Evaluation of the Relationship between Adipose Metabolism Patterns and Secretion of Appetite-Related Endocrines on Chicken
Abstract
:Simple Summary
Abstract
1. Introduction
2. Factors on Appetite Regulation
3. The Endocrine Regulation of the Avian Appetite
3.1. The Pro-Opiomelanocortin (POMC)/Cocaine and Amphetamine Regulated Transcript (CART) and Neuropeptide Y (NPY)/Agouti-Related Protein (AgRP) Regulation of the Avian Appetite
3.2. The Leptin Regulation of the Avian Appetite
3.3. The Reproductive Hormone Regulation of the Avian Appetite
3.3.1. Oxytocin
3.3.2. Estradiol
3.3.3. Gonadotropin-Releasing Hormone (GnRH), Luteinizing Hormone (LH) and Follicle Stimulating Hormone (FSH)
3.4. Insulin
3.5. Ghrelin
3.6. Orexin
3.7. Hypothalamic-Pituitary-Adrenal Axis (HPA Axis)
4. Poultry Adipose Accumulation and Its Impact on Poultry Health
4.1. Adipose Synthesis and Catabolism
4.2. Inflammation and Oxidative Stress Occurred with β-Oxidation
4.3. Adipose Metabolism-Related Hormone
4.4. The AMP-Activated Protein Kinase (AMPK) Regulation of the Avian Appetite
5. Effect of Rearing Pattern on Appetite and Metabolism Regulation
5.1. Plant-Based Ingredients
5.2. Probiotics
5.3. Lighting Effect
6. Economic Animal Feeding Advice Based on Appetite Regulation and Fat Metabolism
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations/Nomenclature
ACC | acetyl-CoA carboxylase |
ACTH | adrenocorticotropic hormone |
AgRP | agouti-related protein |
AMPK | AMP-activated protein kinase |
ATGL | adipose triglyceride lipase |
BCFA | branched chain fatty acids |
C/EBP-α | CCAAT/enhancer-binding protein alpha |
CART | cocaine and amphetamine regulated transcript |
cGH | chicken growth hormone |
CORT | corticosterone |
CPT | carnitine palmitoyltransferase |
CRF | corticotropin-releasing factor |
CRH | corticotropin-releasing hormone |
EGCG | epigallocatechin gallate |
FABP | fatty-acid-binding proteins |
FAS | fatty acid synthase |
FoxO1 | forkhead box protein |
FSH | follicle stimulating hormone |
GH | growth hormone |
GLUT | glucose transporter |
GnIH | gonadotropin inhibitory hormone |
GnRH | gonadotropin-releasing hormone |
GR | glucocorticoid receptor |
HDL | high density lipoprotein |
GSH-Px | glutathione peroxidase |
HMW | heavy molecular weight |
HPA | hypothalamic--pituitary--adrenal |
IL-6 | Interleukin |
JAK2-dependent | Janus kinase 2-dependent |
JAK-STAT | Janus kinase/signal transducers and activators of transcription |
LDL | low density lipoprotein |
LEP | leptin |
LEPR | leptin receptor |
LH | luteinizing hormone |
LPL | lipoprotein lipase |
MAPK | mitogen-activated protein kinase |
MRAP | melanocortin receptor accessory proteins |
MSH | melanocyte stimulating hormone |
NEFA | monesterified fatty acids |
NPR | neuropeptide Y receptor |
NPY | neuropeptide Y |
OEO | oregano essential oil |
OXT | oxytocin |
OXTR | oxytocin receptor |
PI3K | Phosphoinositide 3-kinase |
POMC | pro-opiomelanocortin |
PPAR | peroxisome proliferator-activated receptor |
PVN | paraventricular nucleus |
RARRES | retinoic acid receptor responder |
RLPs | remnant-like lipoprotein particles |
ROS | reactive oxygen species |
SCD | stearoyl-CoA desaturase |
SERBP | sterol regulatory element-binding proteins |
STAT3 | signal transducer and activator of transcription 3 |
TG | triglyceride |
TNF-α | tumor necrosis factor-α |
VLDL | very low density lipoprotein. |
References
- Geary, N. Control-theory models of body-weight regulation and body-weight regulatory appetite. Appetite 2020, 144, 104440. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Greene, E.; Kong, B.W.; Bottje, W.; Anthony, N.; Dridi, S. Acute heat stress alters the expression of orexin system in quail muscle. Front. Physiol. 2017, 8, 1079. [Google Scholar] [CrossRef]
- Leone, V.; Gibbons, S.M.; Martinez, K.; Hutchison, A.L.; Huang, E.Y.; Cham, C.M.; Pierre, J.F.; Heneghan, A.F.; Nadimpalli, A.; Hubert, N.; et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 2015, 17, 681–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 2015, 16, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Lattin, C.R.; Breuner, C.W.; Romero, L.M. Does corticosterone regulate the onset of breeding in free-living birds? The CORT-Flexibility Hypothesis and six potential mechanisms for priming corticosteroid function. Horm. Behav. 2016, 78, 107–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ress, C.; Tschoner, A.; Engl, J.; Klaus, A.; Tilg, H.; Ebenbichler, C.F.; Patsch, J.R.; Kaser, S. Effect of bariatric surgery on circulating chemerin levels. Eur. J. Clin. Investig. 2010, 40, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Jamesa, C.; Asher, L.; Herborn, K.; Wiseman, J. The effect of supplementary ultraviolet wavelengths on broiler chicken welfare indicators. Appl. Anim. Behav. Sci. 2018, 209, 55–64. [Google Scholar] [CrossRef]
- Song, Z.; Liu, L.; Yue, Y.; Jiao, H.; Lin, H.; Sheikhahmadi, A.; Everaert, N.; Decuypere, E.; Buyse, J. Fasting alters protein expression of AMP-activated protein kinase in the hypothalamus of broiler chicks (Gallus gallus domesticus). Gen. Comp. Endocrinol. 2012, 178, 546–555. [Google Scholar] [CrossRef]
- Nelson, L.A.; Gilbert, E.R.; Cline, M.A. Effects of dietary macronutrient composition on exogenous neuropeptide Y’s stimulation of food intake in chicks. Neurosci. Lett. 2015, 591, 171–175. [Google Scholar] [CrossRef]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Stappenbeck, T.S.; Martens, E.C.A. Dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016, 167, 1339–1353. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Chassaing, B.; Singh, V.; Pellizzon, M.; Ricci, M.; Fythe, M.D.; Kumar, M.V.; Gewirtz, A.T. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe 2018, 23, 41–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.W.; Everts, H.; Kappert, H.J.; Yeom, K.H.; Beynen, A.C. Dietary carvacrol lowers body weight gain but improves feed conversion in female broiler chickens. J. Appl. Poult. Res. 2003, 12, 394–399. [Google Scholar] [CrossRef]
- Wolfram, S.; Wang, Y.; Thielecke, F. Anti-obesity effects of green tea, from bedside to bench. Mol. Nutr. Food Res. 2006, 50, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.J.; Lee, C.H.; Kim, S.W. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food 2004, 7, 430–434. [Google Scholar] [CrossRef]
- Teng, P.Y.; Chang, C.L.; Huang, C.M.; Chang, S.C.; Lee, T.T. Effects of solid-state fermented wheat bran by Bacillus amyloliquefaciens and Saccharomyces cerevisiae on growth performance and intestinal microbiota in broiler chickens. J. Anim. Sci. 2017, 16, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Griffin, H.D.; Guo, K.; Windsor, D.; Butterwith, S.C. Adipose tissue lipogenesis and fat deposition in leaner broiler chickens. J. Nutr. 1992, 122, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Hermier, D. Lipoprotein metabolism and fattening in poultry. J. Nutr. 1997, 127, 805S–808S. [Google Scholar] [CrossRef]
- Song, J.; Lei, X.; Luo, J.; Everaert, N.; Zhao, G.; Wen, J.; Yang, Y. The effect of Epigallocatechin-3-gallate on small intestinal morphology; antioxidant capacity and anti-inflammatory effect in heat-stressed broilers. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1030–1038. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Sheikhahmadi, A.; Li, X.; Buyse, J.; Lin, H.; Song, Z. Effects of dietary energy level on appetite and central adenosine monophosphate-activated protein kinase (AMPK) in broilers. J. Anim. Sci. 2019, 97, 4488–4495. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Jiao, H.; Zhao, J.; Wang, X.; Lin, H. Dexamethasone and insulin stimulate ghrelin secretion of broilers in a different way. Gen. Comp. Endocrinol. 2018, 268, 14–21. [Google Scholar] [CrossRef]
- Honda, K.; Saneyasu, T.; Hasegawa, S.; Kamisoyama, H. A comparative study of the central effects of melanocortin peptides on food intake in broiler and layer chicks. Peptides 2012, 37, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Hepeng, L.; Xianlei, L.; Hongchao, J.; Hai, L.; Sheikhahmadi, A.; Yufeng, W.; Zhigang, S. Effects of acute heat stress on gene expression of brain–gut neuropeptides in broiler chickens (Gallus gallus domesticus). J. Anim. Sci. 2013, 91, 5194–5201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.F.; Cho, J.H.; Kim, I.H. Effects of Bacillus subtilis UBT-MO2 on growth performance; relative immune organ weight; gas concentration in excreta; and intestinal microbial shedding in broiler chickens. Livest. Sci. 2013, 155, 343–347. [Google Scholar] [CrossRef] [Green Version]
- Lau, J.; Herzog, H. CART in the regulation of appetite and energy homeostasis. Front. Neurosci. 2014, 8, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delp, M.S.; Cline, M.A.; Gilbert, E.R. The central effects of alpha-melanocyte stimulating hormone (-MSH) in chicks involve changes in gene expression of neuropeptide Y and other factors in distinct hypothalamic nuclei. Neurosci. Lett. 2017, 651, 52–56. [Google Scholar] [CrossRef]
- Liu, X.; Yan, H.; Lv, L.; Xu, Q.; Yin, C.; Zhang, K.; Wang, P.; Hu, J. Growth performance and meat quality of broiler chickens supplemented with Bacillus licheniformis in drinking water. Asian-Aust. J. Anim. Sci. 2012, 25, 682–689. [Google Scholar] [CrossRef]
- Saneyasu, T.; Honda, K.; Kamisoyama, H.; Ikura, A.; Nakayama, Y.; Hasegawa, S. Neuropeptide Y effect on food intake in broiler and layer chicks. Comp. Biochem. Physiol. A 2011, 159, 422–426. [Google Scholar] [CrossRef]
- Newmyer, B.A.; Nandar, W.; Webster, R.I.; Gilbert, E.; Siegel, P.B.; Cline, M.A. Neuropeptide Y is associated with changes in appetite-associated hypothalamic nuclei but not food intake in a hypophagic avian model. Behav. Brain Res. 2013, 236, 327–331. [Google Scholar] [CrossRef]
- Boswell, T.; Dunn, L.C. Regulation of the avian central melanocortin systemand the role of leptin. Gen. Comp. Endocrinol. 2015, 221, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Horev, G.; Einat, P.; Aharoni, T.; Eshdat, Y.; Friedman-Einat, M. Molecular cloningand properties of the chicken leptin-receptor (CLEPR) gene. Mol. Cell. Endocrinol. 2000, 162, 95–106. [Google Scholar] [CrossRef]
- Seroussi, E.; Cinnamon, Y.; Yosefi, S.; Genin, O.; Smith, J.G.; Rafati, N.; Bornelov, S.; Andersson, L.; Friedman-Einat, M. Identification of the long-sought leptin in chicken and duck, expression pattern of the highly GC-Rich avian leptin fitsan autocrine/paracrine rather than endocrine function. Endocrinology 2016, 157, 737–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murase, D.; Namekawa, S.; Ohkubo, T. Leptin activates chicken growth hormone promoter without chicken STAT3 in vitro. Comp. Biochem. Physiol. B 2016, 191, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Wang, Y.; Hu, Y.; Zhao, R. In ovo leptin administration modulates glucocorticoid receptor mRNA expression specifically in the hypothalamus of broiler chickens. Neurosci. Lett. 2017, 638, 181–188. [Google Scholar] [CrossRef]
- Hausman, G.J.; Barb, C.R.; Fairchild, B.D.; Gamble, J.; Lee-Rutherford, L. Expression of genes for interleukins, neuropeptides, growth hormone receptor, and leptin receptor in adipose tissue from growing broiler chickens. Domest. Anim. Endocrinol. 2012, 43, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Denbow, D.M.; Meade, S.; Robertson, A.; McMurtry, J.P.; Richards, M.; Ashwell, C. Leptin-induced decrease in food intake in chickens. Physiol. Behav. 2000, 69, 359–362. [Google Scholar] [CrossRef]
- Cassy, S.; Picard, M.; Crochet, S.; Derouet, M.; Keisler, D.H.; Taouis, M. Peripheral leptin effect on food intake in young chickens is influenced by age and strain. Domest. Anim. Endocrinol. 2004, 27, 51–61. [Google Scholar] [CrossRef]
- Lei, M.M.; Wei, C.K.; Chen, Z.; Yosefi, S.; Zhu, H.X.; Shi, Z.D. Anti-leptin receptor antibodies strengthen leptin biofunction in growing chickens. Gen. Comp. Endocrinol. 2018, 259, 223–230. [Google Scholar] [CrossRef]
- Sims, W.; Yi, J.; Cline, M.A.; Gilbert, E.R. Central injection of a synthetic chicken partial leptin peptide does not affect food intake in chicks. Neurosci. Lett. 2017, 656, 165–168. [Google Scholar] [CrossRef]
- Ding, C.; Leow, M.K.S.; Magkos, F. Oxytocin in metabolic homeostasis: Implications for obesity and diabetes management. Obes. Rev. 2018, 20, 22–40. [Google Scholar] [CrossRef] [Green Version]
- McConn, B.R.; Wang, G.; Yi, J.; Gilbert, E.R.; Osugi, T.; Ubuka, T.; Tsutsui, K.; Chowdhury, V.S.; Furuse, M.; Cline, M.A. Gonadotropin-inhibitory hormone-stimulation of food intake is mediated by hypothalamic effects in chicks. Neuropeptides 2014, 48, 327–334. [Google Scholar] [CrossRef]
- McConn, B.R.; Koskinen, A.; Denbow, D.M.; Gilbert, E.R.; Siegel, P.B.; Cline, M.A. Central injection of oxytocin reduces food intake and affects hypothalamic and adipose tissue gene expression in chickens. Domest. Anim. Endocrinol. 2019, 67, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Li, Y.; Xu, N.; Li, H.; Li, C.; Han, R.; Wang, Y.; Li, Z.; Kang, X.; Liu, X.; et al. Association of estradiol on expression of melanocortin receptors and their accessory proteins in the liver of chicken (Gallus gallus). Gen. Comp. Endocrinol. 2017, 240, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Socha, J.K.; Sechman, A.; Mika, M.; Hrabia, A. Effect of growth hormone on steroid concentrations and mRNA expression of their receptor; and selected eggspecific protein genes in the chicken oviduct during pause in laying induced by fasting. Domest. Anim. Endocrinol. 2017, 61, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dupont, J.; Metayer-Coustard, S.; Ji, B.; Rame, C.; Gespach, C.; Voy, B.; Simon, J. Characterization of major elements of insulin signaling cascade in chicken adipose tissue: Apparent insulin refractoriness. Gen. Comp. Endocrinol. 2012, 176, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.; Milenkovic, D.; Godet, E.; Cabau, C.; Collin, A.; Metayer-Coustard, S.; Rideau, N.; Tesseraud, S.; Derouet, M.; Crochet, S.; et al. Insulin immuno-neutralization in fed chickens, effects on liver and muscle transcriptome. Physiol. Genom. 2012, 44, 283–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langslow, D.R.; Hales, C.N. Lipolysis in chicken adipose tissue in vitro. J. Endocrinol. 1969, 43, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Dupont, J.; Tesseraud, S.; Simon, J. Insulin signaling in chicken liver and muscle. Gen. Comp. Endocrinol. 2009, 163, 52–57. [Google Scholar] [CrossRef]
- Shimamoto, S.; Nakashima, K.; Kamimura, R.; Kohrogi, R.; Inoue, H.; Nishikoba, N.; Ohtsuka, A.; Ijiri, D. Insulin acutely increases glucose transporter 1 on plasma membranes and glucose uptake in an AKT-dependent manner in chicken adipocytes. Gen. Comp. Endocrinol. 2019, 283, 113232. [Google Scholar] [CrossRef]
- Rice, B.B.; Zhang, W.; Bai, S.; Siegel, P.B.; Cline, M.A.; Gilbert, E.R. Insulin-induced hypoglycemia associations with gene expression changes in liver and hypothalamus of chickens from lines selected for low or high body weight. Gen. Comp. Endocrinol. 2014, 208, 1–4. [Google Scholar] [CrossRef]
- Zhang, W.; Sumners, L.H.; Siegel, P.B.; Cline, M.A.; Gilbert, E.R. Quantity of glucose transporter and appetite-associated factor mRNA in various tissues after insulin injection in chickens selected for low or high body weight. Physiol. Genom. 2013, 45, 1084–1094. [Google Scholar] [CrossRef] [Green Version]
- Honda, K.; Kamisoyama, H.; Saneyasu, T.; Sugahara, K.; Hasegawa, S. Central administration of insulin suppresses food intake in chicks. Neurosci. Lett. 2007, 423, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Kitazawa, T.; Yoshida, A.; Tamano, T.; Teraoka, H.; Kaiya, H. Age-dependent reduction of ghrelin- and motilin-induced contractile activity in the chicken gastrointestinal tract. Peptides 2013, 43, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Pavlova, S.; Tena-Sempere, M.; Grossmann, R.; Jiménez, M.R.; Rodriguez, J.M.C.; Valenzuela, F. Food restriction; ghrelin; its antagonist and obestatin control expression of ghrelin and its receptor in chicken hypothalamus and ovary. Comp. Biochem. Physiol. A 2013, 164, 141–153. [Google Scholar] [CrossRef] [PubMed]
- El-Magd, M.A.; Saleh, A.A.; Abdel-Hamid, T.M.; Saleh, R.M.; Afifi, M.A. Is really endogenous ghrelin a hunger signal in chickens? Association of GHSR SNPs with increase appetite, growth traits, expression and serum level of GHRL, and GH. Gen. Comp. Endocrinol. 2016, 237, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Miranda, B.; Esposito, V.; Girolamo, P.; Sharp, P.J.; Wilson, P.W.; Dumn, I.C. Orexin in the chicken hypothalamus: Immunocytochemical localization and comparison of mRNA concentrations during the day and night, and after chronic food restriction. Brain Res. 2013, 1513, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Lassiter, K.; Greene, E.; Piekarski, A.; Faulkner, O.B.; Hargis, B.M.; Bottje, W.; Dridi, S. Orexin system is expressed in avian muscle cells and regulates mitochondrial dynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R173–R187. [Google Scholar] [CrossRef] [Green Version]
- Lassiter, B.K.; Dridi, S. Orexin system and avian muscle mitochondria. Muscle Cells 2019. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Yuan, L.; Jiao, H.; Lin, H. Effect of corticosterone on hypothalamic corticotropin-releasing hormone expression in broiler chicks (Gallus gallus domesticus) fed a high energy diet. Asian-Aust. J. Anim. Sci. 2011, 24, 1736–1743. [Google Scholar] [CrossRef]
- Duan, Y.; Fu, W.; Wang, S.; Ni, Y.; Zhao, R. Effects of tonic immobility (TI) and corticosterone (CORT) on energy status and protein metabolism in pectoralis major muscle of broiler chickens. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2014, 169, 90–95. [Google Scholar] [CrossRef]
- Shini, S.; Kaiser, P.; Shini, A.; Bryden, W.L. Biological response of chickens (Gallus gallus domesticus) induced by corticosterone and a bacterial endotoxin. Comp. Biochem. Physiol. B 2008, 149, 324–333. [Google Scholar] [CrossRef]
- Lin, H.; Sui, S.J.; Jiao, H.C.; Buyse, J.; Decuypere, E. Impaired development of broiler chickens by stress mimicked by corticosterone exposure. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2006, 143, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Fu, W.; Wang, S.; Ni, Y.; Zhao, R. Cholesterol deregulation induced by chronic corticosterone (CORT) stress in pectoralis major of broiler chickens. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2014, 176, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.A.; Ma, W.; Ni, Y.; Wang, S.; Zhao, R. Corticosterone in ovo modifies aggressive behaviors and reproductive performances through alterations of the hypothalamic-pituitary-gonadal axis in the chicken. Anim. Reprod. Sci. 2014, 146, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.P.; Lin, H.; Jiao, H.C.; Song, Z.G. Corticosterone suppresses insulin- and NO-stimulated muscle glucose uptake in broiler chickens (Gallus gallus domesticus). Comp. Biochem. Physiol. Part C 2009, 149, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, G.; Xiao, Y.; Shipp, S.L.; Siegel, P.B.; Cline, M.A.; Gilbert, E.R. Peripheral neuropeptide Y differentially influences adipogenesis and lipolysis in chicks from lines selected for low or high body weight. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2017, 213, 1–10. [Google Scholar] [CrossRef]
- Rosen, E.D.; Spiegelman, B.M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006, 444, 847–853. [Google Scholar] [CrossRef] [Green Version]
- Adil, S.; Banday, T.; Bhat, G.A.; Mir, M.S.; Rehman, M. Effect of dietary supplementation of organic acids on performance, intestinal histomorphology, and serum biochemistry of broiler chicken. Vet. Med. Int. 2010, 479485. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Bai, S.; Liu, D.; Cline, M.A.; Gilbert, E.R. Neuropeptide Y promotes adipogenesis in chicken adipose cells in vitro. Comp. Biochem. Physiol. Part A 2015, 181, 62–70. [Google Scholar] [CrossRef]
- Malheiros, R.D.; Moraes, V.M.B.; Collin, A.; Decuypere, E.; Buyse, J. Free diet selection by broilers as influenced by dietary macronutrient ratio and corticosterone supplementation. 1. Diet selection, organ weights, and plasma metabolites. Poult. Sci. 2003, 82, 123–131. [Google Scholar] [CrossRef]
- Wang, C.C.; Lin, L.J.; Chao, Y.P.; Chiang, C.J.; Lee, M.T.; Chang, S.C.; Yu, B.; Lee, T.T. Antioxidant molecular targets of wheat bran fermented by white rot fungi and its potential modulation of antioxidative status in broiler chickens. Br. Poult. Sci. 2017, 58, 262–271. [Google Scholar] [CrossRef]
- Leveille, G.A.; O’Hea, E.K.; Chakrabarty, K. In vivo lipogenesis in the domestic chicken. Exp. Biol. Med. 1968, 128, 398–401. [Google Scholar] [CrossRef] [PubMed]
- Ricoult, S.J.H.; Manning, B.D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 2012, 14, 242–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, L.A.; Horton, H.R.; Scrimgeour, K.G.; Perry, M.D. Principles of Biochemistry, 5th ed.; Person Education: London, UK, 2012; 796p. [Google Scholar]
- Knoop, F. Der Abbau aromatischer fettsäuren im tierkörper. Beitr. Chem. Physiol. Pathol. 1904, 6, 150–162. [Google Scholar]
- Fariss, M.W.; Chan, C.B.; Patel, M.; Houten, B.V.; Orrenius, S. Role of mitochondria in toxic oxidative stress. Mol. Interv. 2005, 5, 94–111. [Google Scholar] [CrossRef]
- Farahat, M.; Abdallah, F.; Abdel-Hamid, T.; Hernandez-Santana, A. Effect of supplementing broiler chicken diets with green tea extract on the growth performance, lipid profile, antioxidant status and immune response. Br. Poult. Sci. 2016, 57, 714–722. [Google Scholar] [CrossRef]
- Song, Z.; Everaert, N.; Wang, Y.; Decuypere, E.; Buyse, J. The endocrine control of energy homeostasis in chickens. Gen. Comp. Endocr. 2013, 190, 112–117. [Google Scholar] [CrossRef]
- Ozata, M.; Mergen, M.; Oktenli, C.; Aydin, A.; Sanisoglu, S.Y.; Bolu, E.; Yilmaz, M.I.; Sayal, A.; Isimer, A.; Ozdemir, I.C. Increased oxidative stress and hypozincemia in male obesity. Clin. Biochem. 2002, 35, 627–631. [Google Scholar] [CrossRef]
- Ferrante, A.W. Obesity-induced inflammation: A metabolic dialogue in the language of inflammation. J. Intern. Med. 2007, 262, 408–414. [Google Scholar] [CrossRef]
- Wellen, K.E.; Hotamisligil, G.S. Obesity-induced inflammatory changes in adipose tissue. J. Clin. Investig. 2003, 112, 1785–1788. [Google Scholar] [CrossRef]
- Maddineni, S.; Metzger, S.; Ocón, O.; Hendricks, G., III; Ramachandran, R. Adiponectin gene is expressed in multiple tissues in the chicken: Food deprivation influences adiponectin messenger ribonucleic acid expression. Endocrinology 2005, 146, 4250–4256. [Google Scholar] [CrossRef] [Green Version]
- Scherer, P.E.; Williams, S.; Fogliano, M.; Baldini, G.; Lodish, H.F. A novel serum protein similar to C1q; produced exclusively in adipocytes. J. Biol. Chem. 1995, 270, 26746–26749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendricks, G.L., III; Hadley, J.A.; Krzysik-Walker, S.M.; Prabhu, K.S.; Vasilatos-Younken, R.; Ramachandran, R. Unique profile of chicken adiponectin, a predominantly heavy molecular weight multimer, and relationship to visceral adiposity. Endocrinology 2009, 150, 3092–3100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Yang, H.; Gan, L.; Sun, C. Adiponectin-impaired adipocyte differentiation negatively regulates fat deposition in chicken. J. Anim. Physiol. Anim. Nutr. 2013, 98, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Goralski, K.B.; McCarthy, T.C.; Hanniman, E.A.; Zabel, B.A.; Butcher, E.C.; Parlee, S.D.; Muruganandan, S.; Sinal, C.J. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 2007, 282, 28175–28188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozaoglu, K.; Bolton, K.; McMillan, J.; Zimmet, P.; Jowett, J.; Collier, G.; Walder, K.; Segal, D. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 2007, 148, 4687–4694. [Google Scholar] [CrossRef] [PubMed]
- Diot, M.; Reverchon, M.; Rame, C.; Froment, P.; Brillard, J.; Brière, S.; Levêque, G.; Guillaume, D.; Joëlle, D. Expression of adiponectin, chemerin and visfatin in plasma and different tissues during a laying season in turkeys. Reprod. Biol. Endocrinol. 2015, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellouk, N.; Ramé, C.; Marchand, M.; Staub, C.; Touzé, J.; Venturi, É.; Mercerand, F.; Travel, A.; Chartrin, P.; Lecompte, F.; et al. Effect of different levels of feed restriction and fish oil fatty acid supplementation on fat deposition by using different techniques, plasma levels and mRNA expression of several adipokines in broiler breeder hens. PLoS ONE 2018, 13, e0191121. [Google Scholar] [CrossRef] [Green Version]
- Sethi, J.K.; Vidal-Puig, A. Visfatin, the missing link between intra-abdominal obesity and diabetes? Trends Mol. Med. 2005, 11, 344–347. [Google Scholar] [CrossRef] [Green Version]
- Krzysik-Walker, S.M.; Hadley, J.A.; Pesall, J.E.; McFarland, D.C.; Vasilatos-Younken, R.; Ramachandran, R. Nampt/visfatin/PBEF affects expression of myogenic regulatory factors and is regulated by interleukin-6 in chicken skeletal muscle cells. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011, 159, 413–421. [Google Scholar] [CrossRef]
- Cline, M.A.; Nandar, W.; Prall, B.C.; Bowden, C.N.; Denbow, D.M. Central visfatin causes orexigenic effects in chicks. Behav. Brain Res. 2008, 186, 293–297. [Google Scholar] [CrossRef]
- Piekarski, A.; Decuypere, E.; Buyse, J.; Dridi, S. Chenodeoxycholic acid reduces feed intake and modulates the expression of hypothalamic neuropeptides and hepatic lipogenic genes in broiler chickens. Gen. Comp. Endocrinol. 2016, 229, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, T.; Akira, S.; Narazaki, M.; Taga, T. Interleukin-6 family of cytokines and gp130. Blood 1995, 86, 1243–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sindhu, S.; Thomas, R.; Shihab, P.; Sriraman, D.; Behbehani, K.; Ahmad, R. Obesity is a positive modulator of IL-6R and IL-6 expression in the subcutaneous adipose tissue, significance for metabolic inflammation. PLoS ONE 2015, 10, e0133494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senn, J.J.; Klover, P.J.; Nowak, I.A.; Zimmers, T.A.; Koniaris, L.G.; Furlanetto, R.W.; Mooney, R.A. Suppressor of cytokine signaling-3 (SOCS-3); a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J. Biol. Chem. 2003, 278, 13740–13746. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, G.D.; Ropelle, E.R.; Rocha, G.Z.; Carvalheira, J.B.C. The role of neuronal AMPK as a mediator of nutritional regulation of food intake and energy homeostasis. Metabolism 2013, 62, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, L.; Song, Z.; Sheikhahmadi, A.; Wang, Y.; Buyse, J. Effects of feed deprivation on the AMPK signaling pathway in skeletal muscle of broiler chickens. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2016, 191, 146–154. [Google Scholar] [CrossRef]
- Shackelford, D.B.; Shaw, R.J. The LKB1-AMPK pathway, metabolism and growth control in tumor suppression. Nat. Rev. Cancer 2009, 9, 563–575. [Google Scholar] [CrossRef]
- Chen, W.L.; Chen, Y.L.; Chiang, Y.M.; Wang, S.G.; Lee, H.M. Fenofibrate lowers lipid accumulation in myotubes by modulating the PPARα/AMPK/FoxO1/ATGL pathway. Biochem. Pharmacol. 2012, 84, 522–531. [Google Scholar] [CrossRef]
- Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Investig. 2001, 108, 1167–1174. [Google Scholar] [CrossRef]
- Li, B.; Fang, J.; He, T.; Yin, S.; Yang, M.; Cui, H.; Ma, X.; Deng, J.; Ren, Z.; Hu, Y.; et al. Resistin up-regulates LPL expression through the PPARγ-dependent PI3K/AKT signaling pathway impacting lipid accumulation in RAW264.7 macrophages. Cytokine 2019, 119, 168–174. [Google Scholar] [CrossRef]
- Moseti, D.; Regassa, A.; Kim, W.K. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int. J. Mol. Sci. 2016, 17, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Dou, H.; Gao, D.; Wang, T.; Zhang, M.; Wang, H.; Li, Y. Identification of new dual FABP4/5 inhibitors based on a naphthalene-1-sulfonamide FABP4 inhibitor. Bioorg. Med. Chem. Lett. 2019, 27, 115015. [Google Scholar] [CrossRef] [PubMed]
- Walenna, N.F.; Kurihara, Y.; Chou, B.; Ishii, K.; Soejima, T.; Itoh, R.; Shimizu, A.; Ichinohe, T.; Hiromatsu, K. Chlamydia pneumoniae exploits adipocyte lipid chaperone FABP4 to facilitate fat mobilization and intracellular growth in murine adipocytes. Biochem. Biophys. Res. Commun. 2018, 495, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, S.; Mihaylova, M.; Zheng, B.; Hou, X.; Jiang, B.; Park, O.; Luo, Z.; Lefai, E.; Shyy, J.Y.J.; et al. AMPK Phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin resistant mice. Cell Metab. 2011, 13, 376–388. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Lin, J.; Chen, Y.; Zhong, W.; Zhao, G.; Liu, H.; Li, S.; Wang, L.; Li, S. Novel fatty acid synthase (FAS) inhibitors, Design; synthesis; biological evaluation; and molecular docking studies. Bioorg. Med. Chem. 2009, 17, 1898–1904. [Google Scholar] [CrossRef]
- Abu-Elheiga, L.; Matzuk, M.M.; Abo-Hashema, K.A.H.; Wakil, S.J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-coa carboxylase 2. Science 2001, 291, 2613–2616. [Google Scholar] [CrossRef]
- Swierczynski, J.; Goyke, J.E.; Korcynska, J.; Jankowski, Z. Acetyl-CoA carboxylase and fatty acid synthase activities in human hypothalamus. Neurosci. Lett. 2008, 444, 209–211. [Google Scholar] [CrossRef]
- Abu-Elheiga, L.; Oh, W.; Kordari, P.; Wakil, S.J. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc. Natl. Acad. Sci. USA 2003, 100, 10207–10212. [Google Scholar] [CrossRef] [Green Version]
- Thupari, J.N.; Pinn, M.L.; Kuhajda, F.P. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-coA-induced inhibition of fatty acid oxidation and cytotoxicity. Biochem. Biophys. Res. Commun. 2001, 285, 217–223. [Google Scholar] [CrossRef]
- Buxton, D.R.; Redfearn, D.D. Plant limitations to fiber digestion and utilization. J. Nutr. 1997, 127, 8145–8185. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Kim, W.K.; Cline, M.A.; Gilbert, E.R. Factors affecting adipose tissue development in chickens, a review. Poult. Sci. 2017, 96, 3687–3699. [Google Scholar] [CrossRef] [PubMed]
- Chuang, W.Y.; Lin, W.C.; Hsieh, Y.C.; Huang, C.M.; Chang, S.C.; Lee, T.T. Evaluation of the combined use of Saccharomyces cerevisiae and Aspergillus oryzae with phytase fermentation products on growth, inflammatory, and intestinal morphology in broilers. Animals 2019, 9, E1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.H.; Lee, S.I.; Ricke, S.C. Microbial populations in naked neck chicken ceca raised on pasture flock fed with commercial yeast cell wall prebiotics via an illumina MiSeq platform. PLoS ONE 2016, 11, e015194. [Google Scholar] [CrossRef] [PubMed]
- Mátis, G.; Kulcsár, A.; Turowski, V.; Fébel, H.; Neogrády, Z.; Huber, K. Effects of oral butyrate application on insulin signaling in various tissues of chickens. Domest. Anim. Endocrinol. 2015, 50, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Nassar, M.K.; Lyu, S.; Zentek, J.; Brockmann, G.A. Dietary fiber content affects growth, body composition, and feed intake and their associations with a major growth locus in growing male chickens of an advanced intercross population. Livest. Sci. 2019, 277, 135–142. [Google Scholar] [CrossRef]
- Jørgensen, H.; Theil, P.K.; Knudsen, K.E.B. Satiating properties of diets rich in dietary fibre fed to sows as evaluated by physico-chemical properties, gastric emptying rate and physical activity. Livest. Sci. 2010, 134, 37–40. [Google Scholar] [CrossRef]
- Oelke, C.A.; Bernardi, M.L.; Nunes, P.R.; Weber, N.C.; Veit, F.C.; Ribeiro, A.M.L. Physiological and behavioral response of sows fed with different levels of dietary fiber during gestation. J. Vet. Behav. 2018, 28, 54–57. [Google Scholar] [CrossRef]
- Breton, J.; Tennoune, N.; Lucas, N.; Francois, M.; Legrand, R.; Jacquemot, J.; Goichon, A.; Guerin, C.; Peltier, J.; Pestel-Caron, M.; et al. Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab. 2016, 23, 324–334. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Toalá, J.E.; Garcia-Varela, R.; Garcia, H.S.; Mata-Haro, V.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernández-Mendoz, A. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 2018, 75, 105–114. [Google Scholar] [CrossRef]
- Ultee, A.; Kets, E.P.W.; Smid, E.J. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 1999, 65, 4606–4610. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhou, F.; Ji, B.P.; Pei, R.S.; Xu, N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol. 2008, 47, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.H.; Gebert, R.R.; Barreta, M.; Baldissera, M.D.; dos Santos, I.D.; Wagner, R.; Campigotto, G.; Jaguezeski, A.M.; Gris, A.; de Lima, J.L.F.; et al. Effects of phytogenic feed additive based on thymol; carvacrol and cinnamic aldehyde on body weight; blood parameters and environmental bacteria in broilers chickens. Microb. Pathog. 2018, 125, 168–176. [Google Scholar] [CrossRef]
- Peng, Q.Y.; Li, J.D.; Li, Z.; Duan, Z.Y.; Wu, Y.P. Effects of fietary supplementation with oregano essential oil on growth performance; carass traits and ieiunal morphology in broiler chickens. Anim. Feed Sci. Technol. 2016, 214, 148–153. [Google Scholar] [CrossRef]
- Hong, J.C.; Steiner, T.; Aufy, A.; Lien, T.F. Effects of supplemental essential oil on growth performance, lipid metabolites and immunity intestinal characteristics, microbiota and carcass traits in broilers. Livest. Sci. 2012, 144, 253–262. [Google Scholar] [CrossRef]
- Qaisrani, S.N.; van Krimpen, M.M.; Kwakkel, R.P.; Verstegen, M.W.; Hendriks, W.H. Diet structure; butyric acid; and fermentable carbohydrates influence growth performance; gut morphology; and cecal fermentation characteristics in broilers. Poult. Sci. 2015, 94, 2152–2164. [Google Scholar] [CrossRef]
- Huang, J.B.; Zhang, Y.; Zhou, Y.B.; Wan, X.C.; Zhang, J.S. Effects of epigallocatechin gallate on lipid metabolism and its underlying molecular mechanism in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2015, 99, 719–727. [Google Scholar] [CrossRef]
- Hassanein, S.M.; Soliman, N.K. Effect of probiotic (Saccharomyces cerevisiae) adding to diets on intestinal microflora and performance of Hy-Line layers hens. J. Am. Sci. 2010, 6, 159–169. [Google Scholar]
- Liu, L.; Song, Z.; Sheikhahmadi, A.; Jiao, H.; Lin, H. Effect of corticosterone on gene expression of feed intake regulatory peptides in laying hens. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2012, 162, 81–87. [Google Scholar] [CrossRef]
- Buyse, J.; Simons, P.C.M.; Boshouwers, F.M.G.; Decuypere, E. Effect of intermittent lighting, light intensity and source on the performance and welfare of broilers. World’s Poult. Sci. J. 1996, 52, 121–130. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Li, Y.L.; Li, D.L.; Chen, C.; Bai, H.; Xue, F.G.; Chen, J.L. Responses of broilers to the near-continuous lighting; constant 16-h lighting; and constant 16-h lighting with a 2-h night interruption. Livest. Sci. 2017, 206, 135–140. [Google Scholar] [CrossRef]
- Karaarslan, S.; Nazlıgül, A. Effects of lighting, stocking density, and access to perches on leg health variables as welfare indicators in broiler chickens. Livest. Sci. 2018, 218, 31–36. [Google Scholar] [CrossRef]
Endocrine. | Animal | Age | Effect | Methods 1 | References |
---|---|---|---|---|---|
Leptin | Sanhuang broiler breeder eggs | In ovo | Increases feed intake in 21D Decrease GR expression | In ovo, 0.5 or 5 μg | [32] |
Leptin | Cobb broiler | 4-day-old | Does not affect feed intake | i.c.v., 0.3–3 nmol | [37] |
Leptin | Ross broiler | 9-day-old | Does not affect feed intake | i.p., 0.5 mg/kg | [35] |
Leptin | ISA layer | 9-day-old | Decreases feed intake | i.p., 0.5 mg/kg | [35] |
Leptin | broiler | 4-week-old | Decreases feed intake | i.c.v., 2.5–10 μg | [34] |
Leptin | Leghorn | 7-week-old | Decreases feed intake | i.c.v., 2.5–10 μg | [34] |
NPY | Hubbard X Cobb 500 broiler | 4-week-old | Increases high carbohydrate and protein intake | i.c.v., 0.2–2 nmol | [8] |
NPY | Adipose cell | 14-day-old | Decreases adipolysis-related-mRNA expression | In vitro, 1–100 nM | [67] |
NPY | Chunky broiler and Leghorn | 1 to 8-day-old | Increases feed intake | i.c.v., 0.2–0.4 μg | [26] |
α-MSH 2 | Leghorn and chunky broiler | 8-day-old | Decrease feed intake | 40–400 pmol | [20] |
β-MSH 2 | Decreases Leghorn feed intake | ||||
γ-MSH 2 | Does not affect the feed intake | ||||
α-MSH | Cobb-500 broilers | 4-day-old | Decreases NPYR1 3 mRNA expression | i.c.v., 0.12 nmol | [24] |
Oxytocin | Cobb-500 broilers | 4-day-old | Decreases feed intake and increases adipolysis | i.c.v., 0–10 nmol | [43] |
GnIH 4 | Julia male layer chicks | 14-day-old | Increases feed intake and | i.c.v., 0–7.8 nmol | [39] |
CORT 5 | Hy-line brown layer | 24-week-old | Increases serum glucose and insulin level and decreases TG 6 and NEFA 7 content | s.c., 2 mg/kg | [68] |
Insulin | White Leghorn | 8-day-old | Increases POMC 8, CART 9, α-MSH and CRF 10 mRNA expression | i.c.v., 0.1–10 μg | [50] |
Endocrines 2 | β-Oxidation | Endocrines 3 | β-Oxidation |
---|---|---|---|
PPARα | + | SERBP | +− |
AMPK | + | PPARγ | +− |
CPT-1 | + | C/EBPα | +− |
ACC1 | − | FAS | +− |
Malonyl-CoA | − | ATGL | +− |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuang, W.Y.; Hsieh, Y.C.; Chen, L.W.; Lee, T.-T. Evaluation of the Relationship between Adipose Metabolism Patterns and Secretion of Appetite-Related Endocrines on Chicken. Animals 2020, 10, 1282. https://doi.org/10.3390/ani10081282
Chuang WY, Hsieh YC, Chen LW, Lee T-T. Evaluation of the Relationship between Adipose Metabolism Patterns and Secretion of Appetite-Related Endocrines on Chicken. Animals. 2020; 10(8):1282. https://doi.org/10.3390/ani10081282
Chicago/Turabian StyleChuang, Wen Yang, Yun Chen Hsieh, Li Wei Chen, and Tzu-Tai Lee. 2020. "Evaluation of the Relationship between Adipose Metabolism Patterns and Secretion of Appetite-Related Endocrines on Chicken" Animals 10, no. 8: 1282. https://doi.org/10.3390/ani10081282
APA StyleChuang, W. Y., Hsieh, Y. C., Chen, L. W., & Lee, T.-T. (2020). Evaluation of the Relationship between Adipose Metabolism Patterns and Secretion of Appetite-Related Endocrines on Chicken. Animals, 10(8), 1282. https://doi.org/10.3390/ani10081282