Development of a Landslide Early Warning System in Indonesia
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. Observed and Forecasted Precipitation Data
2.1.2. Rainfall Threshold Data
2.1.3. Map of Landslide-Prone Areas
2.1.4. Data to Run the TRIGRS Model
2.2. Methods
- If the 1-day precipitation and 3-day cumulative precipitation are greater than the rainfall threshold line (>61 mm and >91 mm, respectively), then the Delft–FEWS will produce a red exclamation mark (both conditions met);
- if the 1-day precipitation or 3-day cumulative precipitation is greater than the rainfall threshold line, then the Delft–FEWS will produce a yellow exclamation mark (one condition meet); and
- if the 1-day precipitation and 3-day cumulative precipitation do not exceed the rainfall threshold line, then the Delft–FEWS will produce a green round mark (both conditions are not met).
3. Results and Discussion
3.1. Landslide Early Warning with Delft–FEWS
3.2. Examples of the Capability of LEWS to Detect Landslides
3.2.1. Landslide in Pacitan
3.2.2. Landslide in Brebes
3.3. Discussion and Future Improvements
4. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diaz, V.J. Landslides in the squatter settlements of Caracas; towards a better understanding of causative factors. Environ. Urban 1992, 4, 80–89. [Google Scholar] [CrossRef]
- Haigh, M.J.; Rawat, J.S.; Rawat, M.S.; Bartarya, S.K.; Rai, S.P. Interactions between forest and landslide activity along new highways in the Kumaun Himalaya. For. Ecol. Manag. 1995, 78, 173–189. [Google Scholar] [CrossRef]
- Terlien, M.T.J. The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environ. Geol. 1998, 35, 124–130. [Google Scholar] [CrossRef]
- Bai, S.; Wang, J.; Bell, R.; Glade, T. Distribution and susceptibility assessments of landslide triggered by Wenchuan earthquake at Longnan. In Proceedings of the International Conference on Informatics, Cybernetics, and Computer Engineering (ICCE2011), Melbourne, Australia, 19–20 November 2012. [Google Scholar]
- Zhou, J.W.; Cui, P.; Yang, X.G. Dynamic process analysis for the initiation and movement of the Donghekou landslide-debris flow triggered by the Wenchuan earthquake. J. Mt. Sci. 2013, 76, 70–84. [Google Scholar] [CrossRef]
- Alleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Environ. 1999, 58, 21–44. [Google Scholar] [CrossRef]
- Schuster, R.L.; Highland, L.M. Socio-economic and Environmental Impacts of Landslides in the Western Hemisphere. In U.S. Geological Survey Open-File Report 2001-276; US Geological Survey: Reston, VA, USA, 2001; p. 47. [Google Scholar] [CrossRef]
- Kjekstad, O.; Highland, L.M. Economic and social impacts of landslides. In Landslides—Disaster Risk Reduction; Sassa, K., Canuti, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 573–587. [Google Scholar]
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Kirschbaum, D.B.; Adler, R.; Hong, Y.; Hill, S.; Lerber-Lam, A. A global landslide catalog for hazard applications: Method, results, and limitations. Nat. Hazards 2010, 52, 561–575. [Google Scholar] [CrossRef]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- Chae, B.-G.; Park, H.-J.; Catani, F.; Simoni, A.; Berti, M. Landslide prediction, monitoring, and early warning: A concise review of state-of-the-art. Geosci. J. 2017, 21, 1033–1070. [Google Scholar] [CrossRef]
- Liao, Z.; Hong, Y.; Wang, J.; Fukuoka, H.; Sassa, K.; Karnawati, D.; Fathani, F. Prototyping an experimental early warning system for rainfall-induced landslides in Indonesia using satellite remote sensing and geospatial datasets. Landslides 2010, 7, 317–324. [Google Scholar] [CrossRef]
- Osanai, N.; Shimizu, T.; Kuramoto, K.; Kojima, S.; Noro, T. Japanese early-warning for debris flows and slope failures using rainfall indices with radial basis function network. Landslides 2010, 7, 325–338. [Google Scholar] [CrossRef]
- Alfieri, L.; Salamon, P.; Pappenberger, F.; Wetterhall, F. Operational early warning system for water-related hazards in Europe. Environ. Sci. Policy 2012, 21, 35–49. [Google Scholar] [CrossRef]
- Piciullo, L.; Calvello, M.; Cepeda, J.M. Territorial early warning systems for rainfall-induced landslides. Earth Sci. Rev. 2018, 179, 228–247. [Google Scholar] [CrossRef]
- Intrieri, E.; Gigli, G.; Mugnai, F.; Fanti, R.; Casagli, N. Design and implementation of a landslide early warning system. Eng. Geol. 2012, 147–148, 124–136. [Google Scholar] [CrossRef]
- Segoni, S.; Lagomarsino, D.; Fanti, R.; Moretti, S.; Casagli, N. Integration of rainfall thresholds and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system. Landslides 2015, 12, 773–785. [Google Scholar] [CrossRef]
- Piciullo, L.; Gariano, S.L.; Melillo, M.; Brunetti, M.T.; Peruccacci, S.; Guzzetti, F.; Calvello, M. Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides. Landslides 2017, 14, 995–1008. [Google Scholar] [CrossRef]
- Krøgli, I.K.; Devoli, G.; Colleuille, H.; Boje, S.; Sund, M.; Engen, I.K. The Norwegian forecasting and warning service for rainfall- and snowmelt-induced landslides. Nat. Hazards Earth Syst. Sci. 2018, 18, 1427–1450. [Google Scholar] [CrossRef] [Green Version]
- Baum, R.L.; Godt, J.W. Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 2010, 7, 259–272. [Google Scholar] [CrossRef]
- Calvello, M.; d’Orsi, R.N.; Piciullo, L.; Paes, N.; Magalhaes, M.; Lacerda, W.A. The Rio de Janeiro early warning system for rainfall-induced landslides: Analysis of performance for the years 2010–2013. Int. J. Disaster Reduct. 2015, 15, 3–15. [Google Scholar] [CrossRef]
- Hadmoko, D.S.; Lavigne, F.; Sartohadi, J.; Hadi, P.; Winaryo. Landslide hazard and risk assessment and their application in risk management and landuse planning in eastern flank of Menoreh Mountains, Yogyakarta Province, Indonesia. Nat. Hazards 2010, 54, 623–642. [Google Scholar] [CrossRef]
- Cepeda, J.; Smebye, H.; Vangelsten, B.; Nadim, F.; Muslim, D. Landslide risk in Indonesia, Global assessment report on disaster risk reduction. ISDR 2010, 20. Available online: https://www.preventionweb.net/english/hyogo/gar/2011/en/bgdocs/Cepeda_et_al._2010.pdf (accessed on 18 October 2019).
- Christanto, N.; Hadmoko, D.S.; Westen, C.J.; Lavigne, F.; Sarto-Hadi, J.; Setiawan, M.A. Characteristic and behaviour of rainfall induced landslides in Java Island, Indonesia: An overview. Geophys. Res. Abstr. 2008, 11, 4069. [Google Scholar]
- Kyi, S.S.; Nguyen, T.D.; Aoki, K.; Mito, Y.; Suryolelono, K.B.; Karnawati, D.; Pramumijoyo, S. Landslide risk microzonation by using multivariate statistical analysis and GIS. Int. J. Jpn. Comm. Rock Mech. 2007, 3, 7–15. [Google Scholar] [CrossRef]
- Umar, Z.; Pradhan, B.; Ahmad, A.; Jebur, M.N.; Tehrany, M.S. Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena 2014, 118, 124–135. [Google Scholar] [CrossRef]
- Karnawati, D.; Fathani, T.F.; Ignatius, S.; Andayani, B.; Legowo, D.; Burton, P.W. Landslide hazard and community-based risk reduction effort in Karanganyar and the surrounding area, Central Java, Indonesia. J. Mt. Sci. 2011, 8, 149–153. [Google Scholar] [CrossRef]
- Fathani, T.F.; Karnawati, D.; Wilopo, W. An integrated methodology to develop a standard for landslide early warning system. Nat. Hazards Earth Syst. Sci. 2016, 16, 2123–2135. [Google Scholar] [CrossRef]
- Weerts, A.H.; Schellekens, J.; dan Weiland, F.S. Real-time geospatial data handling and forecasting: Examples from Delft–FEWS forecasting platform/system. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 386–394. [Google Scholar] [CrossRef]
- Werner, M.; Schellekens, J.; Gijsbers, P.; van Dijk, M.; van den Akker, O.; Heynert, K. The Delft–FEWS flow forecasting system. Environ. Modell. Softw. 2013, 40, 65–77. [Google Scholar] [CrossRef]
- Aldrian, E.; Susanto, R.D. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol. 2003, 23, 1435–1452. [Google Scholar] [CrossRef]
- Supari; Tangang, F.; Juneng, L.; Aldrian, E. Observed changes in extreme temperature and precipitation over Indonesia. Int. J. Climatol. 2017, 37, 1979–1997. [Google Scholar] [CrossRef]
- Bani, P.; Surono; Hendrasto, M.; Gunawan, H.; Primulyana, P. Sulfur dioxide emissions from Papandayan and Bromo, two Indonesian Volcanoes. Nat. Hazards Earth Syst. Sci. 2013, 13, 2399–2407. [Google Scholar] [CrossRef]
- Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS-A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, version 2.0; U.S. Geological Survey Open-File Report 2008-1159; Reston, Virginia, 2008; p. 75. Available online: https://pubs.usgs.gov/of/2008/1159/ (accessed on 18 October 2019).
- Schumacher, C.; dan Houze, R.A., Jr. Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Clim. 2003, 16, 1739–1756. [Google Scholar] [CrossRef]
- Schumacher, C.; Houze, R.A., Jr.; dan Kraucunas, I. The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Clim. 2004, 61, 1341–1358. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolf, D.B. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Vernimmen, R.R.E.; Hooijer, A.; Aldrian, E.; Van Dijk, A.I.J.M. Evaluation and bias correction of satellite rainfall data for drought monitoring in Indonesia. Hydrol. Earth Syst. Sci. 2012, 16, 133–146. [Google Scholar] [CrossRef] [Green Version]
- Glade, T.; Crozier, M.; Smith, P. Applying probability determination to refine landslide-triggering rainfall threshold using an empirical antecedent daily rainfall model. Pure Appl. Geophys. 2000, 157, 1059–1079. [Google Scholar] [CrossRef]
- Cardinali, M.; Galli, M.; Guzzetti, F.; Ardizzone, F.; Reichenbach, P.; Bartoccini, P. Rainfall induced landslides in December 2004 in Southwestern Umbria, Central Italy. Nat. Hazards Earth Syst. Sci. 2006, 6, 237–260. [Google Scholar] [CrossRef]
- Guo, X.-J.; Cui, P.; Li, Y. Debris flow warning threshold based on antecedent rainfall: A case study in Jiangjia Ravine, Yunnan, China. J. Mt. Sci. 2013, 10, 305–314. [Google Scholar] [CrossRef]
- Mathew, J.; Babu, D.G.; Kundu, S.; Kumar, K.V.; Pant, C.C. Integrating intensity-duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya, India. Landslides 2014, 11, 575–588. [Google Scholar] [CrossRef]
- Lee, S.; Won, J.-S.; Jeon, S.W.; Park, I.; Lee, M.J. Spatial landslide hazards prediction using rainfall probability and a logistic regression model. Math Geosci. 2015, 47, 565–589. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 267, 239–267. [Google Scholar] [CrossRef]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslide 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- Godt, J.W.; Baum, R.L.; Savage, W.Z.; Salciarini, D.; Schulz, W.H.; Harp, E.L. Transient deterministic shallow landslide modeling: Requirements for susceptibility and hazard assessments in a GIS framework. Eng. Geol. 2008, 102, 214–226. [Google Scholar] [CrossRef]
- Liao, Z.; Hong, Y.; Kirschbaum, D.; Adler, R.F.; Gourley, J.J.; Wooten, R. Evaluation of TRIGRS (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis)’s Predictive Skill for Hurricane-Triggered Landslides: A Case Study in Macon County, North Carolina. Nat. Hazards 2011, 58, 325–339. [Google Scholar] [CrossRef]
- Park, D.W.; Nikhil, N.V.; Lee, S.R. Landslide and Debris Flow Susceptibility Zonation using TRIGRS for the 2011 Seoul Landslide Event. Nat. Hazards Earth Syst. Sci. 2013, 13, 2833–2849. [Google Scholar] [CrossRef]
- Alvioli, M.; Baum, R.L. Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface. Environ. Modell. Softw. 2016, 81, 122–135. [Google Scholar] [CrossRef]
- Bordoni, M.; Meisina, C.; Valentino, R.; Bittelli, M.; Chersich, S. Site-specific to local-scale shallow landslides triggering zones assessment using TRIGRS. Nat. Hazards Earth Syst. Sci. 2015, 15, 1025–1050. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.T.; Ho, J.-Y. Prediction of landslide occurrence based on slope-instability analysis and hydrological model simulation. J. Hydrol. 2009, 375, 489–497. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, T.C.; Yu, F.C.; Lin, S.C. Analysis of time-varying rainfall infiltration induced landslide. Eng. Geol. 2005, 48, 466–479. [Google Scholar] [CrossRef]
- Glade, T. Landslide occurrence as a response to land use change: A review of evidence from New Zealand. Catena 2003, 51, 297–314. [Google Scholar] [CrossRef]
- Notti, D.; Galve, J.P.; Mateos, R.M.; Monserrat, O.; Lamas-Fernández, F.; Fernández-Chacón, F.; Roldán-Garcia, F.J.; Pérez-Peña, J.V.; Crosetto, M.; Azañón, J.M. Human-induced coastal landslide reactivation. Monitoring by PSInSAR techniques and urban damage survey (SE Spain). Landslides 2015, 12, 1007–1014. [Google Scholar] [CrossRef]
- Barnard, P.L.; Owen, L.A.; Sharma, M.C.; Finkel, R.C. Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology 2001, 40, 21–35. [Google Scholar] [CrossRef]
- Katz, O.; Crouvi, O. The geotechnical effects of long human habitation (2000 < years): Earthquake induced landslide hazard in the city of Zefat, northern Israel. Eng. Geol. 2007, 95, 57–78. [Google Scholar] [CrossRef]
- Lagomarsino, D.; Segoni, S.; Fanti, R.; Catani, F. Updating and tuning a regional-scale landslide early warning system. Landslide 2013, 10, 91–97. [Google Scholar] [CrossRef]
- Qian, J.-H. Why precipitation is mostly concentrated over islands in the maritime continent. J. Atmos. Sci. 2008, 65, 1428–1441. [Google Scholar] [CrossRef]
- Yanto; Livneh, B.; Rajagopalan, B. Data descriptor: Development of a gridded meteorological dataset over Java island, Indonesia 1985–2014. Sci. Data 2017, 4, 170072. [Google Scholar] [CrossRef] [PubMed]
- Tsaparas, I.; Rahardjo, H.; Toll, D.G.; Leong, E.C. Controlling parameters for rainfall-induced landslides. Comput. Geotech. 2002, 29, 1–27. [Google Scholar] [CrossRef]
- Montrasio, L.; Schilirò, L.; Terrone, A. Physical and numerical modeling of shallow landslides. Landslides 2016, 13, 873–883. [Google Scholar] [CrossRef]
- Iverson, R.M. Landslide triggering by rain infiltration. Water Res. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-Y.; Lee, S.-R.; Lee, D.-H.; Kim, Y.-T.; Lee, J.-S. A regional-scale landslide early warning methodology applying statistical and physically based approaches in sequence. Eng. Geol. 2019, 260, 105193. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidayat, R.; Sutanto, S.J.; Hidayah, A.; Ridwan, B.; Mulyana, A. Development of a Landslide Early Warning System in Indonesia. Geosciences 2019, 9, 451. https://doi.org/10.3390/geosciences9100451
Hidayat R, Sutanto SJ, Hidayah A, Ridwan B, Mulyana A. Development of a Landslide Early Warning System in Indonesia. Geosciences. 2019; 9(10):451. https://doi.org/10.3390/geosciences9100451
Chicago/Turabian StyleHidayat, Rokhmat, Samuel Jonson Sutanto, Alidina Hidayah, Banata Ridwan, and Arif Mulyana. 2019. "Development of a Landslide Early Warning System in Indonesia" Geosciences 9, no. 10: 451. https://doi.org/10.3390/geosciences9100451
APA StyleHidayat, R., Sutanto, S. J., Hidayah, A., Ridwan, B., & Mulyana, A. (2019). Development of a Landslide Early Warning System in Indonesia. Geosciences, 9(10), 451. https://doi.org/10.3390/geosciences9100451