift fur Naturforsch. C 2002, 57, 287–290. [Google Scholar] [CrossRef]
- Lopez-Romero, J.C.; González-Ríos, H.; Borges, A.; Simões, M. Antibacterial Effects and Mode of Action of Selected Essential Oils Components against Escherichia coli and Staphylococcus aureus. Evid.-Based Complement. Altern. Med. 2015, 2015. [Google Scholar] [CrossRef]
- Nikaido, H. Preventing drug access to targets: Cell surface permeability barriers and active efflux in bacteria. Semin. Cell Dev. Biol. 2001, 12, 215–223. [Google Scholar] [CrossRef]
- Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Sixth Edition. Available online: http://www.anvisa.gov.br/servicosaude/manuais/clsi/clsi_opasm7_a6.pdf (accessed on 28 May 2019).
- Moreira, M.R.; Ponce, A.G.; Del Valle, C.E.; Roura, S.I. Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT Food Sci. Technol. 2005, 38, 565–570. [Google Scholar] [CrossRef]
- Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. Available online: https://clsi.org/standards/products/microbiology/documents/m26/ (accessed on 28 May 2019).
- Sajali, N.; Mohd Desa, M.N.; Thian Lung, L.T.; Pei, C.P. Anti-hyphal formation property of allicin in suppression of Aspergillus fumigatus growth. Malays. J. Microbiol. 2013, 9, 245–252. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Compound | B. cereus | S. Typhimurium | E. coli | S. aureus |
---|---|---|---|---|
Non-oxygenated monoterpenes | ||||
Camphene | − | − | − | − |
m-Cymene | + | + | + | + |
p-Cymene | − | − | − | − |
Guaiene | − | − | − | − |
R-(+)-Limonene | + | + | + | + |
β -Myrcene | − | − | − | − |
Ocimene | − | − | − | − |
α-Phellandrene | − | − | − | − |
(+)-α-Pinene | − | − | − | − |
(+)-β-Pinene | − | − | − | − |
Sabinene | − | − | − | − |
Ƴ-Terpinene | − | − | − | − |
Terpinolene | − | − | − | − |
Oxygenated monoterpene | ||||
(−)-α-Bisabolol | − | − | − | − |
(−)-Borneol | + | + | + | + |
(+)-Borneol | + | + | + | + |
(±)-Camphor | + | + | + | + |
l-Carveol | + | + | + | + |
(+)-Carvone | − | − | − | − |
l-Carvone | + | + | + | + |
Citral | + | + | + | + |
(±)-Citronellal | + | + | + | + |
β-Citronellol | + | + | + | + |
Eucalyptol | − | − | − | − |
trans-Geraniol | + | + | + | + |
(±)-Linalool | + | + | + | + |
Terpineol | + | + | + | + |
Phenolic | ||||
Carvacrol | + | + | + | + |
Eugenol | + | + | + | + |
Thymol | + | + | + | + |
Sesquiterpene | ||||
β-Caryophyllene | − | − | − | − |
α-Humulene | − | − | − | − |
(+)-Valencene | − | − | − | − |
Compound | B. cereus | S. Typhimurium | E. coli | S. aureus |
---|---|---|---|---|
(−)-Borneol | 0.12 | 0.12 | 0.25 | 0.03 |
(+)-Borneol | 0.25 | 800 | 0.25 | 0.25 |
(±)-Camphor | 0.25 | 0.25 | 0.25 | 0.015 |
Carvacrol | 0.03 | 0.015 | 0.03 | 0.015 |
l-Carveol | 0.12 | 0.03 | 0.06 | 0.015 |
l-Carvone | 0.25 | 0.12 | 0.06 | 0.03 |
m-Cymene | 0.25 | 0.25 | 0.25 | 0.25 |
Citral | 0.06 | 0.07 | 0.06 | 0.06 |
Citronellal | 0.12 | 0.12 | 0.25 | 0.25 |
β-Citronellol | 0.12 | 0.12 | 0.25 | 0.03 |
Eugenol | 0.07 | 0.07 | 0.03 | 0.003 |
trans-Geraniol | 0.07 | 0.03 | 0.06 | 0.03 |
R-(+)-Limonene | 0.25 | 0.06 | 0.25 | 0.25 |
Linalool | 0.25 | 0.25 | 0.25 | 0.25 |
Terpineol | 0.12 | 0.12 | 0.06 | 0.03 |
Thymol | 0.007 | 0.003 | 0.007 | 0.007 |
Sulfanilamide | R | 0.06 | 0.03 | 0.06 |
Compound | B. cereus | S. Typhimurium | E. coli | S. aureus |
---|---|---|---|---|
l-Carveol | - | - | 0.25 | - |
β-Citronellol | - | - | 0.25 | - |
Eugenol | - | 0.06 | - | - |
trans-Geraniol | - | - | 0.25 | - |
Terpineol | - | 0.25 | - | 0.12 |
Thymol | - | 0.12 | 0.12 | 0.12 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. https://doi.org/10.3390/molecules24132471
Guimarães AC, Meireles LM, Lemos MF, Guimarães MCC, Endringer DC, Fronza M, Scherer R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules. 2019; 24(13):2471. https://doi.org/10.3390/molecules24132471
Chicago/Turabian StyleGuimarães, Aline Cristina, Leandra Martins Meireles, Mayara Fumiere Lemos, Marco Cesar Cunegundes Guimarães, Denise Coutinho Endringer, Marcio Fronza, and Rodrigo Scherer. 2019. "Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils" Molecules 24, no. 13: 2471. https://doi.org/10.3390/molecules24132471
APA StyleGuimarães, A. C., Meireles, L. M., Lemos, M. F., Guimarães, M. C. C., Endringer, D. C., Fronza, M., & Scherer, R. (2019). Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules, 24(13), 2471. https://doi.org/10.3390/molecules24132471