Non-Gaussian Quadrature Integral Transform Solution of Parabolic Models with a Finite Degree of Randomness
Abstract
:1. Introduction
2. Preliminaries and Formal Solution
- (i)
- is m.s. locally integrable,
- (ii)
- , if ,
- (iii)
- The 2-norm of is of exponential order, i.e., there exist real constants , called the abscissa of convergence, and such that
3. Random Numerical Solutions
Algorithm1 Procedure to compute the expectation and the standard deviation of the approximate solution s.p. (32) of the problem (1)–(5). |
|
4. Numerical Examples and Simulations
4.1. Example 1
4.2. Example 2
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bharucha-Reid, A.T. On the Theory of Random Equations, Stochastic Processes in Mathematical Physics and Engineering. In Proceedings of Symposia in Applied Mathematics, American Mathematical Society XVI; American Mathematical Society: Providence, RI, USA, 1964; pp. 40–69. [Google Scholar]
- Bharucha-Reid, A.T. Probabilistic Methods in Applied Mathematics; Academic Press, Inc.: New York, NY, USA, 1973. [Google Scholar]
- Bäck, J.; Nobile, F.; Tamellini, L.; Tempone, R. Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison. In Spectral and High Order Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering; Hesthaven, J., Rønquist, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 76, pp. 43–62. [Google Scholar]
- Ernst, O.; Sprungk, B.; Tamellini, L. Convergence of Sparse Collocation for Functions of Countably Many Gaussian Random Variables (with Application to Elliptic PDEs). SIAM J. Numer. Anal. 2018, 56, 877–905. [Google Scholar] [CrossRef] [Green Version]
- Casabán, M.-C.; Cortés, J.-C.; Jódar, L. Analytic-Numerical Solution of Random Parabolic Models: A Mean Square Fourier Transform Approach. Math. Model. Anal. 2018, 23, 79–100. [Google Scholar] [CrossRef]
- Casabán, M.-C.; Company, R.; Jódar, L. Numerical Integral Transform Methods for Random Hyperbolic Models with a Finite Degree of Randomness. Mathematics 2019, 7, 853. [Google Scholar] [CrossRef] [Green Version]
- Nouri, K.; Ranjbar, H. Mean Square Convergence of the Numerical Solution of Random Differential Equations. Mediterr. J. Math. 2015, 12, 1123–1140. [Google Scholar] [CrossRef]
- Casabán, M.-C.; Cortés, J.-C.; Jódar, L. A random Laplace transform method for solving random mixed parabolic differential problems. Appl. Math. Comput. 2015, 259, 654–667. [Google Scholar] [CrossRef]
- Iserles, A. On the numerical quadrature of highly oscillating integrals I: Fourier transforms. IMA J. Numer. Anal. 2004, 24, 365–391. [Google Scholar] [CrossRef]
- Davis, P.J.; Rabinowitz, P. Methods of Numerical Integration; Academic Press: Orlando, FL, USA, 1984. [Google Scholar]
- Casabán, M.-C.; Company, R.; Egorova, V.N.; Jódar, L. Integral transform solution of random coupled parabolic partial differential models. Math. Method Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Farlow, S.J. Partial Differential Equations for Scientists and Engineers; Dover: New York, NY, USA, 1993. [Google Scholar]
- Jódar, L.; Pérez, J. Analytic numerical solutions with a priori error bounds of initial value problems for the time dependent coefficient wave equation. Util. Math. 2002, 62, 95–115. [Google Scholar]
- Soong, T.T. Random Differential Equations in Science and Engineering; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Özişik, M.N. Boundary Value Problems of Heat Conduction; Dover Publications, Inc.: New York, NY, USA, 1968. [Google Scholar]
- Polyanin, A.D.; Nazaikinskii, V.E. Handbook of Linear Partial Differential Equations for Engineers and Scientists, 2nd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2016. [Google Scholar]
- Casabán, M.-C.; Company, R.; Cortés, J.-C.; Jódar, L. Solving the random diffusion model in an infinite medium: A mean square approach. Appl. Math. Model. 2014, 38, 5922–5933. [Google Scholar] [CrossRef]
- Casabán, M.-C.; Cortés, J.-C.; Jódar, L. Solving linear and quadratic random matrix differential equations using: A mean square approach. The non-autonomous case. J. Comput. Appl. Math 2018, 330, 937–954. [Google Scholar] [CrossRef]
- Davies, B.; Martin, B. Numerical Inversion of the Laplace Transform: A Survey and Comparison of Methods. J. Comput. Phys. 1979, 33, 1–32. [Google Scholar] [CrossRef]
- Cohen, A.M. Numerical Methods for Laplace Transform Inversion; Springer: New York, NY, USA, 2007. [Google Scholar]
- Kroese, D.P.; Taimre, T.; Botev, Z.I. Handbook of Monte Carlo Methods; Wiley Series in Probability and Statistics; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Asmussen, S.; Glynn, P.W. Stochastic Simulation: Algorithms and Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume 57. [Google Scholar]
- Ng, E.W.; Geller, M. A Table of Integrals of the Error Functions. Natianal Bur. Stand.-B Math. Sci. 1969, 73B, 1–20. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover Publications, Inc.: New York, NY, USA, 1972. [Google Scholar]
- Armstrong, J.S.; Collopy, F. Error measures for generalizing about forecasting methods: Empirical comparisons. Int. J. Forecast. 1992, 8, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Mathematica, Version 11.3; Wolfram Research, Inc.: Champaign, IL, USA, 2018.
RMSE | CPU,s | RMSE | CPU,s | |
---|---|---|---|---|
4 | 2.75343 × | 4.21989 × | ||
8 | 1.44244 × | 7.36449 × | ||
16 | 1.33445 × | 4.23940 × | ||
32 | 3.36898 × | 4.27797 × |
RMSE | CPU,s | RMSE | CPU,s | |
---|---|---|---|---|
1.28377 × 10 | 4.75391× | |||
4.23282 × | 9.02170 × | |||
1.33445 × | 4.23940 × | |||
1.14283 × | 4.25683 × | |||
1.04648 × | 4.26453 × |
RMSE | CPU, s | RMSE | CPU, s | |
---|---|---|---|---|
100 | 2.16541 × | 2.97642 × | ||
200 | 1.19892 × | 5.94483 × | ||
400 | 5.22902 × | 3.73953 × | ||
800 | 3.74892 × | 2.92100 × | ||
1600 | 7.37703 × | 6.96690 × | ||
3200 | 7.94225 × | 7.89259 × |
RMSD | RMSD | |
---|---|---|
4.08921 × | 2.39328 × | |
2.72959 × | 2.57692 × | |
1.03896 × | 8.86479 × | |
1.61474 × | 3.36047 × | |
8.11820 × | 2.62627 × |
RMSD | RMSD | |
---|---|---|
5.18967 × 10 | 2.57413 × | |
3.24473 × 10 | 1.88253 × | |
7.14500 × | 8.83031 × | |
1.03254 × | 3.25342 × | |
6.92989 × | 2.62627 × |
CPU,s | CPU,s | |
---|---|---|
2 | ||
4 | ||
8 | ||
16 | ||
32 | ||
64 |
CPU,s | CPU,s | |
---|---|---|
8 | ||
4 | ||
2 | ||
1 | ||
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casabán, M.-C.; Company, R.; Jódar, L. Non-Gaussian Quadrature Integral Transform Solution of Parabolic Models with a Finite Degree of Randomness. Mathematics 2020, 8, 1112. https://doi.org/10.3390/math8071112
Casabán M-C, Company R, Jódar L. Non-Gaussian Quadrature Integral Transform Solution of Parabolic Models with a Finite Degree of Randomness. Mathematics. 2020; 8(7):1112. https://doi.org/10.3390/math8071112
Chicago/Turabian StyleCasabán, María-Consuelo, Rafael Company, and Lucas Jódar. 2020. "Non-Gaussian Quadrature Integral Transform Solution of Parabolic Models with a Finite Degree of Randomness" Mathematics 8, no. 7: 1112. https://doi.org/10.3390/math8071112
APA StyleCasabán, M. -C., Company, R., & Jódar, L. (2020). Non-Gaussian Quadrature Integral Transform Solution of Parabolic Models with a Finite Degree of Randomness. Mathematics, 8(7), 1112. https://doi.org/10.3390/math8071112