Diagnosis of Occlusal Caries with Dynamic Slicing of 3D Optical Coherence Tomography Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Photography and X-ray Imaging
2.3. Optical Coherence Tomography
2.4. Scoring by Examiners
- 0:
- Intact;
- 1:
- Enamel demineralization without cavitation;
- 2:
- Enamel caries with cavitation;
- 3:
- Open or unopened dentin caries with or without cavitation.
2.5. Validation of the Actual Scores
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Young, D.A.; Nový, B.B.; Zeller, G.G.; Hale, R.; Hart, T.C.; Truelove, E.L.; Ekstrand, K.R.; Featherstone, J.D.B.; Fontana, M.; Ismail, A.; et al. The American Dental Association Caries Classification System for clinical practice: A report of the American Dental Association Council on Scientific Affairs. J. Am. Dent. Assoc. 2015, 146, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Jordan, R.A.; Krois, J.; Schiffner, U.; Micheelis, W.; Schwendicke, F. Trends in caries experience in the permanent dentition in Germany 1997–2014, and projection to 2030: Morbidity shifts in an aging society. Sci. Rep. 2019, 9, 5534. [Google Scholar] [CrossRef]
- Kaste, L.M.; Selwitz, R.H.; Oldakowski, R.J.; Brunelle, J.A.; Winn, D.M.; Brown, L.J. Coronal caries in the primary and permanent dentition of children and adolescents 1–17 years of age: United States, 1988–1991. J. Dent. Res. 1996, 75, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Demirci, M.; Tuncer, S.; Yuceokur, A.A. Prevalence of caries on individual tooth surfaces and its distribution by age and gender in university clinic patients. Eur. J. Dent. 2010, 4, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Ricketts, D.; Kidd, E.; Weerheijm, K.L.; de Soet, H. Hidden caries: What is it? Does it exist? Does it matter? Int. Dent. J. 1997, 47, 259–265. [Google Scholar] [CrossRef]
- Jones, R.S.; Darling, C.L.; Featherstone, J.D.; Fried, D. Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography. Caries Res. 2006, 40, 81–89. [Google Scholar] [CrossRef]
- Weerheijm, K.L.; Kidd, E.A.; Groen, H.J. The effect of fluoridation on the occurrence of hidden caries in clinically sound occlusal surfaces. Caries Res. 1997, 31, 30–34. [Google Scholar] [CrossRef]
- Sugiura, M.; Kitasako, Y.; Sadr, A.; Shimada, Y.; Sumi, Y.; Tagami, J. White spot lesion remineralization by sugar-free chewing gum containing bio-available calcium and fluoride: A double-blind randomized controlled trial. J. Dent. 2016, 54, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Bader, J.D.; Shugars, D.A. The evidence supporting alternative management strategies for early occlusal caries and suspected occlusal dentinal caries. J. Evid. Based Dent. Pract. 2006, 6, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Espigares, J.; Sadr, A.; Hamba, H.; Shimada, Y.; Otsuki, M.; Tagami, J.; Sumi, Y. Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography. J. Med. Imaging 2015, 2, 014001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenzel, A.; Fejerskov, O. Validity of diagnosis of questionable caries lesions in occlusal surfaces of extracted third molars. Caries Res. 1992, 26, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Kuhnisch, J.; Dietz, W.; Stosser, L.; Hickel, R.; Heinrich-Weltzien, R. Effects of dental probing on occlusal surfaces—A scanning electron microscopy evaluation. Caries Res. 2007, 41, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segarra, M.S.; Shimada, Y.; Sadr, A.; Sumi, Y.; Tagami, J. Three-Dimensional analysis of enamel crack behavior using optical coherence tomography. J. Dent. Res. 2017, 96, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.; Sadr, A.; Burrow, M.F.; Tagami, J.; Ozawa, N.; Sumi, Y. Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries. J. Dent. 2010, 38, 655–665. [Google Scholar] [CrossRef]
- Ei, T.Z.; Shimada, Y.; Abdou, A.; Sadr, A.; Yoshiyama, M.; Sumi, Y.; Tagami, J. Three-dimensional assessment of proximal contact enamel using optical coherence tomography. Dent. Mater. 2019, 35, e74–e82. [Google Scholar] [CrossRef] [PubMed]
- Dao Luong, M.N.; Shimada, Y.; Turkistani, A.; Tagami, J.; Sumi, Y.; Sadr, A. Fractography of interface after microtensile bond strength test using swept-source optical coherence tomography. Dent. Mater. 2016, 32, 862–869. [Google Scholar] [CrossRef]
- Nakajima, Y.; Shimada, Y.; Sadr, A.; Wada, I.; Mayashin, M.; Takagi, Y.; Tagami, J.; Sumi, Y. Detection of occlusal caries in primary teeth using swept source optical coherence tomography. J. Biomed. Opt. 2014, 19, 1602013. [Google Scholar] [CrossRef]
- Shimada, Y.; Nakagawa, H.; Sadr, A.; Wada, I.; Nakajima, M.; Nikaido, T.; Otsuki, M.; Tagami, J.; Sumi, Y. Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo. J. Biophotonics. 2014, 7, 506–513. [Google Scholar] [CrossRef]
- Nakagawa, H.; Sadr, A.; Shimada, Y.; Tagami, J.; Sumi, Y. Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro. J. Dent. 2013, 41, 80–89. [Google Scholar] [CrossRef]
- Ismail, A.I.; Sohn, W.; Tellez, M.; Amaya, A.; Sen, A.; Hasson, H.; Pitts, N.B. The International Caries Detection and Assessment System (ICDAS): An integrated system for measuring dental caries. Community Dent. Oral Epidemiol. 2007, 35, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Bozdemir, E.; Karaarslan, E.S.; Ozsevik, A.S.; Ata Cebe, M.; Aktan, A.M. In vivo performance of two devices for occlusal caries detection. Photomed. Laser Surg. 2013, 31, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, R.N.; Letieri, A.D.S.; Vieira, T.I.; Santos, T.M.P.; Neves, A.A.; Pomarico, L. Accuracy of visual and image-based ICDAS criteria compared with a micro-CT gold standard for caries detection on occlusal surfaces. Braz. Oral. Res. 2018, 32, e60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricketts, D.N.; Kidd, E.A.; Smith, B.G.; Wilson, R.F. Clinical and radiographic diagnosis of occlusal caries: A study in vitro. J. Oral. Rehab. 1995, 22, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Van Amerongen, J.P.; Penning, C.; Kidd, E.A.; Ten Cate, J.M. An in vitro assessment of the extent of caries under small occlusal cavities. Caries Res. 1992, 26, 89–93. [Google Scholar] [CrossRef]
- Rocha, R.O.; Ardenghi, T.M.; Oliveira, L.B.; Rodrigues, C.R.; Ciamponi, A.L. In vivo effectiveness of laser fluorescence compared to visual inspection and radiography for the detection of occlusal caries in primary teeth. Caries Res. 2003, 37, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Huysmans, M.C.; Longbottom, C.; Pitts, N. Electrical methods in occlusal caries diagnosis: An in vitro comparison with visual inspection and bite-wing radiography. Caries Res. 1998, 32, 324–329. [Google Scholar] [CrossRef]
- Ekstrand, K.R.; Ricketts, D.N.; Kidd, E.A. Reproducibility and accuracy of three methods for assessment of demineralization depth of the occlusal surface: An in vitro examination. Caries Res. 1997, 31, 224–231. [Google Scholar] [CrossRef]
- Dove, S.B. Radiographic diagnosis of dental caries. J. Dent. Educ. 2001, 65, 985–990. [Google Scholar]
- Wenzel, A. Digital radiography and caries diagnosis. Dentomaxillofac. Radiol. 1998, 27, 3–11. [Google Scholar] [CrossRef]
- Rodrigues, J.A.; Hug, I.; Diniz, M.B.; Lussi, A. Performance of fluorescence methods, radiographic examination and ICDAS II on occlusal surfaces in vitro. Caries Res. 2008, 42, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Anttonen, V.; Seppa, L.; Hausen, H. Clinical study of the use of the laser fluorescence device DIAGNOdent for detection of occlusal caries in children. Caries Res. 2003, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Burin, C.; Burin, C.; Loguercio, A.D.; Grande, R.H.; Reis, A. Occlusal caries detection: A comparison of a laser fluorescence system and conventional methods. Pediatr. Dent. 2005, 27, 307–312. [Google Scholar] [PubMed]
- Lussi, A.; Francescut, P. Performance of conventional and new methods for the detection of occlusal caries in deciduous teeth. Caries Res. 2003, 37, 2–7. [Google Scholar] [CrossRef]
- Hariri, I.; Sadr, A.; Nakashima, S.; Shimada, Y.; Tagami, J.; Sumi, Y. Estimation of the enamel and dentin mineral content from the refractive index. Caries Res. 2013, 47, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Hariri, I.; Sadr, A.; Shimada, Y.; Tagami, J.; Sumi, Y. Effects of structural orientation of enamel and dentin on light attenuation and local refractive index: An optical coherence tomography study. J. Dent. 2012, 40, 387–396. [Google Scholar] [CrossRef] [PubMed]
Examiner | Methods | Sensitivity | Specificity | Az of ROC | ||||
---|---|---|---|---|---|---|---|---|
0 Versus 1–3 | 0–1 Versus 2–3 | 0–2 Versus 3 | 0 Versus 1–3 | 0–1 Versus 2–3 | 0–2 Versus 3 | |||
1 | OCT | 1.000 | 0.788 | 0.818 | 0.667 | 0.667 | 0.769 | 0.849 |
X-ray | 0.917 | 0.697 | 0.727 | 0.600 | 0.700 | 0.731 | 0.819 | |
2 | OCT | 0.979 | 0.939 | 0.909 | 0.800 | 0.633 | 0.596 | 0.751 |
X-ray | 0.896 | 0.909 | 0.818 | 0.800 | 0.633 | 0.654 | 0.745 | |
3 | OCT | 0.917 | 0.788 | 0.909 | 0.933 | 0.833 | 0.923 | 0.943 |
X-ray | 0.833 | 0.545 | 0.545 | 1.000 | 0.800 | 0.885 | 0.788 | |
4 | OCT | 0.958 | 0.667 | 0.545 | 0.600 | 0.667 | 0.942 | 0.802 |
X-ray | 0.875 | 0.576 | 0.364 | 0.800 | 0.767 | 0.962 | 0.787 | |
5 | OCT | 1.000 | 0.939 | 0.727 | 0.867 | 0.700 | 0.769 | 0.782 |
X-ray | 1.000 | 0.818 | 0.727 | 0.800 | 0.633 | 0.808 | 0.813 | |
6 | OCT | 0.917 | 0.697 | 0.909 | 0.867 | 0.767 | 0.846 | 0.905 |
X-ray | 0.521 | 0.394 | 0.455 | 0.867 | 0.933 | 0.942 | 0.798 | |
7 | OCT | 1.000 | 0.788 | 0.455 | 0.667 | 0.667 | 0.981 | 0.862 |
X-ray | 1.000 | 0.697 | 0.455 | 0.333 | 0.733 | 0.942 | 0.879 | |
8 | OCT | 0.833 | 0.636 | 0.364 | 1.000 | 0.933 | 0.962 | 0.845 |
X-ray | 0.792 | 0.545 | 0.636 | 1.000 | 0.900 | 0.962 | 0.836 | |
9 | OCT | 0.958 | 0.879 | 0.818 | 1.000 | 0.933 | 0.904 | 0.915 |
X-ray | 0.917 | 0.788 | 0.727 | 0.867 | 0.733 | 0.808 | 0.853 | |
10 | OCT | 0.771 | 0.636 | 0.364 | 0.867 | 0.900 | 0.981 | 0.848 |
X-ray | 0.833 | 0.424 | 0.455 | 1.000 | 0.867 | 0.962 | 0.818 | |
11 | OCT | 1.000 | 0.848 | 0.909 | 0.733 | 0.600 | 0.731 | 0.837 |
X-ray | 0.917 | 0.727 | 0.636 | 1.000 | 0.767 | 0.827 | 0.844 | |
12 | OCT | 0.979 | 0.879 | 0.909 | 0.733 | 0.700 | 0.865 | 0.879 |
X-ray | 0.896 | 0.818 | 0.545 | 0.867 | 0.667 | 0.885 | 0.781 | |
13 | OCT | 0.979 | 0.758 | 1.000 | 1.000 | 0.933 | 0.885 | 0.951 |
X-ray | 0.958 | 0.424 | 0.182 | 1.000 | 0.833 | 0.942 | 0.764 | |
Average (SD) | OCT | 0.946 a (0.068) | 0.788 c (0.102) | 0.741 e (0.219) | 0.826 g (0.132)a | 0.764 h (0.120) | 0.885 k (0.109) | 0.859 m (0.057) |
X-ray | 0.873 b (0.118) | 0.643 d (0.163) | 0.559 f (0.170) | 0.841 g (0.186) | 0.767 h (0.093) | 0.870 k (0.095) | 0.810 n (0.030) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luong, M.N.; Shimada, Y.; Araki, K.; Yoshiyama, M.; Tagami, J.; Sadr, A. Diagnosis of Occlusal Caries with Dynamic Slicing of 3D Optical Coherence Tomography Images. Sensors 2020, 20, 1659. https://doi.org/10.3390/s20061659
Luong MN, Shimada Y, Araki K, Yoshiyama M, Tagami J, Sadr A. Diagnosis of Occlusal Caries with Dynamic Slicing of 3D Optical Coherence Tomography Images. Sensors. 2020; 20(6):1659. https://doi.org/10.3390/s20061659
Chicago/Turabian StyleLuong, Minh N., Yasushi Shimada, Kazuyuki Araki, Masahiro Yoshiyama, Junji Tagami, and Alireza Sadr. 2020. "Diagnosis of Occlusal Caries with Dynamic Slicing of 3D Optical Coherence Tomography Images" Sensors 20, no. 6: 1659. https://doi.org/10.3390/s20061659
APA StyleLuong, M. N., Shimada, Y., Araki, K., Yoshiyama, M., Tagami, J., & Sadr, A. (2020). Diagnosis of Occlusal Caries with Dynamic Slicing of 3D Optical Coherence Tomography Images. Sensors, 20(6), 1659. https://doi.org/10.3390/s20061659