Resilience of Small Ruminants to Climate Change and Increased Environmental Temperature: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Scenario of Small Ruminant Production
3. Heat Stress as a Major Threat for Small Ruminant Production
4. Thermoregulatory Mechanisms in Small Ruminants
5. Genetic Differences in Heat Tolerance in Small Ruminants
5.1. Morphological Adaptation
5.2. Behavioral Adaptation
5.3. Physiological Adaptation
5.4. Cellular and Molecular Adaptation
5.5. Endocrine Adaptation
5.6. Metabolic Adaptation
5.7. Blood Biochemistry and Adaptation
6. The Potential for Genetic Improvement to Improve Resilience in Small Ruminants
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pachauri, R.K.; Meyer, L. Climate Change 2014 Synthesis Report-Summary for Policymakers; Intergovernmetnal Panel on Climate Change (IPCC): Geneva, Switzerland, 2014; pp. 120–151. [Google Scholar]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014; pp. 1450–1520. [Google Scholar]
- Baumgard, L.H.; Rhoads, R.P.; Rhoads, M.L.; Gabler, N.K.; Ross, J.W.; Keating, A.F.; Boddicker, R.L.; Lenka, S.; Sejian, V. Impact of climate change on livestock production. In Environmental Stress and Amelioration in Livestock Production; Springer: Heidelberg, Germany, 2012; pp. 413–468. [Google Scholar]
- Thornton, P.K.; van de Steeg, J.; Notenbaert, A.; Herrero, M. The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know. Agric. Syst. 2009, 101, 113–127. [Google Scholar] [CrossRef]
- Dangi, S.S.; Dangi, S.K.; Chouhan, V.; Verma, M.; Kumar, P.; Singh, G.; Sarkar, M. Modulatory effect of betaine on expression dynamics of hsps during heat stress acclimation in goat (capra hircus). Gene 2016, 575, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Renaudeau, D.; Collin, A.; Yahav, S.; De Basilio, V.; Gourdine, J.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [Green Version]
- Silanikove, N.; Koluman, N. Impact of climate change on the dairy industry in temperate zones: Predications on the overall negative impact and on the positive role of dairy goats in adaptation to earth warming. Small Rumin. Res. 2015, 123, 27–34. [Google Scholar] [CrossRef]
- Sejian, V.; Bahadur, S.; Naqvi, S.M. Effect of nutritional restriction on growth, adaptation physiology and estrous responses in malpura ewes. Anim. Biol. 2014, 64, 189–205. [Google Scholar] [CrossRef]
- Shilja, S.; Sejian, V.; Bagath, M.; Mech, A.; David, C.; Kurien, E.; Varma, G.; Bhatta, R. Adaptive capability as indicated by behavioral and physiological responses, plasma hsp70 level, and pbmc hsp70 mrna expression in osmanabadi goats subjected to combined (heat and nutritional) stressors. Int. J. Biometeorol. 2016, 60, 1311–1323. [Google Scholar] [CrossRef]
- Gowane, G.; Gadekar, Y.; Prakash, V.; Kadam, V.; Chopra, A.; Prince, L. Climate change impact on sheep production: Growth, milk, wool, and meat. In Sheep Production Adapting to Climate Change; Springer: Singapore, 2017; pp. 31–69. [Google Scholar]
- Gerosa, S.; Skoet, J. Milk Availability: Trends in Production and Demand and Medium-Term Outlook; Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA): Rome, Italy, 2012. [Google Scholar]
- Silanikove, N.; Leitner, G.; Merin, U.; Prosser, C. Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Rumin. Res. 2010, 89, 110–124. [Google Scholar] [CrossRef]
- FAO. Faostat Database; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; Volume 1. [Google Scholar]
- Sejian, V.; Maurya, V.P.; Naqvi, S.M. Adaptability and growth of malpura ewes subjected to thermal and nutritional stress. Trop. Anim. Health Prod. 2010, 42, 1763–1770. [Google Scholar] [CrossRef]
- Sevi, A.; Caroprese, M. Impact of heat stress on milk production, immunity and udder health in sheep: A critical review. Small Rumin. Res. 2012, 107, 1–7. [Google Scholar] [CrossRef]
- Rhoads, R.; La Noce, A.; Wheelock, J.; Baumgard, L. Alterations in expression of gluconeogenic genes during heat stress and exogenous bovine somatotropin administration. J. Dairy Sci. 2011, 94, 1917–1921. [Google Scholar] [CrossRef] [PubMed]
- Slimen, I.B.; Chniter, M.; Najar, T.; Ghram, A. Meta-analysis of some physiologic, metabolic and oxidative responses of sheep exposed to environmental heat stress. Livest. Sci. 2019, 229, 179–187. [Google Scholar] [CrossRef]
- Salama, A.; Caja, G.; Hamzaoui, S.; Badaoui, B.; Castro-Costa, A.; Facanha, D.; Guilhermino, M.; Bozzi, R. Different levels of response to heat stress in dairy goats. Small Rumin. Res. 2014, 121, 73–79. [Google Scholar] [CrossRef]
- Collins, F.G.; Mitros, F.A.; Skibba, J.L. Effect of palmitate on hepatic biosynthetic functions at hyperthermic temperatures. Metabolism 1980, 29, 524–531. [Google Scholar] [CrossRef]
- Smith, D.L.; Smith, T.; Rude, B.; Ward, S. Comparison of the effects of heat stress on milk and component yields and somatic cell score in holstein and jersey cows. J. Dairy Sci. 2013, 96, 3028–3033. [Google Scholar] [CrossRef]
- Peana, I.; Fois, G.; Cannas, A. Effects of heat stress and diet on milk production and feed and energy intake of sarda ewes. Ital. J. Anim. Sci. 2007, 6, 577–579. [Google Scholar] [CrossRef]
- Sano, H.; Ambo, K.; Tsuda, T. Blood glucose kinetics in whole body and mammary gland of lactating goats exposed to heat. J. Dairy Sci. 1985, 68, 2557–2564. [Google Scholar] [CrossRef]
- Brasil, L.H.d.A.; Wechesler, F.S.; Baccari Júnior, F.; Gonçalves, H.C.; Bonassi, I.A. Thermal stress effects on milk yield and chemical composition and thermoregulatory responses of lactating alpines goats. Rev. Bras. Zootecn. 2000, 29, 1632–1641. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.; Morrison, S.; Bradford, G. Effects of ambient temperature on milk production of nubian and alpine goats. J. Dairy Sci. 1988, 71, 2486–2490. [Google Scholar] [CrossRef]
- Kadim, I.; Mahgoub, O.; Al-Kindi, A.; Al-Marzooqi, W.; Al-Saqri, N. Effects of transportation at high ambient temperatures on physiological responses, carcass and meat quality characteristics of three breeds of omani goats. Meat Sci. 2006, 73, 626–634. [Google Scholar] [CrossRef]
- Archana, P.; Sejian, V.; Ruban, W.; Bagath, M.; Krishnan, G.; Aleena, J.; Manjunathareddy, G.; Beena, V.; Bhatta, R. Comparative assessment of heat stress induced changes in carcass traits, plasma leptin profile and skeletal muscle myostatin and hsp70 gene expression patterns between indigenous osmanabadi and salem black goat breeds. Meat Sci. 2018, 141, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.; Hashem, M.; Akhter, S.; Habibullah, M.; Islam, M.; Biswas, R. Effect of heat stress on carcass and meat quality of indigenous sheep of bangladesh. Bangladesh J. Anim. Sci. 2014, 43, 147–153. [Google Scholar] [CrossRef]
- Marai, I.; El-Darawany, A.; Fadiel, A.; Abdel-Hafez, M. Reproductive performance traits as affected by heat stress and its alleviation in sheep. Trop. Subtrop. Agroecosyst. 2008, 8, 209–234. [Google Scholar]
- Rahman, A.; Hossain, M.; Khan, M.; Kamal, M.; Hashem, M. Effect of heat stress on buck s adaptability and semen characteristics. J. Environ. Sci. Nat. Resour. 2016, 9, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, T.R.d.S.; Mendes, C.M.; Castro, L.S.d.; Assis, P.M.d.; Siqueira, A.F.P.; Delgado, J.d.C.; Goissis, M.D.; Muiño-Blanco, T.; Cebrián-Pérez, J.Á.; Nichi, M. Evaluation of lasting effects of heat stress on sperm profile and oxidative status of ram semen and epididymal sperm. Oxid. Med. Cell. Longev. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Dobson, H.; Fergani, C.; Routly, J.; Smith, R. Effects of stress on reproduction in ewes. Anim. Reprod. Sci. 2012, 130, 135–140. [Google Scholar] [CrossRef]
- Aleena, J.; Sejian, V.; Bagath, M.; Krishnan, G.; Beena, V.; Bhatta, R. Resilience of three indigenous goat breeds to heat stress based on phenotypic traits and pbmc hsp70 expression. Int. J. Biometeorol. 2018, 62, 1995–2005. [Google Scholar] [CrossRef]
- Chedid, M.; Jaber, L.S.; Giger-Reverdin, S.; Duvaux-Ponter, C.; Hamadeh, S.K. Water stress in sheep raised under arid conditions. Can. J. Anim. Sci. 2014, 94, 243–257. [Google Scholar] [CrossRef]
- Hamzaoui, S.; Salama, A.; Albanell, E.; Such, X.; Caja, G. Physiological responses and lactational performances of late-lactation dairy goats under heat stress conditions. J. Dairy Sci. 2013, 96, 6355–6365. [Google Scholar] [CrossRef]
- Sejian, V.; Singh, A.; Sahoo, A.; Naqvi, S. Effect of mineral mixture and antioxidant supplementation on growth, reproductive performance and adaptive capability of m alpura ewes subjected to heat stress. J. Anim. Physiol. Anim. Nutr. 2014, 98, 72–83. [Google Scholar] [CrossRef]
- DiGiacomo, K.; Simpson, S.; Leury, B.J.; Dunshea, F.R. Dietary betaine impacts the physiological responses to moderate heat conditions in a dose dependent manner in sheep. Animals 2016, 6, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J. Impact of heat stress on health and performance of dairy animals: A review. Vet. World. 2016, 9, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooper, H.B.; dos Santos Silva, P.; de Oliveira, S.A.; Merighe, G.K.F.; Negrão, J.A. Acute heat stress induces changes in physiological and cellular responses in saanen goats. Int. J. Biometeorol. 2018, 62, 2257–2265. [Google Scholar] [CrossRef] [PubMed]
- Mohanarao, G.J.; Mukherjee, A.; Banerjee, D.; Gohain, M.; Dass, G.; Brahma, B.; Datta, T.K.; Upadhyay, R.C.; De, S. Hsp70 family genes and hsp27 expression in response to heat and cold stress in vitro in peripheral blood mononuclear cells of goat (capra hircus). Small Rumin. Res. 2014, 116, 94–99. [Google Scholar] [CrossRef]
- Rashamol, V.; Sejian, V.; Bagath, M.; Krishnan, G.; Beena, V.; Bhatta, R. Effect of heat stress on the quantitative expression patterns of different cytokine genes in malabari goats. Int. J. Biometeorol. 2019, 63, 1–9. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Celi, P.; Leury, B.J.; Clarke, I.J.; Dunshea, F.R. Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep. J. Anim. Sci. 2014, 92, 3364–3374. [Google Scholar] [CrossRef] [Green Version]
- Vandana, G.; Bagath, M.; Sejian, V.; Krishnan, G.; Beena, V.; Bhatta, R. Summer season induced heat stress impact on the expression patterns of different toll-like receptor genes in malabari goats. Biol. Rhythm Res. 2019, 50, 466–482. [Google Scholar] [CrossRef]
- Sophia, I.; Sejian, V.; Bagath, M.; Bhatta, R. Quantitative expression of hepatic toll-like receptors 1–10 mrna in osmanabadi goats during different climatic stresses. Small Rumin. Res. 2016, 141, 11–16. [Google Scholar] [CrossRef]
- Savitha, S.; Girish Kumar, V.; Amitha, J.; Sejian, V.; Bagath, M.; Krishnan, G.; Devaraj, C.; Bhatta, R. Comparative assessment of thermo-tolerance between indigenous osmanabadi and salem black goat breeds based on expression patterns of different intracellular toll-like receptor genes during exposure to summer heat stress. Biol. Rhythm Res. 2019, 1–9. [Google Scholar] [CrossRef]
- Lu, Z.; Chu, M.; Li, Q.; Jin, M.; Fei, X.; Ma, L.; Zhang, L.; Wei, C. Transcriptomic analysis provides novel insights into heat stress responses in sheep. Animals 2019, 9, 387. [Google Scholar] [CrossRef] [Green Version]
- Engler, D.; Pham, T.; Fullerton, M.J.; Ooi, G.; Funder, J.W.; Clarke, I.J. Studies of the secretion of corticotropin-releasing factor and arginine vasopressin into the hypophysial-portal circulation of the conscious sheep. Neuroendocrinology 1989, 49, 367–381. [Google Scholar] [CrossRef] [PubMed]
- Indu, S.; Sejian, V.; Naqvi, S. Impact of simulated heat stress on growth, physiological adaptability, blood metabolites and endocrine responses in malpura ewes under semiarid tropical environment. Anim. Prod. Sci. 2014, 55, 766–776. [Google Scholar] [CrossRef]
- Ribeiro, D.M.; Madeira, M.S.; Kilminster, T.; Scanlon, T.; Oldham, C.; Greeff, J.; Freire, J.P.; Mourato, M.P.; Prates, J.A.; Almeida, A.M. Amino acid profiles of muscle and liver tissues of australian merino, damara and dorper lambs under restricted feeding. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Wojtas, K.; Cwynar, P.; Kolacz, R.; Kupczynski, R. Effect of heat stress on acid-base balance in polish merino sheep. Arch. Anim. Breed. 2013, 56, 917–923. [Google Scholar] [CrossRef]
- Ronchi, B.; Stradaioli, G.; Supplizi, A.V.; Bernabucci, U.; Lacetera, N.; Accorsi, P.; Nardone, A.; Seren, E. Influence of heat stress or feed restriction on plasma progesterone, oestradiol-17β, lh, fsh, prolactin and cortisol in holstein heifers. Livest. Prod. Sci. 2001, 68, 231–241. [Google Scholar] [CrossRef]
- Alamer, M.; Al-hozab, A. Effect of water deprivation and season on feed intake, body weight and thermoregulation in awassi and najdi sheep breeds in saudi arabia. J. Arid Environ. 2004, 59, 71–84. [Google Scholar] [CrossRef]
- Horrobin, D.F. Prolactin as a regulator of fluid and electrolyte metabolism in mammals. Fed. Proc. 1980, 39, 2567–2570. [Google Scholar]
- Choy, V.; Nixon, A.; Pearson, A. Distribution of prolactin receptor immunoreactivity in ovine skin and changes during the wool follicle growth cycle. J. Endocrinol. 1997, 155, 265–276. [Google Scholar] [CrossRef]
- Sivakumar, A.; Singh, G.; Varshney, V. Antioxidants supplementation on acid base balance during heat stress in goats. Asian-Australas. J. Anim. Sci. 2010, 23, 1462–1468. [Google Scholar] [CrossRef]
- Do Amaral, B.; Connor, E.; Tao, S.; Hayen, J.; Bubolz, J.; Dahl, G. Heat stress abatement during the dry period influences prolactin signaling in lymphocytes. Domest. Anim. Endocrinol. 2010, 38, 38–45. [Google Scholar] [CrossRef]
- Henry, M.L.; Kemp, S.; Clarke, I.J.; Dunshea, F.R.; Leury, B.J. Perennial ryegrass alkaloids increase respiration rate and decrease plasma prolactin in merino sheep under both thermoneutral and mild heat conditions. Toxins 2019, 11, 479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooley, R.; Findlay, J.; Stephenson, R. Effect of heat stress on plasma concentrations of prolactin and luteinizing hormone in ewes. Aust. J. Biol. Sci. 1979, 32, 231–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, D.; Purvis, A.; Reilly, T.; Cable, N.T. The prolactin responses to active and passive heating in man. Exp. Physiol. 2005, 90, 909–917. [Google Scholar] [CrossRef]
- Alamer, M. The role of prolactin in thermoregulation and water balance during heat stress in domestic ruminants. Asian J. Anim. Vet. Adv. 2011, 6, 1153–1169. [Google Scholar] [CrossRef] [Green Version]
- Pragna, P.; Sejian, V.; Soren, N.; Bagath, M.; Krishnan, G.; Beena, V.; Devi, P.I.; Bhatta, R. Summer season induced rhythmic alterations in metabolic activities to adapt to heat stress in three indigenous (osmanabadi, malabari and salem black) goat breeds. Biol. Rhythm Res. 2018, 49, 551–565. [Google Scholar] [CrossRef]
- Macías-Cruz, U.; López-Baca, M.; Vicente, R.; Mejía, A.; Álvarez, F.; Correa-Calderón, A.; Meza-Herrera, C.; Mellado, M.; Guerra-Liera, J.; Avendaño-Reyes, L. Effects of seasonal ambient heat stress (spring vs. Summer) on physiological and metabolic variables in hair sheep located in an arid region. Int. J. Biometeorol. 2016, 60, 1279–1286. [Google Scholar] [CrossRef]
- Chauhan, S.; Ponnampalam, E.; Celi, P.; Hopkins, D.; Leury, B.; Dunshea, F. High dietary vitamin e and selenium improves feed intake and weight gain of finisher lambs and maintains redox homeostasis under hot conditions. Small Rumin. Res. 2016, 137, 17–23. [Google Scholar] [CrossRef]
- Chauhan, S.; Celi, P.; Leury, B.; Dunshea, F. High dietary selenium and vitamin e supplementation ameliorates the impacts of heat load on oxidative status and acid-base balance in sheep. J. Anim. Sci. 2015, 93, 3342–3354. [Google Scholar] [CrossRef]
- Iannaccone, M.; Ianni, A.; Contaldi, F.; Esposito, S.; Martino, C.; Bennato, F.; De Angelis, E.; Grotta, L.; Pomilio, F.; Giansante, D. Whole blood transcriptome analysis in ewes fed with hemp seed supplemented diet. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ghanem, A.; Jaber, L.; Said, M.A.; Barbour, E.; Hamadeh, S. Physiological and chemical responses in water-deprived awassi ewes treated with vitamin c. J. Arid Environ. 2008, 72, 141–149. [Google Scholar] [CrossRef]
- Al-Dawood, A. Towards heat stress management in small ruminants—A review. Ann. Anim. Sci. 2017, 17, 59–88. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.Y.; Carstens, G.E.; Gilbert, C.D.; Theis, C.M.; Archibeque, S.L.; Kurz, M.W.; Slay, L.J.; Smith, S.B. Dietary supplementation of high levels of saturated and monounsaturated fatty acids to ewes during late gestation reduces thermogenesis in newborn lambs by depressing fatty acid oxidation in perirenal brown adipose tissue. J. Nutr. 2007, 137, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keithly, J.; Kott, R.; Berardinelli, J.; Moreaux, S.; Hatfield, P. Thermogenesis, blood metabolites and hormones, and growth of lambs born to ewes supplemented with algae-derived docosahexaenoic acid. J. Anim. Sci. 2011, 89, 4305–4313. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.A. Present status of the world goat populations and their productivity. World 2010, 861, 1. [Google Scholar]
- McManus, C.; Paludo, G.R.; Louvandini, H.; Gugel, R.; Sasaki, L.C.B.; Paiva, S.R. Heat tolerance in brazilian sheep: Physiological and blood parameters. Trop. Anim. Health Prod. 2009, 41, 95–101. [Google Scholar] [CrossRef]
- Wilkes, M.; Hynd, P.; Pitchford, W. Damara sheep have higher digestible energy intake than merino sheep when fed low-quality or high-quality feed. Anim. Prod. Sci. 2012, 52, 30–34. [Google Scholar] [CrossRef]
- Lallo, C.H.; Paul, I.; Bourne, G. Thermoregulation and performance of british anglo-nubian and saanen goats reared in an intensive system in trinidad. Trop. Anim. Health Prod. 2012, 44, 491–496. [Google Scholar] [CrossRef]
- Helal, A.; Hashem, A.; Abdel-Fattah, M.; El-Shaer, H. Effect of heat stress on coat characteristics and physiological responses of balady and damascus goats in sinai, egypt. Am. Eurasian J. Agric. Environ. Sci. 2010, 7, 60–69. [Google Scholar]
- Pragna, P.; Sejian, V.; Bagath, M.; Krishnan, G.; Archana, P.; Soren, N.; Beena, V.; Bhatta, R. Comparative assessment of growth performance of three different indigenous goat breeds exposed to summer heat stress. J. Anim. Physiol. Anim. Nutr. 2018, 102, 825–836. [Google Scholar] [CrossRef]
- Zhang, M.H.; Warner, R.D.; Dunshea, F.R.; DiGiacomo, K.; Hopkins, D.L.; Ha, M.; Joy, A.; Payyanakkal, A.P.; Osei-Amponsah, R.; Chauhan, S.S. Impacts of heat stress on retail meat quality of 2nd cross and dorper lambs. In Proceedings of the 65th International Congress of Meat Scienceand Technology, Potsdam, Germany, 23 July 2019. [Google Scholar]
- Nyamushamba, G.; Mapiye, C.; Tada, O.; Halimani, T.; Muchenje, V. Conservation of indigenous cattle genetic resources in southern africa’s smallholder areas: Turning threats into opportunities—A review. Asian-Australas. J. Anim. Sci. 2017, 30, 603. [Google Scholar] [CrossRef]
- Gandhi, R.; Arjava, S. Conservation of livestock diversity in india under current scenario. Indian Dairyman 2016, 68, 102–107. [Google Scholar]
- Dias E Silva, T.P.; Costa Torreão, J.N.; Torreão Marques, C.A.; de Araújo, M.J.; Bezerra, L.R.; Kumar Dhanasekaran, D.; Sejian, V. Effect of multiple stress factors (thermal, nutritional and pregnancy type) on adaptive capability of native ewes under semi-arid environment. J. Therm. Biol. 2016, 59, 39–46. [Google Scholar] [CrossRef] [PubMed]
- McManus, C.; Louvandini, H.; Paim, T.; Martins, R.S.; Barcellos, J.O.J.; Cardoso, C.; Guimarães, R.F.; Santana, O.A. The challenge of sheep farming in the tropics: Aspects related to heat tolerance. Revista Brasileira de Zootecnia 2011, 40, 107–120. [Google Scholar]
- Yang, J.; Li, W.-R.; Lv, F.-H.; He, S.-G.; Tian, S.-L.; Peng, W.-F.; Sun, Y.-W.; Zhao, Y.-X.; Tu, X.-L.; Zhang, M. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Mol. Biol. Evol. 2016, 33, 2576–2592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Almeida, A.M. Barbados blackbelly: The caribbean ovine genetic resource. Trop. Anim. Health Prod. 2018, 50, 239–250. [Google Scholar] [CrossRef]
- Rastogi, R. Production performance of barbados blackbelly sheep in tobago, west indies. Small Rumin. Res. 2001, 41, 171–175. [Google Scholar] [CrossRef]
- Romjali, E.; Pandey, V.; Batubara, A.; Gatenby, R.; Verhulst, A. Comparison of resistance of four genotypes of rams to experimental infection with haemonchus contortus. Vet. Parasitol. 1996, 65, 127–137. [Google Scholar] [CrossRef]
- Godfrey, R.W.; Preston, W.; Joseph, S.; LaPlace, L.; Hillman, P.; Gebremedhin, K.; Lee, C.; Collier, R.J. Evaluating the impact of breed, pregnancy, and hair coat on body temperature and sweating rate of hair sheep ewes in the tropics. J. Anim. Sci. 2017, 95, 2936–2942. [Google Scholar]
- Kumar, D.; Yadav, B.; Choudhury, S.; Kumari, P.; Madan, A.K.; Singh, S.P.; Rout, P.; Ramchandran, N.; Yadav, S. Evaluation of adaptability to different seasons in goat breeds of semi-arid region in india through differential expression pattern of heat shock protein genes. Biol. Rhythm Res. 2018, 49, 466–478. [Google Scholar] [CrossRef]
- Fadare, A.O.; Peters, S.O.; Yakubu, A.; Sonibare, A.O.; Adeleke, M.A.; Ozoje, M.O.; Imumorin, I.G. Physiological and haematological indices suggest superior heat tolerance of white-coloured west african dwarf sheep in the hot humid tropics. Trop. Anim. Health Prod. 2012, 45, 157–165. [Google Scholar] [CrossRef]
- Mahgoub, O.; Kadim, I.T.; Al-Dhahab, A.; Bello, R.B.; Al-Amri, I.S.; Ali, A.A.A.; Khalaf, S. An assessment of omani native sheep fiber production and quality characteristics. J. Agric. Mar. Sci. JAMS 2010, 15, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Narula, H.; Ajay, K.; Ayub, M.; Vimal, M. Growth rate and wool production of marwari lambs under arid region of rajasthan. Indian J. Anim. Sci. 2010, 80, 350–353. [Google Scholar]
- Gootwine, E. Mini review: Breeding awassi and assaf sheep for diverse management conditions. Trop. Anim. Health Prod. 2011, 43, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Chacón, E.; Macedo, F.; Velázquez, F.; Paiva, S.R.; Pineda, E.; McManus, C. Morphological measurements and body indices for cuban creole goats and their crossbreds. Rev. Bras. Zootecn. 2011, 40, 1671–1679. [Google Scholar] [CrossRef] [Green Version]
- Joy, A.; Dunshea, F.R.; Leury, B.J.; DiGiacomo, K.; Clarke, I.J.; Zhang, M.; Abhijith, A.; Osei-Amponsah, R.; Chauhan, S.S. Differences in thermoregulatory responses between dorper and second cross lambs to heat stress challenges. Proceedings 2020, 36, 155. [Google Scholar] [CrossRef] [Green Version]
- Srikandakumar, A.; Johnson, E.; Mahgoub, O. Effect of heat stress on respiratory rate, rectal temperature and blood chemistry in omani and australian merino sheep. Small Rumin. Res. 2003, 49, 193–198. [Google Scholar] [CrossRef]
- Rathwa, S.D.; Vasava, A.; Pathan, M.; Madhira, S.; Patel, Y.; Pande, A. Effect of season on physiological, biochemical, hormonal, and oxidative stress parameters of indigenous sheep. Vet. World 2017, 10, 650. [Google Scholar] [CrossRef] [Green Version]
- Rout, P.; Kaushik, R.; Ramachandran, N.; Jindal, S. Identification of heat stress-susceptible and-tolerant phenotypes in goats in semiarid tropics. Anim. Prod. Sci. 2018, 58, 1349–1357. [Google Scholar] [CrossRef]
- Romero, R.D.; Pardo, A.M.; Montaldo, H.H.; Rodríguez, A.D.; Cerón, J.H. Differences in body temperature, cell viability, and hsp-70 concentrations between pelibuey and suffolk sheep under heat stress. Trop. Anim. Health Prod. 2013, 45, 1691–1696. [Google Scholar] [CrossRef]
- Dhanda, O.; Kundu, R. Effect of climate on the seasonal endocrine profile of native and crossbred sheep under semi-arid conditions. Trop. Anim. Health Prod. 2001, 33, 241–252. [Google Scholar]
- Ross, T.; Goode, L.; Linnerud, A. Effects of high ambient temperature on respiration rate, rectal temperature, fetal development and thyrold gland activity in tropical and temperate breeds of sheep. Theriogenology 1985, 24, 259–269. [Google Scholar] [CrossRef]
- Chulayo, A.; Muchenje, V. The effects of pre-slaughter stress and season on the activity of plasma creatine kinase and mutton quality from different sheep breeds slaughtered at a smallholder abattoir. Asian-Australas. J. Anim. Sci. 2013, 26, 1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koluman-Darcan, N.; Silanikove, N. The advantages of goats for future adaptation to climate change: A conceptual overview. Small Rumin. Res. 2018, 163, 34–38. [Google Scholar] [CrossRef]
- Henry, B.; Eckard, R.; Beauchemin, K. Adaptation of ruminant livestock production systems to climate changes. Animal 2018, 12, s445–s456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osei-Amponsah, R.; Chauhan, S.S.; Leury, B.J.; Cheng, L.; Cullen, B.; Clarke, I.J.; Dunshea, F.R. Genetic selection for thermotolerance in ruminants. Animals 2019, 9, 948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Species | Tolerant Breed | Susceptible Breed | Quantity of Stress | Effect on Tolerant Breed as Compared to the Susceptible Breed | Reference |
---|---|---|---|---|---|---|
Behavioral Adaptation | ||||||
Water intake | Sheep | Awassi | Najdi | Summer heat stress Temperature—35.3 °C RH—16% | Lower water intake | [52] |
Sheep | Dorper | Second cross Merinos | Cyclic heat stress Temperature—36–40 °C | Lower water intake | [92] | |
Goat | Salem Black | Osmanabadi | Summer heat stress THI—86.5 | Lower water intake | [33] | |
Feed intake | Sheep | Dorper | Second cross Merinos | Cyclic heat stress Temperature—36–40 °C | No change in feed intake | [92] |
Goat | Salem Black Osmanabadi | Malabari | Summer heat stress THI—86.5 | No change in feed intake | [75] | |
Physiological Adaptation | ||||||
Rectal Temperature | Sheep | Omani | Merino | Summer heat stress THI—93 ± 3.1 | Lower rectal temperature | [93] |
Sheep | Dorper | Second cross Merinos | Cyclic heat stress Temperature—36–40 °C | Lower rectal temperature | [92] | |
Goat | Salem Black | Malabari Osmanabadi | Summer heat stress THI—86.5 | Lower rectal temperature | [33] | |
Goat | Jamunapari | Barbari | Summer heat stress Temperature—47.5 °C RH—21.5% | Lower rectal temperature | [95] | |
Respiration rate | Sheep | Omani | Merino | Summer heat stress THI—93 | Lower respiration rate | [93] |
Sheep | Dorper | Second cross Merinos | Cyclic heat stress Temperature—36–40 °C | Lower respiration rate | [92] | |
Goat | Jamunapari | Barbari | Summer heat stress Temperature—47.5 °C RH—21.5% | Lower respiration rate | [95] | |
Goat | Salem Black | Malabari Osmanabadi | Summer heat stress THI—86.5 | Lower respiration rate | [33] | |
Sweating rate | Sheep | Awassi | Najdi | Summer heat stress Temperature—35.3 °C RH—16% | Lower sweating rate | [52] |
Endocrine Adaptation | ||||||
T3 | Sheep | Chokla | Cross-breds of Chokla | Summer heat stress Temperature—38.8 °C RH—41.3% THI—78.9 | Lower concentration | [97] |
T4 | Sheep | Barbados Blackbelly | Dorset Blackbelly × Dorset crosses | Temperature—33.8 °C | Lower rate of change in different seasons | [98] |
Growth hormone | Goats | Salem Black Malabari | Osmanabadi | Summer heat stress THI—86.5 | Higher concentration | [75] |
Cellular and Molecular Adaptation | ||||||
Leptin gene | Goat | Jamunapari | Barbari | Summer heat stress Temperature—47.5 °C RH—21.5% | Lower expression | [95] |
HSP 70 | Goat | Salem Black | Malabari Osmanabadi | Summer heat stress THI—86.5 | Lower expression | [33] |
Goat | Barbari | Sirohi Jhakarana | Summer heat stress THI—81.63 | Lower expression | [86] | |
Sheep | Pelibuey | Suffolk | Temperature— 43 °C | Lower expression | [96] | |
HSP 60 | Goat | Barbari | Sirohi Jhakarana | Summer heat stress THI—81.63 | Lower expression | [86] |
HSP 90 | Goat | Jamunapari | Barbari | Summer heat stress Temperature—47.5 °C RH—21.5% | Higher expression | [95] |
Goat | Barbari | Sirohi Jhakarana | Summer heat stress THI—81.63 | Lower expression | [86] | |
IGF-1 | Goat | Salem Black | Osmanabadi Malabari | Summer heat stress THI—86.5 | Higher expression | [75] |
TLR genes (TLR3, TLR7, TLR8 and TLR9) | Goat | Salem Black | Osmanabadi | Summer heat stress THI—86.5 | Higher expression | [45] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joy, A.; Dunshea, F.R.; Leury, B.J.; Clarke, I.J.; DiGiacomo, K.; Chauhan, S.S. Resilience of Small Ruminants to Climate Change and Increased Environmental Temperature: A Review. Animals 2020, 10, 867. https://doi.org/10.3390/ani10050867
Joy A, Dunshea FR, Leury BJ, Clarke IJ, DiGiacomo K, Chauhan SS. Resilience of Small Ruminants to Climate Change and Increased Environmental Temperature: A Review. Animals. 2020; 10(5):867. https://doi.org/10.3390/ani10050867
Chicago/Turabian StyleJoy, Aleena, Frank R. Dunshea, Brian J. Leury, Iain J. Clarke, Kristy DiGiacomo, and Surinder S. Chauhan. 2020. "Resilience of Small Ruminants to Climate Change and Increased Environmental Temperature: A Review" Animals 10, no. 5: 867. https://doi.org/10.3390/ani10050867