Omics Meeting Onics: Towards the Next Generation of Spectroscopic-Based Technologies in Personalized Medicine
Abstract
:Acknowledgments
Conflicts of Interest
References
- Urnov, F.D. A path to efficient gene editing. Nat. Med. 2018, 24, 899–900. [Google Scholar] [CrossRef] [PubMed]
- Larochelle, S. CRISPR—Cas goes RNA. Nat. Methods 2018, 15, 312. [Google Scholar] [CrossRef]
- Van Steensel, B.; Furlong, E.E.M. The role of transcription in shaping the spatial organization of the genome. Nat. Rev. Mol. Cell Boil. 2019, 20, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Rowley, M.J.; Corces, V.G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 2018, 19, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Chiasson, M.; Fowler, D.M. Mutagenesis-based protein structure determination. Nat. Genet. 2019, 51, 1072–1073. [Google Scholar] [CrossRef] [PubMed]
- Eccleston, A.; DeWitt, N.; Gunter, C.; Marte, B.; Nath, D. Epigenetics. Nature 2007, 447, 395. [Google Scholar] [CrossRef]
- Peng, W.K.; Chen, L.; Boehm, B.O.; Han, J.; Loh, T.P. Molecular Phenotyping of Oxidative Stress in Diabetes Mellitus with Point-of-care NMR system. BioRxiv 2019. [Google Scholar] [CrossRef]
- Dupré, A.; Lei, K.-M.; Mak, P.-I.; Martins, R.P.; Peng, W.K. Micro- and nanofabrication NMR technologies for point-of-care medical applications—A review. Microelectron. Eng. 2019, 209, 66–74. [Google Scholar] [CrossRef]
- Blümich, B. Beyond compact NMR. Microporous Mesoporous Mater. 2018, 269, 3–6. [Google Scholar] [CrossRef]
- Anders, J.; Korvink, J.G. Micro and Nano Scale NMR: Technologies and Systems; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018. [Google Scholar] [CrossRef]
- Haun, J.B.; Castro, C.M.; Wang, R.; Peterson, V.M.; Marinelli, B.S.; Lee, H.; Weissleder, R. Micro-NMR for Rapid Molecular Analysis of Human Tumor Samples. Sci. Transl. Med. 2011, 3, 71ra16. [Google Scholar] [CrossRef]
- Ghazani, A.A.; McDermott, S.; Pectasides, M.; Sebas, M.; Mino-Kenudson, M.; Lee, H.; Weissleder, R.; Castro, C.M. Comparison of select cancer biomarkers in human circulating and bulk tumor cells using magnetic nanoparticles and a miniaturized micro-NMR system. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 1009–1017. [Google Scholar] [CrossRef] [Green Version]
- Castro, C.M.; Ghazani, A.A.; Chung, J.; Shao, H.; Issadore, D.; Yoon, T.-J.; Weissleder, R.; Lee, H. Miniaturized nuclear magnetic resonance platform for detection and profiling of circulating tumor cells. Lab Chip 2014, 14, 14–23. [Google Scholar] [CrossRef]
- Gee, M.S.; Ghazani, A.A.; Haq, R.; Wargo, J.A.; Sebas, M.; Sullivan, R.J.; Lee, H.; Weissleder, R. Point of care assessment of melanoma tumor signaling and metastatic burden from μNMR analysis of tumor fine needle aspirates and peripheral blood. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 821–828. [Google Scholar] [CrossRef]
- Liong, M.; Hoang, A.N.; Chung, J.; Gural, N.; Ford, C.B.; Min, C.; Shah, R.R.; Ahmad, R.; Fernández-Suárez, M.; Fortune, S.M.; et al. Magnetic barcode assay for genetic detection of pathogens. Nat. Commun. 2013, 4, 1752. [Google Scholar] [CrossRef]
- Chung, H.J.; Castro, C.M.; Im, H.; Lee, H.; Weissleder, R. A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nat. Nanotechnol. 2013, 8, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Kong, T.F.; Peng, W.K.; Luong, T.D.; Nguyen, N.-T.; Han, J. Adhesive-based liquid metal radio-frequency microcoil for magnetic resonance relaxometry measurement. Lab Chip 2012, 12, 287–294. [Google Scholar] [CrossRef]
- Peng, W.K.; Chen, L.; Han, J. Development of miniaturized, portable magnetic resonance relaxometry system for point-of-care medical diagnosis. Rev. Sci. Instrum. 2012, 83, 95115. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.K.; Kong, T.F.; Ng, C.S.; Chen, L.; Huang, Y.; Bhagat, A.A.S.; Nguyen, N.-T.; Preiser, P.R.; Han, J. Micromagnetic resonance relaxometry for rapid label-free malaria diagnosis. Nat. Med. 2014, 20, 1069–1073. [Google Scholar] [CrossRef]
- Han, J.; Peng, W.K. Reply to “Considerations regarding the micromagnetic resonance relaxometry technique for rapid label-free malaria diagnosis”. Nat. Med. 2015, 21, 1387–1389. [Google Scholar] [CrossRef]
- Kong, T.F.; Ye, W.; Peng, W.K.; Hou, H.W.; Marcos; Preiser, P.R.; Nguyen, N.-T.; Han, J. Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection. Sci. Rep. 2015, 5, 11425. [Google Scholar] [CrossRef]
- Patel, V.; Dwivedi, A.K.; Deodhar, S.; Mishra, I.; Cistola, D.P. Aptamer-based search for correlates of plasma and serum water T2: Implications for early metabolic dysregulation and metabolic syndrome. Biomark. Res. 2018, 6, 28. [Google Scholar] [CrossRef]
- Robinson, M.D.; Mishra, I.; Deodhar, S.; Patel, V.; Gordon, K.V.; Vintimilla, R.; Brown, K.; Johnson, L.; O’Bryant, S.; Cistola, D.P. Water T2 as an early, global and practical biomarker for metabolic syndrome: An observational cross-sectional study. J. Transl. Med. 2017, 15, 258. [Google Scholar] [CrossRef]
- Doan, M.; Carpenter, A.E. Leveraging machine vision in cell-based diagnostics to do more with less. Nat. Mater. 2019, 18, 414–418. [Google Scholar] [CrossRef]
- Çimen, M.Y.B. Free radical metabolism in human erythrocytes. Clin. Chim. Acta 2008, 390, 1–11. [Google Scholar] [CrossRef]
- E Holley, A.; Cheeseman, K.H. Measuring free radical reactions in vivo. Br. Med. Bull. 1993, 49, 494–505. [Google Scholar] [CrossRef]
- Takeda, K. OPENCORE NMR: Open-source core modules for implementing an integrated FPGA-based NMR spectrometer. J. Magn. Reson. 2008, 192, 218–229. [Google Scholar] [CrossRef]
- Tang, W.; Wang, W. A single-board NMR spectrometer based on a software defined radio architecture. Meas. Sci. Technol. 2011, 22, 015902. [Google Scholar] [CrossRef]
- Asfour, A.; Raoof, K.; Yonnet, J.-P. Software Defined Radio (SDR) and Direct Digital Synthesizer (DDS) for NMR/MRI Instruments at Low-Field. Sensors 2013, 13, 16245–16262. [Google Scholar] [CrossRef] [Green Version]
- Hasselwander, C.J.; Cao, Z.; Grissom, W.A. gr-MRI: A software package for magnetic resonance imaging using software defined radios. J. Magn. Reson. 2016, 270, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Huber, S.; Min, C.; Staat, C.; Oh, J.; Castro, C.M.; Haase, A.; Weissleder, R.; Gleich, B.; Lee, H. Multichannel digital heteronuclear magnetic resonance biosensor. Biosens. Bioelectron. 2019, 126, 240–248. [Google Scholar] [CrossRef]
- Ikenberry, G.J.; Friedman, T.L. The World Is Flat: A Brief History of the Twenty-First Century. Foreign Aff. 2005, 84, 167. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, W.K.; Paesani, D. Omics Meeting Onics: Towards the Next Generation of Spectroscopic-Based Technologies in Personalized Medicine. J. Pers. Med. 2019, 9, 39. https://doi.org/10.3390/jpm9030039
Peng WK, Paesani D. Omics Meeting Onics: Towards the Next Generation of Spectroscopic-Based Technologies in Personalized Medicine. Journal of Personalized Medicine. 2019; 9(3):39. https://doi.org/10.3390/jpm9030039
Chicago/Turabian StylePeng, Weng Kung, and Daniele Paesani. 2019. "Omics Meeting Onics: Towards the Next Generation of Spectroscopic-Based Technologies in Personalized Medicine" Journal of Personalized Medicine 9, no. 3: 39. https://doi.org/10.3390/jpm9030039
APA StylePeng, W. K., & Paesani, D. (2019). Omics Meeting Onics: Towards the Next Generation of Spectroscopic-Based Technologies in Personalized Medicine. Journal of Personalized Medicine, 9(3), 39. https://doi.org/10.3390/jpm9030039