Review on Polysaccharides Used in Coatings for Food Packaging Papers
Abstract
:1. Introduction
2. Polysaccharides in Food Packaging Paper
2.1. Polysaccharides from Wood and Lignocellulosic Plants
2.1.1. Cellulose and Cellulose Derivatives
- Cellulose Ethers
- Cellulose Esters
- Cellulose Micro(nano)fibrillated Structures
2.1.2. Hemicelluloses
- General Features
- Extraction of HCs
- Chemical Modifications of HCs
- Applications of HCs in Food Packaging
2.1.3. Starch
2.2. Polysaccharides from Marine Biomass
2.2.1. Chitosan and Chitosan Derivatives
2.2.2. Alginates
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peelman, N.; Ragaert, P.; Verguldt, E.; Devlieghere, F.; De Meulenaer, B. Applicability of biobased packaging materials for long shelf-life food products. Packag. Res. 2016, 1, 7–20. [Google Scholar] [CrossRef]
- Piselli, A.; Garbagnoli, P.; Alfieri, I.; Lorenzi, A.; Del Curto, B. Natural-based coatings for food paper packaging. Int. J. Des. Sci. Technol. 2014, 20, 55–78. [Google Scholar]
- Bobu, E.; Nicu, R.; Obrocea, P.; Ardelean, E.; Dunca, S.; Balan, T. Antimicrobial properties of coatings based on chitosan derivatives for applications in sustainable paper conservation. Cell. Chem. Technol. 2016, 50, 689–699. [Google Scholar]
- COST Action. FP1003—Impact of Renewable Materials in Packaging for Sustainability—Development of Renewable Fibre and Bio-Based Materials for New Packaging Applications. Available online: https://www.cost.eu/cost-action/impact-of-renewable-materials-in-packaging-for-sustainability-development-of-renewable-fibre-and-bio-based-materials-for-new-packaging-applications/#tabs|Name:overview (accessed on 5 May 2020).
- Johansson, C.; Brass, J.; Mondragon, I.; Nechita, P.; Plackett, D.; Simon, P.; Gregor Svetec, D.; Virtanen, S.; Baschetti, M.G.; Breen, C.; et al. Renewable fibers and bio-based materials for packaging applications—A review of recent developments. BioResources 2012, 7, 2506–2552. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, K.V.; Samyn, P. Bio-based coatings for paper applications. Coatings 2015, 5, 887–930. [Google Scholar] [CrossRef] [Green Version]
- Paper and Board Have Key Roles in the Future of Packaging. Available online: www.smithers.com/resources/2018 (accessed on 7 April 2020).
- Helanto, K.; Matikainen, L.; Talja, R.; Rojas, O.J. Bio-based polymers for sustainable packaging and biobarriers. BioResources 2019, 14, 4902–4951. [Google Scholar]
- Ramesh, H.P.; Tharanathan, R.N. Carbohydrates—The renewable raw materials of high biotechnological value. Crit. Rev. Biotechnol. 2003, 23, 149–173. [Google Scholar] [CrossRef]
- Mohana, K.; Ravichandrana, S.; Muralisankarb, T.; Uthayakumarc, V.; Chandirasekarc, R.; Seedevid, P.; Rajan, D.K. Potential uses of fungal polysaccharides as immunostimulants in fish and shrimp aquaculture: A review. Aquaculture 2019, 500, 250–263. [Google Scholar] [CrossRef]
- Delattre, C.; Laroche, C.; Michaud, P. Production of bacterial and fungal polysaccharides. In Advances in Fermentation Technology; Pandey, A., Larroche, C., Soccol, C.R., Dussap, C.G., Eds.; Asiatech Pub: New Delhi, India, 2008; pp. 483–522. [Google Scholar]
- Bancerz, R.; Osińska-Jaroszuk, M.; Jaszek, M.; Sulej, J.; Wiater, A.; Matuszewska, A.; Rogalski, J. Fungal polysaccharides as a water-adsorbing material in esters production with the use of lipase from rhizomucor variabilis. Int. J. Biol. Macromol. 2018, 118, 957–964. [Google Scholar] [CrossRef]
- Bhatia, S. Mammalian polysaccharides and its nanomaterials. In Systems for Drug Delivery; Bhatia, S., Ed.; Springer Nature Switzerland AG: Basel, Switzerland, 2016; pp. 1–27. [Google Scholar]
- Popa, V.I. Polysaccharides in Medicinal and Pharmaceutical Applications; Smithers Rapra: Shawbury, UK, 2011; pp. 1–89. [Google Scholar]
- Nešic, A.; Cabrera-Barjas, G.; Dimitrijevic-Brankovic, S.; Davidovic, S.; Radovanovic, N.; Delattre, C. Prospect of polysaccharide-based materials as advanced food packaging. Molecules 2020, 25, 135. [Google Scholar] [CrossRef] [Green Version]
- Falguera, V.; Quintero, J.P.; Jiménez, A.; Muñoz, J.A.; Ibarz, A. Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci. Technol. 2011, 22, 292–303. [Google Scholar] [CrossRef]
- Hussain, A.; Zia, K.M.; Tabasum, S.; Noreen, A.; Ali, M.; Iqbal, R.; Zuber, M. Blends and composites of exopolysaccharides; properties and applications: A review. Int. J. Biol. Macromol. 2017, 94, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Majid, I.; Ahmad Nayik, G.; Mohammad Dar, S.; Nanda, V. Novel food packaging technologies: Innovations and future prospective. J. Saudi Soc. Agric. Sci. 2018, 17, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Pandey, J.K.; Takagi, H.; Nakagaito, A.N.; Saini, D.R.; Ahn, S.H. An overview on the cellulose based conducting composites. Compos. Part B Eng. 2012, 43, 2822–2826. [Google Scholar] [CrossRef]
- Siqueira, G.; Bras, J.; Dufresne, A. Cellulosic Bionanocomposites: A Review of preparation, properties and applications. Polymers 2010, 2, 728–765. [Google Scholar] [CrossRef] [Green Version]
- Cunha, A.G.; Gandini, A. Turning polysaccharides into hydrophobic materials: A critical review. Part 1. Cellulose 2010, 17, 875–889. [Google Scholar] [CrossRef]
- Eichhorn, S.J.; Dufresne, A.; Aranguren, M.; Marcovich, N.E.; Capadona, J.R.; Rowan, S.J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; et al. Review: Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 2010, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Orliac, O.; Rouilly, A.; Silvestre, F.; Rigal, L. Effects of various plasticizers on the mechanical properties, water resistance and aging of thermo-molded films made from sunflower proteins. Ind. Crop. Prod. 2003, 18, 91–100. [Google Scholar] [CrossRef]
- Shen, J.; Fatehi, P.; Yonghao, N. Biopolymers for surface engineering of paper-based products. Cellulose 2014, 21, 3145–3160. [Google Scholar] [CrossRef]
- Allsopp, D.; Seal, K.J.; Gaylarde, C.C. Introduction to Biodeterioration, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004; pp. 11–26. [Google Scholar]
- Javad, S.; Khosro, A. Application of cellulose and cellulose derivatives in pharmaceutical industries. In Cellulose—Medical, Pharmaceutical and Electronic, Applications; Van De Ven, T.G.M., Ed.; IntechOpen: London, UK, 2013; pp. 47–66. [Google Scholar]
- Klass, C.P. Biobased materials for paper coating. In Proceedings of the Papercon Conference, Covington, KY, USA, 1–4 May 2011. [Google Scholar]
- Tang, Y.; Zhou, D.; Zhang, J.; Zhu, X. Fabrication and properties of paper coatings with the incorporation of nanoparticle pigments: Rheological behavior. Dig. J. Nanomater. Biostruct. 2013, 8, 1699–1710. [Google Scholar]
- Ghadermazi, R.; Hamdipour, S.; Sadeghi, K.; Ghadermazi, R.; Khosrowshahi Asl, A. Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose—A review. Food Sci. Nutr. 2019, 7, 3363–3377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Yang, R. Novel nanocomposites based on hydroxyethyl cellulose and graphene oxide. Fibers Polym. 2017, 18, 334–341. [Google Scholar] [CrossRef]
- Paunen, S. Strength and barrier enhancements of cellophane and cellulose derivative films: A review. BioResources 2013, 8, 3098–3121. [Google Scholar]
- Khwaldia, K. Physical and mechanical properties of hydroxypropyl methylcellulose-coated paper as affected by coating weight and coating composition. BioResources 2013, 8, 3438–3452. [Google Scholar] [CrossRef] [Green Version]
- Sothornvit, R. Effect of hydroxypropyl methylcellulose and lipid on mechanical properties and water vapor permeability of coated paper. Food Res. Int. 2009, 42, 307–311. [Google Scholar] [CrossRef]
- Petrie, E.M. Developments in Barrier Coatings for Paper and Board; Pira International Ltd.: Leatherhead, UK, 2006; p. 12. [Google Scholar]
- Tarus, B.K.; Mwasiagi, J.I.; Fadel, N.; Al-Oufy, A.; Elmessiry, M. Electrospun cellulose acetate and poly(vinyl chloride) nanofiber mats containing silver nanoparticles for antifungi packaging. SN Appl. Sci. 2019, 1, 245. [Google Scholar] [CrossRef] [Green Version]
- Willberg-Keyriläinen, P.; Ropponen, J.; Alakomi, H.L.; Vartiainen, J. Cellulose fatty acid ester coated papers for stand-up pouch applications. J. Appl. Polym. Sci. 2018, 135, 46936. [Google Scholar] [CrossRef]
- Lee, C.K.; Lee, S.B.; Hwang, S.W.; Park, K.W.; Shim, J.K. Cellulosic binder-assisted formation of graphene-paper electrode with flat surface and porous internal structure. J. Nanosci. Nanotechnol. 2013, 13, 7391–7395. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K. Handbook of Sustainable Polymers: Processing and Applications; Pan Stanford Publishing: Singapore, 2015; pp. 576–604. [Google Scholar]
- Popa, V.I. Obtaining of nanocellulose. Celuloză și Hârtie 2015, 64, 3–10. (In Romanian) [Google Scholar]
- Nascimento, D.M. Comparação Ambiental e Tecnológica de Nanoestruturas de Celulose Obtidas da Fibra de Coco. Repository from EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária, Ministério da Agricultura, Pecuária e Abastecimento, Federal University of Ceará, Brazil. Available online: https://www.alice.cnptia.embrapa.br/handle/doc/1102253 (accessed on 27 May 2020).
- de Amorim, J.D.P.; de Souza, K.C.; Duarte, C.R.; da Silva, I.; Ribeiro, F.D.A.S.; Santos Silva, G.; de Farias, P.M.A.; Stingl, A.; Costa, A.F.S.; Vinhas, G.M.; et al. Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ. Chem. Lett. 2020, 18, 851–869. [Google Scholar] [CrossRef]
- Ahola, S.; Salmi, J.; Johansson, L.-S.; Laine, J.; Osterberg, M. Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 2008, 9, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Abdul Khalil, H.P.S.; Bhat, A.H.; Abu Bakar, A.; Tahir, P.M.; Zaidul, S.M.; Jawaid, M. Cellulosic nanocomposites from natural fibers for medical applications: A review. In Handbook of Polymer Nanocomposites. Processing, Performance and Application: Volume C: Polymer Nanocomposites of Cellulose Nanoparticles; Pandey, J.K., Takagi, H., Nakagaito, A.N., Kim, H.-J., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 119–144. [Google Scholar] [CrossRef]
- Klemm, D.; Kramer, F.; Moritz, S.; Lindstrom, T.; Ankerfors, M.; Gray, D. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 2011, 50, 5438–5466. [Google Scholar] [CrossRef] [PubMed]
- Siro, I.; Plackett, D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 2010, 17, 459–494. [Google Scholar] [CrossRef]
- Nogi, M.; Yano, H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater. 2008, 20, 1849–1852. [Google Scholar] [CrossRef]
- Czaja, W.; Romanovicz, D.; Brown, R.M. Structural investigations of microbial cellulose produces in sattionary and agitated culture. Cellulose 2004, 11, 403–411. [Google Scholar] [CrossRef]
- Kaminski, K.; Jarosz, M.; Grudzien, J.; Pawlik, J.; Zastawnik, P.; Pandyra, P.; Kołodziejczyk, A.M. Hydrogel bacterial cellulose: A path to improved materials for new eco-friendly textiles. Cellulose 2020, 27, 5353–5365. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.M.; Carbajo, H.M.; Gomez, N.; Quintana, E.; Ladero, M.; Sanchez, A.; Chinga-Carrasco, G.; Villar, J.C. Use of bacterial cellulose in degraded paper restoration. Part I: Application on model papers. J. Mater. Sci. 2016, 51, 1541–1552. [Google Scholar] [CrossRef]
- Fillat, A.; Martınez, J.; Valls, C.; Cusola, O.; Roncero, B.; Vidal, T.; Valenzuela, S.; Diaz, P.; Pastor, J. Bacterial cellulose for increasing barrier properties of paper products. Cellulose 2018, 25, 6093–6105. [Google Scholar] [CrossRef] [Green Version]
- Nechita, P.; Panaitescu, D.M. Improving the dispersibility of cellulose microfibrillated structures in polymer matrix by controlling of drying conditions and chemical surface modifications. Cell. Chem. Technol. 2013, 47, 711–719. [Google Scholar]
- Dufresne, A. Nanocellulose processing properties and potential applications. Curr. For. Rep. 2019, 5, 76–89. [Google Scholar] [CrossRef]
- Peresin, M.S.; Vartiainen, J.; Kunnari, V.; Kaljunen, T.; Tammelin, T.; Qvintus, P. Large-scale nanofibrillated cellulose film: An overview on its production, properties, and potential applications. In Proceedings of the 4th International Conference of Pulping, Papermaking and Biotechnology (ICPPB 2012), Nanjing, China, 7–9 November 2012. [Google Scholar]
- Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J. Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 2012, 90, 735–764. [Google Scholar] [CrossRef] [PubMed]
- Aulin, C.; Gallstedt, M.; Lindstrom, T. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 2010, 17, 559–574. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Ferrer, A.; Tyagi, P.; Yin, Y.; Salas, C.; Pal, L.; Rojas, O.J. Nanocellulose in thin films, coatings, and plies for packaging applications: A review. BioResources 2017, 12, 2143–2233. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gardner, D.J.; Stark, N.M.; Bousfield, D.W.; Tajvidi, M.; Cai, Z. Moisture and oxygen barrier properties of cellulose nanomaterial based films. ACS Sustain. Chem. Eng. 2018, 6, 49–70. [Google Scholar] [CrossRef]
- Österberg, M.; Vartiainen, J.; Lucenius, J.; Hippi, U.; Seppälä, J.; Serimaa, R. A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl. Mater. Interfaces 2013, 5, 4640–4647. [Google Scholar] [CrossRef]
- Li, F.; Mascheroni, E.; Piergiovanni, L. The potential of nanocellulose in the packaging field: A review. Packag. Technol. Sci. 2015, 28, 475–508. [Google Scholar] [CrossRef]
- Yook, S.; Park, H.; Lee, S.Y.; Kwon, J.; Youn, H.J. Barrier coatings with various types of cellulose nanofibrils and their barrier properties. Cellulose 2020, 27, 4509–4523. [Google Scholar] [CrossRef]
- Lavoine, N.; Desloges, I.; Khelifi, B.; Bras, J. Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper. J. Mater. Sci. 2014, 49, 2879–2893. [Google Scholar] [CrossRef]
- Lavoine, N.; Bras, J.; Desloges, I. Mechanical and barrier properties of cardboard and 3D packaging coated with microfibrillated cellulose. J. Appl. Polym. Sci. 2014, 131, 40106. [Google Scholar] [CrossRef]
- Vartiainen, J.; Rose, K.; Kusano, Y.; Mannila, Y.; Wikstrom, L. Hydrophobization, smoothing, and barrier improvements of cellulose nanofibril films by Sol–Gel coatings. J. Coat. Technol. Res. 2020, 17, 305–314. [Google Scholar] [CrossRef]
- Fanzhi, K.; Yim, F.H. Biomolecule immobilization techniques for bioactive paper fabrication. Anal. Bioanal. Chem. 2012, 403, 7–13. [Google Scholar]
- Khachatryan, K.; Khachatryan, G.; Fiedorowicz, M. Silver and gold nanoparticles embedded in potato starch gel films. J. Mater. Sci. Chem. Eng. 2016, 4, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Dutta, J.; Tripathi, S.; Dutta, P. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: A systematic study needs for food applications. Food Sci. Technol. Int. 2012, 18, 3–34. [Google Scholar] [CrossRef] [PubMed]
- Amini, E.; Azadfallah, M.; Layeghi, M.; Talaei-Hassanloui, R. Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose 2016, 23, 557–570. [Google Scholar] [CrossRef]
- Dumitriu, S.; Popa, V.I. Polymeric Biomaterials: Structure and Function, 1st ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2013; Volume 1, pp. 351–398. [Google Scholar]
- Menon, V.; Prakash, G.; Rao, M. Value added products from hemicelluloses: Biotechnological perspective. Glob. J. Biochem. 2010, 1, 36–67. [Google Scholar]
- Jabbar, A. Sustainable Jute-Based Composite Materials: Mechanical and Thermomechanical Behaviour; Springer Nature Switzerland AG: Basel, Switzerland, 2017; pp. 5–41. [Google Scholar]
- Sun, R.C.; Sun, X.F.; Tomkinson, J. Hemicelluloses and their derivatives. In Hemicelluloses: Science and Technology; Gatenholm, P., Tenkanen, M., Eds.; ACS Symposium Series: Washington, DC, USA, 2004; pp. 2–22. [Google Scholar]
- Fahlén, J.; Salmén, L. Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 2005, 6, 433–438. [Google Scholar] [CrossRef]
- Placket, D. Biopolymers—New Materials for Sustainable Films and Coatings; Willey: Chichester, UK, 2011; pp. 20–179. [Google Scholar]
- Farhat, W. Investigation of Hemicellulose Biomaterial Approaches: The Extraction and Modification of Hemicellulose and its Use in Value added Applications. Ph.D. Thesis, University of Lyon, Lyon, France, August 2018. [Google Scholar]
- Geng, W.; Narron, R.; Jiang, X.; Pawlak, J.J.; Chang, H.; Park, S.; Jameel, H.; Venditti, R.A. The influence of lignin content and structure on hemicellulose alkaline extraction for non-wood and hardwood lignocellulosic biomass. Cellulose 2019, 26, 3219–3230. [Google Scholar] [CrossRef]
- Ohno, H.; Fukaya, Y. Task specific ionic liquids for cellulose technology. Chem. Lett. 2009, 38, 2–7. [Google Scholar] [CrossRef]
- Zavrel, M.; Bross, D.; Funke, M.; Buchs, J.; Spiess, A.C. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour. Technol. 2009, 100, 2580–2587. [Google Scholar] [CrossRef]
- Galbe, M.; Zacchi, G. A review of the production of ethanol from softwood. Appl Microbiol Biotechnol. 2002, 59, 618–628. [Google Scholar] [CrossRef]
- Li, R.; Yang, G.; Chen, J.; He, M. The Characterization of hemicellulose extract from corn stalk with stepwise alkali extraction. J. Korea TAPPI 2017, 49, 29–40. [Google Scholar] [CrossRef]
- Xiao, L.P.; Xu, F.; Sun, R.C. Fractional isolation and structural characterization of hemicellulosic polymers from caragana sinica. Polymers 2011, 11, 979–994. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Sun, X.F.; Tomkinson, J. Hemicelluloses and their derivatives. ACS Symp. Ser. 2003, 864, 2–22. [Google Scholar]
- Ma, X.; Huang, H.; Huang, F.; Long, Y.; Cao, S.; Chen, L.; Huang, L.; Ni, Y. Synergistic effects of enzyme pretreatment for hemicellulose separation from paper-grade pulp in ionic liquid/water. Cellulose 2018, 25, 4193–4198. [Google Scholar] [CrossRef]
- Miyafuji, H.; Nakata, T.; Ehara, K.; Saka, S. Fermentability of water-soluble portion to ethanol obtained by supercritical water treatment of lignocellulosics. Appl. Biochem. Biotechnol. 2005, 121, 963–971. [Google Scholar] [CrossRef]
- Laine, C.; Harlin, A.; Hartman, J.; Hyvärinen, S.; Kammiovirta, K.; Krogerus, B.; Pajari, H.; Rautkoski, H.; Setälä, H.; Sievänen, J.; et al. Hydroxyalkylated xylans: Their synthesis and application in coatings for packaging and paper. Ind. Crop. Prod. 2013, 44, 692–704. [Google Scholar] [CrossRef]
- Talja, R.; Clegg, F.; Breen, C.; Poppius-Levlin, K. Nano clay reinforced xylan barriers. In Proceedings of the 3rd Nordic Wood Biorefinery Conference, NWBC 2011, Stockholm, Sweden, 22–24 March 2011; pp. 132–137. [Google Scholar]
- Chen, G.G.; Qi, X.M.; Guan, Y.; Peng, F.; Yao, C.L.; Sun, R.C. High strength hemicellulose-based nanocomposite film for food packaging applications. ACS Sustain. Chem. Eng. 2016, 4, 1985–1993. [Google Scholar] [CrossRef]
- Konduri, M.K.; Fatehi, P. Synthesis and characterization of arboxymethylated xylan and its application as a dispersant. Carbohydr. Polym. 2016, 146, 26–35. [Google Scholar] [CrossRef]
- Geng, W.; Venditti, R.A.; Pawlak, J.J.; Hou-Ming, C.; Lokendra, P.; Ericka, F. Carboxymethylation of hemicellulose isolated from poplar (Populus grandidentata) and its potential in water-soluble. Cellulose 2020, 27, 3359–3377. [Google Scholar] [CrossRef]
- Peng, X.W.; Ren, J.L.; Zhong, L.X.; Peng, F.; Sun, R.C. Xylan-rich hemicellulosesgraft -acrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents. J. Agric. Food Chem. 2011, 59, 8208–8215. [Google Scholar] [CrossRef]
- Mohamad, N.L.; Kamal, S.M.M.; Mokhtar, M.N. Xylitol biological production: A review of recent studies. Food Rev. Int. 2015, 31, 74–89. [Google Scholar] [CrossRef]
- Yamabhai, M.; Sak-Ubol, S.; Srila, W.; Haltrich, D. Mannan biotechnology: From biofuels to health. Crit. Rev. Biotechnol. 2016, 36, 32–42. [Google Scholar] [CrossRef]
- Kricka, W.; Fitzpatrick, J.; Bond, U. Challenges for the production of bioethanol from biomass using recombinant yeasts. Adv. Appl. Microbiol. 2015, 92, 89–125. [Google Scholar] [PubMed]
- Karlsson, K.; Nylander, F.; Lundman, M.; Berta, M.; Stading, M.; Westman, G.; Rigdahl, M. Hot-mould foaming of modified hemicelluloses and hydroxypropyl methylcellulose. J. Polym. Res. 2019, 26, 206. [Google Scholar] [CrossRef] [Green Version]
- Anthony, R.; Xiang, Z.Y.; Runge, T. Paper coating performance of hemicellulose-rich natural polymer from distiller’s grains. Prog. Org. Coat. 2015, 89, 40–245. [Google Scholar] [CrossRef] [Green Version]
- Prakobna, K.; Kisonen, V.; Xu, C.; Berglund, L.A. Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels. J. Mater. Sci. 2015, 50, 7413–7423. [Google Scholar] [CrossRef]
- Hansen, N.M.L.; Plackett, D. Sustainable films and coatings from hemicelluloses: A review. Biomacromolecules 2008, 9, 1493–1505. [Google Scholar] [CrossRef]
- Xu, C.; Eckerman, C.; Smeds, A.; Reunanen, M.; Eklund, P.C.; Sjoholm, R.; Willfor, S. Carboxymethylated spruce galactoglucomannans: preparation, characterisation, dispersion stability, water-in-oil emulsion stability, and sorption on cellulose surface. Nordic Pulp Pap. Res. J. 2011, 26, 1–12. [Google Scholar] [CrossRef]
- Li, Z.; Pan, X. Strategies to modify physicochemical properties of hemicelluloses from biorefinery and paper industry for packaging material. Rev. Environ. Sci. Biotechnol. 2018, 17, 47–69. [Google Scholar] [CrossRef]
- Vartiainen, J.; Vähä-Nissi, M.; Harlin, A. Biopolymer films and coatings in packaging applications—A review of recent developments. Mat. Sci. Appl. 2014, 5, 708. [Google Scholar] [CrossRef] [Green Version]
- Renewable Barriers. Available online: https://seelution.se/products/renewable-barriers/ (accessed on 13 May 2020).
- Zhang, X.; Luo, W.; Xiao, N.; Chen, M.; Liu, C. Construction of functional composite films originating from hemicellulose reinforced with poly(vinyl alcohol) and nano-ZnO. Cellulose 2020, 27, 1341–1355. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, Y.; Ma, H.; Liu, L.; Hu, Y.; Xu, J.; Wang, Z.; Fan, Y. Contribution of hemicellulose to cellulose nanofiber-based nanocomposite films with enhanced strength, flexibility and UV-blocking properties. Cellulose 2019, 26, 6023–6034. [Google Scholar] [CrossRef]
- Hartman, J.; Albertsson, A.C.; Söderqvist Lindblad, M.; Sjöberg, J. Oxygen barrier materials from renewable sources: Material properties of softwood hemicellulose-based films. J. Appl. Polym. Sci. 2006, 100, 2985–2991. [Google Scholar] [CrossRef]
- Hartman, J.; Albertsson, A.C.; Sjöberg, J. Surface- and bulk-modified galactoglucomannan hemicellulose films and film laminates for versatile oxygen barriers. Biomacromolecules 2006, 7, 1983. [Google Scholar] [CrossRef] [PubMed]
- Gabor (Naiaretti), D.; Tita, O. Biopolymers used in food packaging: A review. Acta Univ. Cibiniensis Ser. E Food Technol. 2012, 16, 3–19. [Google Scholar]
- Talja, R.; Helén, H.; Roos, Y.; Jouppila, K. Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr. Polym. 2007, 67, 288–295. [Google Scholar] [CrossRef]
- Myllymäki, O.; Myllärinen, P.; Forssell, P.; Suortti, T.; Lähteenkorva, K.; Ahvenainen, R.; Poutanen, K. Mechanical and permeability properties of biodegradable extruded starch/polycaprolactone films. Packag. Technol. Sci. 1998, 11, 265–274. [Google Scholar] [CrossRef]
- Kumar, R.; Ghoshal, G.; Goyal, M. Synthesis and functional properties of gelatin/CA–starch composite film: Excellent food packaging material. J. Food Sci. Technol. 2019, 56, 1954–1965. [Google Scholar] [CrossRef]
- Khwaldia, K.; Arab-Tehrany, E.; Desobry, S. Biopolymer coatings on paper packaging materials. Compr. Rev. Food Sci. Food Saf. 2010, 9, 82–91. [Google Scholar] [CrossRef]
- Cunha, A.G.; Gandini, A. Turning polysaccharides into hydrophobic materials: A critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose 2010, 17, 1045–1065. [Google Scholar] [CrossRef]
- Bastos, D.C.; Santos, A.E.F.; da Silva, M.L.V.J.; Simao, R.A. Hydrophobic corn starch thermoplastic films produced by plasma treatment. Ultramicroscopy 2009, 109, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, I.; Aggrawal, S.; Mohanty, P. ZnO nanowire-immobilized paper matrices for visible light-induced antibacterial activity against Escherichia coli. Environ. Sci. Nano 2015, 2, 273–279. [Google Scholar] [CrossRef]
- Samyn, P.; Barhoum, A.; Ohlund, T.; Dufresne, A. Review: Nanoparticles and nanostructured materials in papermaking. J. Mater. Sci. 2018, 53, 146–184. [Google Scholar] [CrossRef]
- Martins, N.C.T.; Freire, C.S.R.; Pinto, R.J.B. Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 2012, 19, 1425–1436. [Google Scholar] [CrossRef]
- Bloembergen, S. Paper Binder Performance with Biobased Nanoparticles. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, September 2008. [Google Scholar]
- Mitelut, A.C.; Tanase, E.E.; Popa, V.I.; Popa, M.E. Sustainable alternative for food packaging: Chitosan biopolymer—A review. AgroLife Sci. J. 2015, 4, 2286. [Google Scholar]
- Song, Z.; Li, G.; Liu, G.; Liu, W. Application of chitin/chitosan and their derivatives in the papermaking industry. Polymers 2018, 10, 389. [Google Scholar] [CrossRef] [Green Version]
- Nicu, R.; Lupei, M.; Balan, T.; Bobu, E. Alkyl–chitosan as paper coating material to improve water barrier properties. Cell Chem. Technol. 2013, 47, 623. [Google Scholar]
- Wang, S.; Jing, Y. Effects of a chitosan coating layer on the surface properties and barrier properties of kraft paper. BioResources 2016, 11, 1868. [Google Scholar] [CrossRef] [Green Version]
- Bobu, E.; Nicu, R.; Desbrieres, J. Chitosan as cationic polyelectrolyte in wet-end papermaking systems. Cell Chem. Technol. 2011, 45, 105. [Google Scholar]
- Zakaria, S.; Chia, C.H.; Wan, H.W.A.; Kaco, H.; Chook, S.W.; Chi, H.C. Mechanical and antibacterial properties of paper coated with chitosan. Sains Malays. 2015, 44, 905–911. [Google Scholar] [CrossRef]
- Bordenave, N.; Grelier, S.; Coma, V. Hydrophobization and antimicrobial activity of chitosan and paper-based packaging material. Biomacromolecules 2010, 11, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Hampichavant, F.; Sebe, G.; Pardon, P.; Coma, V. Fat resistance properties of chitosan-based paper packaging for food applications. Carbohydr. Polym. 2005, 61, 259–265. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, H.; Qian, L. Enhanced water vapour barrier and grease resistance of paper bilayer-coated with chitosan and beeswax. Carbohydr. Polym. 2014, 101, 401–406. [Google Scholar] [CrossRef]
- Nechita, P. Active-antimicrobial coatings based on silver nano-particles and natural polymers for paper packaging functionalization. Nord. Pulp Pap. Res. J. 2017, 32, 452–458. [Google Scholar] [CrossRef]
- Saral Sarojini, K.; Indumathi, M.P.; Rajarajeswari, G.R. Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications. Int. J. Biol. Macromol. 2019, 124, 163–174. [Google Scholar]
- Coma, V.; Freire, C.S.R.; Silvestre, A.J.D. Recent Advances on the Development of Antibacterial Polysaccharide-Based Materials; Rinaudo, M., Goycoolea, F.M., Eds.; MDPI: Basel, Switzwerland, 2015; pp. 106–116. [Google Scholar]
- Maciel, V.B.V.; Yoshida, C.M.P.; Franco, T.T. Development of a prototype of a colourimetric temperature indicator for monitoring food quality. J. Food Eng. 2012, 111, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Poverenov, E.; Rutenberg, R.; Danino, S.; Horev, B.; Rodov, V. Gelatin-chitosan composite films and edible coatings to enhance the quality of food products: Layer-by-layer vs. blended formulations. Food Bioprocess Technol. 2014, 7, 3319–3327. [Google Scholar] [CrossRef]
- Merzendorfer, H. Chitosan derivatives and grafted adjuncts with unique properties. In Extracellular Sugar-Based Biopolymers Matrices; Cohen, E., Merzendorfer, H., Eds.; Springer Biologically-Inspired Systems, Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 95–151. [Google Scholar]
- Philippova, O.E.; Korchagina, E.V. Chitosan and its hydrophobic derivatives: Preparation and aggregation in dilute aqueous solutions. Polym. Sci. Ser. A 2012, 54, 552–572. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, S.C.M.; Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P.; Gandini, A. Novel coated-paper materials based on chitosan and its derivatives. Ind. Eng. Chem. Res. 2010, 49, 6432–6439. [Google Scholar] [CrossRef]
- Ardelean, E.; Nicu, R.; Asandei, D.; Bobu, E. Carboxymethyl-chitosan as consolidation agent of old documents on paper support. Eur. J. Sci. Technol. 2009, 5, 53–61. [Google Scholar]
- Mourya, V.K.; Inamdar, N.N. Chitosan-modifications and applications: Opportunities galore. React. Funct. Polym. 2008, 68, 1013–1051. [Google Scholar] [CrossRef]
- Dutta, P.K.; Tripathi, S.; Mehotra, G.K.; Dutta, J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009, 114, 1173–1182. [Google Scholar] [CrossRef]
- Bobu, E.; Nicu, R.; Lupei, M.; Ciolacu, F. Synthesis and characterization of N-alkyl chitosan for papermaking Applications. Cell. Chem. Technol. 2011, 45, 619–625. [Google Scholar]
- Ciolacu, F.; Nicu, R.; Balan, T.; Bobu, E. Chitosan derivatives as bio-based materials for paper heritage conservation. BioResources 2017, 12, 735. [Google Scholar] [CrossRef] [Green Version]
- Bobu, E.; Balan, T.; Ciolacu, F.; Nicu, R. Active packaging paper based on biodegradable and renewable resources. In Proceedings of the Global Conference on Polymer and Composite Materials, Hangzhou, China, 20–23 May 2016. [Google Scholar]
- Balan, T.; Guezennec, C.; Nicu, R.; Ciolacu, F.; Bobu, E. Improving barrier and strength properties of paper by multi-layer coating with bio-based additives. Cellul. Chem. Technol. 2015, 49, 607–615. [Google Scholar]
- Lupei, M. Research on the Synthesis of Multi-Functional Additives for Papermaking. Ph.D. Thesis, Gheorghe Asachi Technical University, Iasi, Romania, 2012. [Google Scholar]
- Ciolacu, F.; Parpalea, R.; Bobu, E. Carboxymethyl chitosan as multifunctional bio-additive in papermaking. In Proceedings of the 13th International Symposium on Cellulose Chemistry and Technology, Iasi, Romania, 3–5 September 2003; pp. 192–204. [Google Scholar]
- Kopacic, S.; Walz, A.; Zankel, A.; Leitner, E.; Bauer, W. Alginate and chitosan as a functional barrier for paper-based packaging materials. Coatings 2018, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Nesic, A.R.; Seslija, S.I. The influence of nanofillers on physical–chemical properties of polysaccharide-based film intended for food packaging. In Nanotechnology in the Agri-Food Industry, 1st ed.; Grumezescu, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 637–697. [Google Scholar]
- Wong, D.W.S.; Gregorski, K.S.; Hudson, J.S.; Pavlath, A.E. Calcium alginate films: Thermal properties and permeability to sorbate and ascorbate. J. Food Sci. 1995, 61, 337–341. [Google Scholar] [CrossRef]
- Da Silva, M.A.; Iamanaka, B.T.; Taniwaki, M.H.; Kieckbusch, T.G. Evaluation of the antimicrobial potential of alginate and alginate/chitosan films containing potassium sorbate and natamycin. Packag. Technol. Sci. 2012, 26, 479–492. [Google Scholar] [CrossRef]
- Rhim, J.-W.; Lee, J.-H.; Hong, S.-I. Water resistance and mechanical properties of biopolymer (alginate and soy protein) coated paperboards. LWT Food Sci. Technol. 2006, 39, 806–813. [Google Scholar] [CrossRef]
- Ivancic, A. Recent trends in alginate, chitosan and alginate-chitosan antimicrobial systems. Chem. J. Moldova 2016, 11, 17–25. [Google Scholar] [CrossRef]
- Song, Z.; Xiao, H.; Li, Y. Effects of renewable materials coatings on oil resistant properties of paper. Nord. Pulp Pap. Res. J. 2015, 30, 344–349. [Google Scholar] [CrossRef]
- Sheng, J.; Li, J.; Zhao, L. Fabrication of grease resistant paper with non-fluorinated chemicals for food packaging. Cellulose 2019, 26, 6291–6302. [Google Scholar] [CrossRef]
Diameter (μm) | Biological Structure | Technological Terms |
---|---|---|
10–50 | Tracheid | Cellulose fibers |
<1 | Macrofibrils | Fibrila fines, fibrils |
<0.1 | Microfibrils Elementary fibril | Nanofibrils, nanofibers |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nechita, P.; Roman, M. Review on Polysaccharides Used in Coatings for Food Packaging Papers. Coatings 2020, 10, 566. https://doi.org/10.3390/coatings10060566
Nechita P, Roman M. Review on Polysaccharides Used in Coatings for Food Packaging Papers. Coatings. 2020; 10(6):566. https://doi.org/10.3390/coatings10060566
Chicago/Turabian StyleNechita, Petronela, and Mirela Roman (Iana-Roman). 2020. "Review on Polysaccharides Used in Coatings for Food Packaging Papers" Coatings 10, no. 6: 566. https://doi.org/10.3390/coatings10060566
APA StyleNechita, P., & Roman, M. (2020). Review on Polysaccharides Used in Coatings for Food Packaging Papers. Coatings, 10(6), 566. https://doi.org/10.3390/coatings10060566