An Improved Mapping with Super-Resolved Multispectral Images for Geostationary Satellites
Abstract
:1. Introduction
2. Methodology
2.1. Degradation Model of Remote Sensing Images
2.2. Mixed Sparse Representation Based on Non-Convex Higher-Order Total Variation
2.3. Classification of Multispectral Images using MSR-NCHOTV
2.4. Sub-Voxel-Level Joint Registration Between Image Bands
3. Experimental Data and Pretreatment
3.1. Experimental Data
3.2. Research Area
3.3. Experimental Process
4. Experimental Results and Analysis
4.1. Evaluation of Image Quality
4.2. Experiment 1
4.3. Experiment 2
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations and Variables
SR | Super-resolution |
MSR-NCHOTV | Mixed sparse representation non-convex high-order total variation |
SVM | Support vector machine |
BI | Bilinear interpolation |
POCS | Projection onto convex sets |
IBP | Iterative back projection |
MLC | Maximum likelihood classification |
RFC | Random forest classifiers |
SRM | Super-resolution mapping |
TV | Total variation |
OGSTV | Overlapping group sparsity total variation |
ADMM | Alternating direction method of multipliers |
yi | Low-resolution multispectral image recorded by sensor i |
u | Ideal multispectral dataset obtained by sampling a continuous scene at high-resolution |
D | A subsampling matrix reflecting the difference in the expected resolution and the actual resolution of the sensor |
Overlapping group sparse regularizer | |
Denotes weights for the contribution of the image spatial domain model | |
Characteristic (indication) function | |
Penalty parameter or regularization parameter | |
μ | The Lagrange multipliers associated with the constraints |
FFT | Fourier transform |
SIFT | Scale invariant feature transform |
SURF | Speed-up robust feature |
ORB | Oriented fast and rotated brief |
RANSAC | Random sample consensus |
SNR | Signal-to-noise ratio |
KNN | K nearest neighbors |
MLELM-AE | Multi-layer extreme learning machine-based autoencoders |
FSAM-AL | Fuzziness and spectral angle mapper-based active learning |
OA | Overall accuracy |
References
- Lindsey, D.T.; Nam, S.; Miller, S.D. Tracking oceanic nonlinear internal waves in the Indonesian seas from geostationary orbit. Remote Sens. Environ. 2018, 208, 202–209. [Google Scholar] [CrossRef]
- Fang, L.; Zhan, X.; Schull, M.; Kalluri, S.; Laszlo, I.; Yu, P.; Carter, C.; Hain, C.; Anderson, M. Evapotranspiration Data Product from NESDIS GET-D System Upgraded for GOES-16 ABI Observations. Remote Sens. 2019, 11, 2639. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Hong, S. Deep Learning-Generated Nighttime Reflectance and Daytime Radiance of the Midwave Infrared Band of a Geostationary Satellite. Remote Sens. 2019, 11, 2713. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Zhang, Y.; Liang, S.; Yu, Y.; Wang, D. Developing Land Surface Directional Reflectance and Albedo Products from Geostationary GOES-R and Himawari Data: Theoretical Basis, Operational Implementation, and Validation. Remote Sens. 2019, 11, 2655. [Google Scholar] [CrossRef] [Green Version]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Han, W.; Gao, Z.; Yin, R.; Zheng, Y. Denoising Algorithm for the FY-4A GIIRS Based on Principal Component Analysis. Remote Sens. 2019, 11, 2710. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Gao, X.; Li, Z.; Jia, D.; Jiang, J. Nowcasting of Surface Solar Irradiance Using FengYun-4 Satellite Observations over China. Remote Sens. 2019, 11, 1984. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Ren, H.; Qin, Q.; Sun, Y. Snow Cover Monitoring with Chinese Gaofen-4 PMS Imagery and the Restored Snow Index (RSI) Method: Case Studies. Remote Sens. 2018, 10, 1871. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; He, L. System Noise Removal for Gaofen-4 Area-Array Camera. Remote Sens. 2018, 10, 759. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Lu, Q.; Hu, X.; Gu, S.; Yang, L.; Min, M.; Chen, L.; Xu, N.; Sun, L.; Bai, W.; et al. Latest progress of the Chinese meteorological satellite program and core data processing technologies. Adv. Atmos. Sci. 2019, 36, 1027–1045. [Google Scholar] [CrossRef]
- Tao, Y.; Muller, J.P. Super-Resolution Restoration of MISR Images Using the UCL MAGiGAN System. Remote Sens. 2019, 11, 52. [Google Scholar] [CrossRef] [Green Version]
- Almeida, C.A.; Coutinho, A.C.; Esquerdo, J.C.D.M.; Adami, M.; Venturieri, A.; Diniz, C.G.; Dessay, N.; Durieux, L.; Gomes, A.R. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amaz. 2016, 46, 291–302. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, Y.; Heuvelink, G.B.; Hu, J.; Jiang, Y. Hybrid constraints of pure and mixed pixels for soft-then-hard super-resolution mapping with multiple shifted images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2040–2052. [Google Scholar] [CrossRef]
- Jain, A.D.; Makris, N.C. Maximum Likelihood Deconvolution of Beamformed Images with Signal-Dependent Speckle Fluctuations from Gaussian Random Fields: With Application to Ocean Acoustic Waveguide Remote Sensing (OAWRS). Remote Sens. 2016, 8, 694. [Google Scholar] [CrossRef] [Green Version]
- Chatziantoniou, A.; Psomiadis, E.; Petropoulos, G.P. Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning. Remote Sens. 2017, 9, 1259. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cao, G.; Li, X.; Wang, B.; Fu, P. Active Semi-Supervised Random Forest for Hyperspectral Image Classification. Remote Sens. 2019, 11, 2974. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Chen, Y.; Xu, T.; Liu, R.; Shi, K.; Huang, C. Super-resolution mapping of wetland inundation from remote sensing imagery based on integration of back-propagation neural network and genetic algorithm. Remote. Sens. Environ. 2015, 164, 142–154. [Google Scholar] [CrossRef]
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 2015, 18, 251–259. [Google Scholar] [CrossRef] [Green Version]
- De Philippis, G.; Lamboley, J.; Pierre, M.; Velichkov, B. Regularity of minimizers of shape optimization problems involving perimeter. J Math Pure Appl. 2018, 109, 147–181. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Li, P.; Jin, H.; Tian, Y.; Chen, Y.; Zhang, X. Improving Super-Resolution Mapping by Combining Multiple Realizations Obtained Using the Indicator-Geostatistics Based Method. Remote Sens. 2017, 9, 773. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Xu, X.; Plaza, A.; Xie, H.; Pan, H.; Cao, W.; Lv, D. A new genetic method for subpixel mapping using hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4480–4491. [Google Scholar] [CrossRef]
- He, D.; Zhong, Y.; Feng, R.; Zhang, L. Spatial-temporal sub-pixel mapping based on swarm intelligence theory. Remote. Sens. 2016, 8, 894. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Zhong, Y.; Xu, X.; Zhang, L. Adaptive sparse subpixel mapping with a total variation model for remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2855–2872. [Google Scholar] [CrossRef]
- Xu, X.; Tong, X.; Plaza, A.; Zhong, Y.; Zhang, L. Joint sparse sub-pixel mapping model with endmember variability for remotely sensed imagery. Remote Sens. 2017, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.S.; Kim, J.O. Noise-Robust Iterative Back-Projection. IEEE Trans. Image Process 2019, 29, 1219–1232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, Z.; Zhang, L.; Shen, H. SRR for multi-angle remote sensing images considering resolution differences. Remote Sens. 2014, 6, 637–657. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Xin, L.; Guo, Y.; Gao, J.; Jia, X. A framework of mixed sparse representations for remote sensing images. IEEE Trans. Geosci, Remote Sens. 2016, 55, 1210–1221. [Google Scholar] [CrossRef]
- Sun, L.; Zhan, T.; Wu, Z.; Xiao, L.; Jeon, B. Hyperspectral Mixed Denoising via Spectral Difference-Induced Total Variation and Low-Rank Approximation. Remote Sens. 2018, 10, 1956. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Liu, L. Hyperspectral Image Super-Resolution Inspired by Deep Laplacian Pyramid Network. Remote Sens. 2018, 10, 1939. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Huang, T.Z.; Liu, G.; Wang, S.; Lv, X.G. Total variation with overlapping group sparsity for speckle noise reduction. Neurocomputing 2016, 216, 502–513. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, T.Z.; Deng, L.J.; Zhao, X.L. Group sparsity based regularization model for remote sensing image stripe noise removal. Neurocomputing 2017, 267, 95–106. [Google Scholar] [CrossRef]
- Shao, Z.; Wang, L.; Wang, Z.; Deng, J. Remote Sensing Image Super-Resolution Using Sparse Representation and Coupled Sparse Autoencoder. IEEE J. STARS. 2019, 12, 2663–2674. [Google Scholar] [CrossRef]
- Yang, X.; Li, F.; Xin, L.; Zhang, N.; Lu, X.; Xiao, H. Finer scale mapping with super-resolved GF-4 satellite images. In Proceedings of the Image and Signal Processing for Remote Sensing XXV, Strasbourg, France, 9–11 September 2019; Volume 11155, p. 111550A. [Google Scholar]
- Wu, C.; Tai, X.C. Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Image Sci. 2010, 3, 300–339. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, J.; Yin, W.; Zhang, Y. A New Alternating Minimization Algorithm for Total Variation Image Reconstruction. SIAM J. Imaging Sci. 2008, 1, 248–272. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Huang, L.-C.; Yang, M.-H.; Chang, L.-H.; Liu, C.-H. Enhanced Noisy Sparse Subspace Clustering via Reweighted L1-Minimization†. In Proceedings of the 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP), Aalborg, Denmark, 17–20 September 2018. [Google Scholar]
- Adam, T.; Paramesran, R. Hybrid non-convex second-order total variation with applications to non-blind image deblurring. Signal Image Video Process. 2019, 14, 115–123. [Google Scholar] [CrossRef]
- Condat, L. Discrete total variation: New definition and minimization. SIAM J. Image Sci. 2017, 10, 1258–1290. [Google Scholar] [CrossRef] [Green Version]
- Bao, H.; Li, Z.L.; Chai, F.M.; Yang, H.S. Filter wheel mechanism for optical remote sensor in geostationary orbit. Opt. Precis. Eng. 2015, 23, 11. [Google Scholar]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011. [Google Scholar]
- Tareen, S.A.K.; Saleem, Z. A comparative analysis of sift, surf, kaze, akaze, orb, and brisk. In Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 3–4 March 2018. [Google Scholar]
- Nasihatkon, B.; Fejne, F.; Kahl, F. Globally optimal rigid intensity based registration: A fast fourier domain approach. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 5936–5944. [Google Scholar]
- Acosta, B.M.T.; Heiligenstein, X.; Malandain, G.; Bouthemy, P. Intensity-based matching and registration for 3D correlative microscopy with large discrepancies. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 493–496. [Google Scholar]
- Yang, A.; Zhong, B.; Wu, S.; Liu, Q. Radiometric Cross-Calibration of GF-4 in Multispectral Bands. Remote Sens. 2017, 9, 232. [Google Scholar] [CrossRef] [Green Version]
- Hossein-Nejad, Z.; Nasri, M. A-RANSAC: Adaptive random sample consensus method in multimodal retinal image registration. Biomed. Signal Process. 2018, 45, 325–338. [Google Scholar] [CrossRef]
- Crété, F.; Dolmiere, T.; Ladret, P.; Nicolas, M. The blur effect: Perception and estimation with a new no-reference perceptual blur metric. In Proceedings of the Human Vision and Electronic Imaging XII, San Jose, CA, USA, 29 January–1 February 2007; Volume 6492, p. 64920. [Google Scholar]
- Jiehai, C.; Yanchen, B. A method for measuring signal-to-noise ratio of high spatial resolution remote sensing images. Remote Sens. Technol. Appl. 2015, 30, 469–475. [Google Scholar]
- Ahmad, M.; Protasov, S.; Khan, A.M.; Hussain, R.; Khattak, A.M.; Khan, W.A. Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers. PLoS ONE 2018, 13, e0188996. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Khan, A.; Mazzara, M.; Distefano, S. Multi-layer Extreme Learning Machine-based Autoencoder for Hyperspectral Image Classification. In Proceedings of the 14th International Conference on Computer Vision Theory and Applications (VISAPP’19), Prague, Czech Republi, 25–27 February 2019; pp. 75–82. [Google Scholar]
- Ahmad, M.; Khan, A.; Khan, A.M.; Mazzara, M.; Distefano, S.; Sohaib, A.; Nibouche, O. Spatial prior fuzziness pool-based interactive classification of hyperspectral images. Remote Sens. 2019, 11, 1136. [Google Scholar] [CrossRef] [Green Version]
Reference Band | Registration Band | X Direction Mean Value (Pixels) | Y Direction Mean Value (Pixels) | Valid Points | Spatial Resolution (M) | X Direction Distance (M) | Y Direction Distance (M) |
---|---|---|---|---|---|---|---|
Band 1 | Band 2 | 1.39 | 1.81 | 70 | 50 | 69.35 | 90.27 |
Band 1 | Band 3 | 1.68 | 0.88 | 73 | 50 | 83.92 | 44.02 |
Band 1 | Band 4 | 1.83 | 1.14 | 72 | 50 | 91.71 | 56.85 |
Band 1 | Band 5 | 3.41 | 1.39 | 66 | 50 | 170.62 | 69.51 |
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | |
---|---|---|---|---|---|
BI | 0.60 | 0.61 | 0.66 | 0.48 | 0.65 |
POCS | 0.47 | 0.38 | 0.42 | 0.34 | 0.51 |
IBP | 0.48 | 0.39 | 0.44 | 0.28 | 0.51 |
MSR-NCHOTV | 0.45 | 0.36 | 0.41 | 0.24 | 0.46 |
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | |
---|---|---|---|---|---|
BI | 115.41 | 229.24 | 162.92 | 124.69 | 128.81 |
POCS | 167.38 | 288.34 | 212.09 | 155.30 | 138.26 |
IBP | 166.71 | 285.37 | 210.86 | 132.18 | 136.48 |
MSR-NCHOTV | 192.56 | 384.29 | 267.71 | 247.88 | 203.01 |
OA (%) | Kappa | |
---|---|---|
BI | 68.04 | 0.59 |
POCS | 72.94 | 0.65 |
IBP | 88.82 | 0.86 |
MSR-NCHOTV | 92.75 | 0.91 |
Land Use Type | BI | POCS | IBP | MSR-NCHOTV | ||||
---|---|---|---|---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | |
Buildings | 64.23 | 64.23 | 65.04 | 72.07 | 92.68 | 86.36 | 94.31 | 89.23 |
Vegetation | 93.91 | 73.47 | 96.52 | 76.55 | 98.26 | 93.39 | 100 | 95.83 |
Water | 76.09 | 78.95 | 81.16 | 84.85 | 94.2 | 99.24 | 93.48 | 100 |
Soil | 16.87 | 37.84 | 33.73 | 49.12 | 59.04 | 83.05 | 74.7 | 92.54 |
Beach | 80.39 | 58.57 | 80.39 | 63.08 | 92.16 | 70.15 | 100 | 79.69 |
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | |
---|---|---|---|---|---|
BI | 0.49 | 0.44 | 0.51 | 0.38 | 0.65 |
POCS | 0.34 | 0.31 | 0.33 | 0.28 | 0.35 |
IBP | 0.40 | 0.39 | 0.41 | 0.32 | 0.39 |
MSR-NCHOTV | 0.28 | 0.27 | 0.30 | 0.25 | 0.29 |
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | |
---|---|---|---|---|---|
BI | 123.61 | 209.96 | 143.56 | 35.23 | 118.13 |
POCS | 114.35 | 131.30 | 136.53 | 42.34 | 215.51 |
IBP | 167.91 | 134.80 | 165.86 | 62.28 | 260.93 |
MSR-NCHOTV | 351.50 | 304.09 | 382.63 | 247.88 | 340.64 |
OA (%) | Kappa | |
---|---|---|
BI | 72.92 | 0.66 |
POCS | 79.17 | 0.74 |
IBP | 83.33 | 0.79 |
MSR-NCHOTV | 93.40 | 0.91 |
BI | POCS | IBP | MSR-NCHOTV | |||||
---|---|---|---|---|---|---|---|---|
PA | UA | PA | UA | PA | UA | PA | UA | |
Buildings | 58.33% | 66.67% | 95.83% | 92.00% | 100.00% | 100.00% | 88.89% | 100.0% |
Vegetation | 75.51% | 88.10% | 81.63% | 88.89% | 77.55% | 88.37% | 98.57% | 83.13% |
Water | 60.47% | 70.27% | 72.09% | 62.00% | 69.77% | 73.17% | 88.12% | 100.00% |
Farmland | 90.00% | 66.67% | 97.50% | 84.78 | 92.50% | 84.09% | 95.12% | 93.41% |
Beach | 75.00% | 71.05% | 52.78% | 73.08 | 86.11% | 77.50% | 100.00% | 88.89% |
SRR Method | Band 1 (%) | Band 2 (%) | Band 3 (%) | Band 4 (%) | Band 5 (%) | Average (%) | |
---|---|---|---|---|---|---|---|
Image Sharpness | BI | 33.93 | 39.81 | 39.53 | 42.11 | 42.31 | 39.54 |
POCS | 10.96 | 9.08 | 5.735 | 20.06 | 13.47 | 11.86 | |
IBP | 18.13 | 19.23 | 16.83 | 18.09 | 17.72 | 18.00 | |
Image SNR | BI | 52.45 | 35.65 | 50.81 | 67.75 | 50.94 | 51.52 |
POCS | 40.28 | 40.90 | 42.55 | 60.14 | 34.31 | 43.63 | |
IBP | 32.83 | 40.71 | 38.95 | 60.78 | 28.09 | 40.27 |
Experiment 1 | Experiment 2 | Average Value | ||||
---|---|---|---|---|---|---|
OA (%) | Kappa (%) | OA (%) | Kappa (%) | OA (%) | Kappa (%) | |
POCS | 7.20 | 10.77 | 8.57 | 11.93 | 7.89 | 11.35 |
IBP | 30.55 | 45.14 | 14.29 | 20.03 | 22.42 | 32.59 |
MSR-NCHOTV | 36.31 | 53.64 | 28.08 | 38.64 | 32.20 | 46.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Li, F.; Xin, L.; Lu, X.; Lu, M.; Zhang, N. An Improved Mapping with Super-Resolved Multispectral Images for Geostationary Satellites. Remote Sens. 2020, 12, 466. https://doi.org/10.3390/rs12030466
Yang X, Li F, Xin L, Lu X, Lu M, Zhang N. An Improved Mapping with Super-Resolved Multispectral Images for Geostationary Satellites. Remote Sensing. 2020; 12(3):466. https://doi.org/10.3390/rs12030466
Chicago/Turabian StyleYang, Xue, Feng Li, Lei Xin, Xiaotian Lu, Ming Lu, and Nan Zhang. 2020. "An Improved Mapping with Super-Resolved Multispectral Images for Geostationary Satellites" Remote Sensing 12, no. 3: 466. https://doi.org/10.3390/rs12030466
APA StyleYang, X., Li, F., Xin, L., Lu, X., Lu, M., & Zhang, N. (2020). An Improved Mapping with Super-Resolved Multispectral Images for Geostationary Satellites. Remote Sensing, 12(3), 466. https://doi.org/10.3390/rs12030466