Recent Advances of Stem Cell Therapy for Retinitis Pigmentosa
Abstract
:1. Introduction
Type of Stem Cells | Origin | Advantage | Disadvantage |
---|---|---|---|
Retinal progenitor cells | Derived from fetal or neonatal retinas [21], if isolated from the developing retina at a suitable stage, photoreceptor precursors may be obtained [26]. | Can migrate into retinal layers, develop morphological characteristics of various retinal cell types [27]. | Ethical and immune rejection issues [28]. |
Embryonic stem cells (ESC) | Derived from inner cell mass of blastocyst-stage embryos. | ESC can differentiate into photoreceptor progenitors, photoreceptor, or retinal pigment epithelium (RPE) [29,30,31]. | Ethical and immune rejection issues, associated with teratoma formation [32,33]. |
Induced Pluripotent Stem Cells (iPS) | Pluripotent ESC-like cells reprogrammed in vitro from terminally differentiated somatic cell [34]. | Use as disease model by integrating iPS derived from retinitis pigmentosa patient [35]. iPS can differentiate into functional RPE [35] and photoreceptor precursor cells [36,37]. | It has the risk of viral integrations and oncogene expression [38]. |
Mesenchymal Stem Cells (MSC) | Bone marrow derived cell population, have the ability to self-renew and give rise to multiple tissue types [39]. Other sources of MSC including adipose tissue, placenta and cord blood [40,41,42,43]. | Could be induced into cells expressing photoreceptor markers [44], the experiment demonstrated that the cells slow down retinal cell degeneration [45]. Some even carried on clinical trials [46,47,48]. | Low rate of cell survival and migration in the retina [49]. Biosafety issues. |
Olfactory Ensheathing Cells (OECs) | A type of glia cells capable of continuous growth and regeneration of olfactory axons into the CNS [50,51]. | Cleaned up the accumulated debris in subretinal space, and provided an intrinsic continuous supply of neurotrophic factors, reduced the gliotic injury response of Muller cells [20,52]. | Mainly used to promote regeneration of lesion spinal cord axons [50]. |
Human Neural Progenitors | In the CNS, the cells derived from prenatal cortex. | Could rescue long-term vision function and associated morphologic substrates in a rat model of photoreceptor degeneration [53,54]. | Protected dying host neurons within both the brain and spinal cord [55,56]. |
2. The Problems Exist in Gene Therapy
3. The Progress of Stem Cell Treatment
Function | Types of Stem Cells | Application |
---|---|---|
Antenatal Diagnosis [77] | Menstrual-derived stem cells | While more insight on their immunomodulatory and diagnostic properties is needed, the impact of clinical and epidemiological factors, such as age, use of contraceptives, or hormonal status still requires further investigations to properly assess their current and future use in clinical application and diagnosis. |
Protection and Repair the Developing Brain [78] | Cord blood and amnion epithelial derived cells | Perinatal brain injury may result from acute or chronic insults sustained during fetal development, during the process of birth, or in the newborn period. The stem cells have the potential for transplantation to the newborn where brain injury is diagnosed or even suspected. |
Malignant Glioma [79] | Neural stem cells, and multipotent mesenchymal stromal cells | Tumour cell-derived substances and factors associated with tumour-induced inflammation and tumour neovascularisation can specifically attract stem cells to invasive gliomas. Injected stem cells engineered to produce anti-tumour substances showed strong therapeutic effects. |
Liver and Pancreas [80] | Hepatic stem/progenitor cells, mesenchymal stemcells and hematopoietic stem cells | Hepatic stem/progenitors cells were transplanted into the hepatic artery of patients with various liver diseases and immunosuppression was not required MSCs have demonstrated significant effects through paracrine signaling of trophic and immunomodulatory factors. |
Musculoskeletal Regeneration [81] | Embryonic stem cells induced-pluripotent stem cells adult tissue-derived mesenchymal stem cells | It holds promise in treating numerous musculoskeletal diseases and injuries. The combination of biomaterial scaffolds and bioreactors provides methods to create an environment for stem cells. |
Amyotrophic Lateral Sclerosis [82] | Mesenchymal/blood-derived stem cells | Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that is characterized by progressive degeneration of motor neurons in the cortex, brainstem and spinal cord. There is more rationale for using stem cells as support cells for dying motor neurons as they are already connected to the muscle. |
Bladder Dysfunction [83] | Adipose derived stem cells, bone marrow stem cells, and skeletal muscle derived stem cells | The therapeutic efficacy of stem cells was originally thought to be derived from their ability to differentiate into various cell types. The main mechanisms of stem cells to reconstitute or restore bladder dysfunction are migration, differentiation, and paracrine effects. |
Neuropathic Pain [84] | Human mesenchymal stem/stromal cells | Human mesenchymal stem/stromal cells produce a large variety, and the secretion of neurotrophic factors by stem cells provides neuroprotection and neuroregenerative effects of trophic factors. |
Kidney [85] | Renal stem/progenitor cells | Renal stem/progenitor system is present in the tubules, interstitium, and glomeruli of the adult kidney and functions as the main drivers of kidney regenerative responses after injury by secreting renotropic factors. |
Cardiac Disease [86] | Cardiac progenitor cells, embryonic stem cells, induced pluripotent stem cells, bone marrow stem cells and mesenchymal stem cells | Mainly applied in acute myocardial infarction and ischemic cardiomyopathy, in vivo transplanted stem cells can proliferate and differentiate into cardiomyocytes, endothelial cells, or smooth muscle cells, clinical trials showed a reassuring safety profile and suggest functional benefits. |
Type 1 Diabetes [87] | Embryonic stem cells, induced pluripotent stem cells, bone marrow-derived hematopoietic stem cells, and multipotent mesenchymal stromal cells derived from bone marrow, umbilical cord blood, and adipose tissue | Stem cell-based strategies to restore glycometabolic and immune homeostasis are based on the intrinsic regenerative capacity as well as the immunomodulatory potential of stem cells. The regenerative capacity can be harnessed to make available a self-replenishing supply of glucose-responsive insulin-producing cells for transplantation. |
Plastic Surgery [88] | Mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cell | Stem cells mainly used in soft tissue augmentation and regeneration, reconstructing bony defects, cartilage formation, wound healing, skin rejuvenation and peripheral nerve regeneration. |
Identifier | Country | Study | Phase of Trial | Intervention | Disease | Cells |
---|---|---|---|---|---|---|
NCT01914913 | India | Clinical study to evaluate safety and efficacy of stem cell Therapy in Retinitis Pigmentosa | Phase 1, Phase 2 | Transfer of mesenchymal stem cell | RP | Bone marrow and umbilical cord derived mesenchymal stem cell |
NCT01068561 NCT01560715 | Brazil | Autologous bone marrow-derived stem cells transplantation for retinitis pigmentosa | Phase 1, Phase 2 | Intravitreal injection | RP | Autologous bone marrow stem cells |
NCT01531348 | Thailand | Feasibility and safety of adult human bone marrow-derived mesenchymal stem cells by intravitreal injection in patients with retinitis pigmentosa | Phase 1 | Intravitreal injection | RP | Adult human bone marrow-derived mesenchymal stem cells |
NCT01736059 | USA | Clinical trial of autologous intravitreal bone-marrow CD34+ stem cells for retinopathy | Phase 1 | Intravitreal injection | Dry AMD; DR; RVO; RP; Hereditary macular degeneration | CD34+ bone marrow stem cells |
NCT01920867 | USA | Stem cell ophthalmology treatment study | Retrobulbar Subtenon Intravenous Intravitreal Intraocular | Retinal disease; macular degeneration; hereditary retinal Dystrophy optic nerve disease; glaucoma | Autologous bone marrow derived stem cells |
4. Mechanisms of Stem Cell Therapy
4.1. Cell Replacement
4.2. Nutritional Support
4.3. Protection of the Retinal Blood Vessels and Cones
4.4. Promotion Synaptic Connections
5. Problems to Be Solved
5.1. Immunity Effects of Subretinal Space in Stem Cell Therapy
5.2. Low Rate of Cell Survival and Migration
5.3. Biosafety Issues
6. Outlook for the Treatment of Retinitis Pigmentosa
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Girman, S.V.; Wang, S.; Lund, R.D. Cortical visual functions can be preserved by subretinal RPE cell grafting in RCS rats. Vis. Res. 2003, 43, 1817–1827. [Google Scholar] [CrossRef] [PubMed]
- Rakoczy, E.P.; Kiel, C.; McKeone, R.; Stricher, F.; Serrano, L. Analysis of disease-linked rhodopsin mutations based on structure, function, and protein stability calculations. J. Mol. Biol. 2011, 405, 584–606. [Google Scholar] [CrossRef] [PubMed]
- Bramall, A.N.; Wright, A.F.; Jacobson, S.G.; McInnes, R.R. The genomic, biochemical, and cellular responses of the retina in inherited photoreceptor degenerations and prospects for the treatment of these disorders. Annu. Rev. Neurosci. 2010, 33, 441–472. [Google Scholar] [CrossRef] [PubMed]
- Lambiase, A.; Aloe, L. Nerve growth factor delays retinal degeneration in C3H mice. Graefes Arch. Clin. Exp. Ophthalmol. 1996, 234, S96–S100. [Google Scholar] [CrossRef] [PubMed]
- Radu, R.A.; Yuan, Q.; Hu, J.; Peng, J.H.; Lloyd, M.; Nusinowitz, S.; Bok, D.; Travis, G.H. Accelerated accumulation of lipofuscin pigments in the RPE of a mouse model for ABCA4-mediated retinal dystrophies following vitamin A supplementation. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3821–3829. [Google Scholar] [CrossRef]
- Tsubura, A.; Yuri, T.; Yoshizawa, K.; Uehara, N.; Takada, H. Role of fatty acids in malignancy and visual impairment: Epidemiological evidence and experimental studies. Histol. Histopathol. 2009, 24, 223–234. [Google Scholar] [PubMed]
- Nguyen, C.T.O.; Vingrys, A.J.; Bui, B.V. Dietary ω-3 fatty acids and ganglion cell function. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3586–3594. [Google Scholar] [CrossRef]
- Vingolo, E.M.; Rocco, M.; Grenga, P.; Salvatore, S.; Pelaia, P. Slowing the degenerative process, long lasting effect of hyperbaric oxygen therapy in retinitis pigmentosa. Graefes Arch. Clin. Exp. Ophthalmol. 2008, 246, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Lenzi, L.; Coassin, M.; Lambiase, A.; Bonini, S.; Amendola, T.; Aloe, L. Effect of exogenous administration of nerve growth factor in the retina of rats with inherited retinitis pigmentosa. Vis. Res. 2005, 45, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
- Schallenberg, M.; Charalambous, P.; Thanos, S. GM-CSF protects rat photoreceptors from death by activating the SRC-dependent signalling and elevating anti-apoptotic factors and neurotrophins. Graefes Arch. Clin. Exp. 2012, 250, 699–712. [Google Scholar] [CrossRef]
- Cideciyan, A.V.; Jacobson, S.G.; Beltran, W.A.; Sumaroka, A.; Swider, M.; Iwabe, S.; Roman, A.J.; Olivares, M.B.; Schwartz, S.B.; Komaromy, A.M.; et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc. Natl. Acad. Sci. USA 2013, 110, E517–E525. [Google Scholar] [CrossRef] [PubMed]
- Wert, K.J.; Davis, R.J.; Sancho-Pelluz, J.; Nishina, P.M.; Tsang, S.H. Gene therapy provides long-term visual function in a pre-clinical model of retinitis pigmentosa. Hum. Mol. Genet. 2013, 22, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Petrs-Silva, H.; Linden, R. Advances in gene therapy technologies to treat retinitis pigmentosa. Clin. Ophthalmol. 2014, 8, 127–136. [Google Scholar]
- Berger, W.; Kloeckener-Gruissem, B.; Neidhardt, J. The molecular basis of human retinal and vitreoretinal diseases. Prog. Retin. Eye Res. 2010, 29, 335–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anasagasti, A.; Irigoyen, C.; Barandika, O.; Lopez de Munain, A.; Ruiz-Ederra, J. Current mutation discovery approaches in Retinitis Pigmentosa. Vis. Res. 2012, 75, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Boughman, J.A.; Fishman, G.A. A genetic analysis of retinitis pigmentosa. Br. J. Ophthalmol. 1983, 67, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Conlon, T.J.; Deng, W.T.; Erger, K.; Cossette, T.; Pang, J.J.; Ryals, R.; Clement, N.; Cleaver, B.; McDoom, I.; Boye, S.E.; et al. Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa. Hum. Gene Ther. Clin. Dev. 2013, 24, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.M.; Sauve, Y.; Keegan, D.J.; Coffey, P.J.; Hetherington, L.; Girman, S.; Whiteley, S.J.; Kwan, A.S.; Pheby, T.; Lund, R.D. Schwann cell grafting into the retina of the dystrophic RCS rat limits functional deterioration. Royal College of Surgeons. Investig. Ophthalmol. Vis. Sci. 2000, 41, 518–528. [Google Scholar]
- McGill, T.J.; Cottam, B.; Lu, B.; Wang, S.; Girman, S.; Tian, C.; Huhn, S.L.; Lund, R.D.; Capela, A. Transplantation of human central nervous system stem cells—Neuroprotection in retinal degeneration. Eur. J. Neurosci. 2012, 35, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Huo, S.J.; Li, Y.C.; Xie, J.; Li, Y.; Raisman, G.; Zeng, Y.X.; He, J.R.; Weng, C.H.; Yin, Z.Q. Transplanted olfactory ensheathing cells reduce retinal degeneration in royal college of surgeons rats. Curr. Eye Res. 2012, 37, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Zhao, T.; Zeng, Y.; Yin, Z.Q. Increased muller cell de-differentiation after grafting of retinal stem cell in the sub-retinal space of royal college of surgeons rats. Tissue Eng. Part A 2011, 17, 2523–2532. [Google Scholar] [CrossRef] [PubMed]
- Otani, A.; Kinder, K.; Ewalt, K.; Otero, F.J.; Schimmel, P.; Friedlander, M. Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat. Med. 2002, 8, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Haruta, M.; Sasai, Y.; Kawasaki, H.; Amemiya, K.; Ooto, S.; Kitada, M.; Suemori, H.; Nakatsuji, N.; Ide, C.; Honda, Y.; et al. In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1020–1025. [Google Scholar] [CrossRef]
- Aramant, R.B.; Seiler, M.J.; Ball, S.L. Successful cotransplantation of intact sheets of fetal retina with retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci. 1999, 40, 1557–1564. [Google Scholar]
- Gouras, P.; Flood, M.T.; Kjedbye, H.; Bilek, M.K.; Eggers, H. Transplantation of cultured human retinal epithelium to Bruch’s membrane of the owl monkey’s eye. Curr. Eye Res. 1985, 4, 253–265. [Google Scholar] [CrossRef] [PubMed]
- MacLaren, R.E.; Pearson, R.A.; MacNeil, A.; Douglas, R.H.; Salt, T.E.; Akimoto, M.; Swaroop, A.; Sowden, J.C.; Ali, R.R. Retinal repair by transplantation of photoreceptor precursors. Nature 2006, 444, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Qiu, G.; Seiler, M.J.; Mui, C.; Arai, S.; Aramant, R.B.; de Juan, E., Jr.; Sadda, S. Photoreceptor differentiation and integration of retinal progenitor cells transplanted into transgenic rats. Exp. Eye Res. 2005, 80, 515–525. [Google Scholar] [CrossRef] [PubMed]
- West, E.L.; Pearson, R.A.; Barker, S.E.; Luhmann, U.F.O.; Maclaren, R.E.; Barber, A.C.; Duran, Y.; Smith, A.J.; Sowden, J.C.; Ali, R.R. Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation. Stem Cells 2010, 28, 1997–2007. [Google Scholar] [CrossRef] [PubMed]
- Yanai, A.; Laver, C.; Joe, A.W.; Gregory-Evans, K. Efficient production of photoreceptor precursor cells from human embryonic stem cells. Methods Mol. Biol. Available online: http://link.springer.com/protocol/10.1007/7651_2013_57 (accessed on 4 December 2013). [CrossRef]
- Wang, N.K.; Tosi, J.; Kasanuki, J.M.; Chou, C.L.; Kong, J.; Parmalee, N.; Wert, K.J.; Allikmets, R.; Lai, C.C.; Chien, C.L.; et al. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation 2010, 89, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Idelson, M.; Alper, R.; Obolensky, A.; Ben-Shushan, E.; Hemo, I.; Yachimovich-Cohen, N.; Khaner, H.; Smith, Y.; Wiser, O.; Gropp, M.; et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 2009, 5, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Reubinoff, B.E.; Pera, M.F.; Fong, C.Y.; Trounson, A.; Bongso, A. Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nat. Biotechnol. 2000, 18, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Cowan, C.A.; Klimanskaya, I.; McMahon, J.; Atienza, J.; Witmyer, J.; Zucker, J.P.; Wang, S.P.; Morton, C.C.; McMahon, A.P.; Powers, D.; et al. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 2004, 350, 1353–1356. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.Y.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318, 1917–1920. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.B.; Okamoto, S.; Xiang, P.; Takahashi, M. Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling. Stem Cell Trans. Med. 2012, 1, 503–509. [Google Scholar] [CrossRef]
- Tucker, B.A.; Mullins, R.F.; Streb, L.M.; Anfinson, K.; Eyestone, M.E.; Kaalberg, E.; Riker, M.J.; Drack, A.V.; Braun, T.A.; Stone, E.M. Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. Elife 2013, 2, e00824. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tsai, Y.T.; Hsu, C.W.; Erol, D.; Yang, J.; Wu, W.H.; Davis, R.J.; Egli, D.; Tsang, S.H. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol. Med. 2012, 18, 1312–1319. [Google Scholar] [PubMed]
- Puzio-Kuter, A.M.; Levine, A.J. Stem cell biology meets p53. Nat. Biotechnol. 2009, 27, 914–915. [Google Scholar]
- Friedenstein, A.J.; Gorskaja, J.F.; Kulagina, N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 1976, 4, 267–274. [Google Scholar] [PubMed]
- In’t Anker, P.S.; Scherjon, S.A.; Kleijburg-van der Keur, C.; de Groot-Swings, G.M.; Claas, F.H.; Fibbe, W.E.; Kanhai, H.H. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 2004, 22, 1338–1345. [Google Scholar]
- Lee, O.K.; Kuo, T.K.; Chen, W.M.; Lee, K.D.; Hsieh, S.L.; Chen, T.H. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004, 103, 1669–1675. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A.; Jalali, S.A.; Varedi, M. Isolation of adipose tissue mesenchymal stem cells without tissue destruction: A non-enzymatic method. Tissue Cell 2014, 46, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Secunda, R.; Vennila, R.; Mohanashankar, A.M.; Rajasundari, M.; Jeswanth, S.; Surendran, R. Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: A comparative study. Cytotechnology. Available online: http://link.springer.com/article/10.1007/s10616-014-9718-z (accessed on 6 May 2014). [CrossRef]
- Kicic, A.; Shen, W.Y.; Wilson, A.S.; Constable, I.J.; Robertson, T.; Rakoczy, P.E. Differentiation of marrow stromal cells into photoreceptors in the rat eye. J. Neurosci. 2003, 23, 7742–7749. [Google Scholar] [PubMed]
- Inoue, Y.; Iriyama, A.; Ueno, S.; Takahashi, H.; Kondo, M.; Tamaki, Y.; Araie, M.; Yanagi, Y. Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp. Eye Res. 2007, 85, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, R.C.; Messias, A.; Voltarelli, J.C.; Scott, I.U.; Jorge, R. Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy a phase I trial. Retina 2011, 31, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B.; Witzens-Harig, M.; Arseniev, L.; Ho, A.D. Intravitreal autologous bone marrow-derived mononuclear cell transplantation: A feasibility report. Acta Ophthalmol. 2008, 86, 225–226. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B.; Witzens-Harig, M.; Arseniev, L.; Ho, A.D. Intravitreal autologous bone-marrow-derived mononuclear cell transplantation. Acta Ophthalmol. 2010, 88, e131–e132. [Google Scholar] [CrossRef] [PubMed]
- Klassen, H.J.; Ng, T.F.; Kurimoto, Y.; Kirov, I.; Shatos, M.; Coffey, P.; Young, M.J. Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Investig. Ophthalmol. Vis. Sci. 2004, 45, 4167–4173. [Google Scholar] [CrossRef]
- Ruitenberg, M.J.; Vukovic, J.; Sarich, J.; Busfield, S.J.; Plant, G.W. Olfactory ensheathing cells: Characteristics, genetic engineering, and therapeutic potential. J. Neurotrauma 2006, 23, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Ramon-Cueto, A.; Avila, J. Olfactory ensheathing glia: Properties and function. Brain Res. Bull. 1998, 46, 175–187. [Google Scholar]
- Huo, S.J.; Li, Y.; Raisman, G.; Yin, Z.Q. Transplanted olfactory ensheathing cells reduce the gliotic injury response of Muller cells in a rat model of retinitis pigmentosa. Brain Res. 2011, 1382, 238–244. [Google Scholar]
- Gamm, D.M.; Wang, S.; Lu, B.; Girman, S.; Holmes, T.; Bischoff, N.; Shearer, R.L.; Sauve, Y.; Capowski, E.; Svendsen, C.N.; et al. Protection of visual functions by human neural progenitors in a rat model of retinal disease. PLoS One 2007, 2, e338. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Girman, S.; Lu, B.; Bischoff, N.; Holmes, T.; Shearer, R.; Wright, L.S.; Svendsen, C.N.; Gamm, D.M.; Lund, R.D. Long-term vision rescue by human neural progenitors in a rat model of photoreceptor degeneration. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3201–3206. [Google Scholar] [CrossRef]
- Behrstock, S.; Ebert, A.; McHugh, J.; Vosberg, S.; Moore, J.; Schneider, B.; Capowski, E.; Hei, D.; Kordower, J.; Aebischer, P.; et al. Human neural progenitors deliver glial cell line-derived neurotrophic factor to parkinsonian rodents and aged primates. Gene Ther. 2006, 13, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.M.; Behrstock, S.; McHugh, J.; Hoffmann, K.; Wallace, K.; Suzuki, M.; Aebischer, P.; Svendsen, C.N. GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum. Gene Ther. 2005, 16, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Dinculescu, A.; Min, S.H.; Deng, W.T.; Li, Q.; Hauswirth, W.W. Gene therapy in the RD6 mouse model of retinal degeneration. Adv. Exp. Med. Biol. 2014, 801, 711–718. [Google Scholar] [PubMed]
- Millington-Ward, S.; Chadderton, N.; O’Reilly, M.; Palfi, A.; Goldmann, T.; Kilty, C.; Humphries, M.; Wolfrum, U.; Bennett, J.; Humphries, P.; et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol. Ther. 2011, 19, 642–649. [Google Scholar]
- Mao, H.Y.; Gorbatyuk, M.S.; Rossmiller, B.; Hauswirth, W.W.; Lewin, A.S. Long-term rescue of retinal structure and function by rhodopsin rna replacement with a single adeno-associated viral vector in P23H RHO transgenic mice. Hum. Gene Ther. 2012, 23, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.M.; Tuo, J.S.; Chan, C.C. Gene therapy for ocular diseases. Br. J. Ophthalmol. 2011, 95, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Tosi, J.; Sancho-Pelluz, J.; Davis, R.J.; Hsu, C.W.; Wolpert, K.V.; Sengillo, J.D.; Lin, C.S.; Tsang, S.H. Lentivirus-mediated expression of cDNA and shRNA slows degeneration in retinitis pigmentosa. Exp. Biol. Med. 2011, 236, 1211–1217. [Google Scholar] [CrossRef]
- Pang, J.J.; Boye, S.L.; Kumar, A.; Dinculescu, A.; Deng, W.; Li, J.; Li, Q.; Rani, A.; Foster, T.C.; Chang, B.; et al. AAV-mediated gene therapy for retinal degeneration in the RD10 mouse containing a recessive PDEβ mutation. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4278–4283. [Google Scholar] [CrossRef]
- Pang, J.J.; Dai, X.F.; Boye, S.E.; Barone, I.; Boye, S.L.; Mao, S.; Everhart, D.; Dinculescu, A.; Liu, L.; Umino, Y.; et al. Long-term retinal function and structure rescue using capsid mutant AAV8 vector in the RD10 mouse, a model of recessive retinitis pigmentosa. Mol. Ther. 2011, 19, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis pigmentosa. Lancet 2006, 368, 1795–1809. [Google Scholar] [CrossRef] [PubMed]
- Loewen, C.J.R.; Moritz, O.L.; Molday, R.S. Molecular characterization of peripherin-2 and Rom-1 mutants responsible for digenic retinitis pigmentosa. J. Biol. Chem. 2001, 276, 22388–22396. [Google Scholar] [CrossRef] [PubMed]
- Duno, M.; Wibrand, F.; Baggesen, K.; Rosenberg, T.; Kjaer, N.; Frederiksen, A.L. A novel mitochondrial mutation m.8989G>C associated with neuropathy, ataxia, retinitis pigmentosa—The NARP syndrome. Gene 2013, 515, 372–375. [Google Scholar]
- Schlichtenbrede, F.C.; MacNeil, A.; Bainbridge, J.W.; Tschernutter, M.; Thrasher, A.J.; Smith, A.J.; Ali, R.R. Intraocular gene delivery of ciliary neurotrophic factor results in significant loss of retinal function in normal mice and in the Prph2Rd2/Rd2 model of retinal degeneration. Gene Ther. 2003, 10, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Manic, G.; Maurin-Marlin, A.; Galluzzi, L.; Subra, F.; Mouscadet, J.F.; Bury-Mone, S. 3' Self-inactivating long terminal repeat inserts for the modulation of transgene expression from lentiviral vectors. Hum. Gene Ther. Method 2012, 23, 84–97. [Google Scholar] [CrossRef]
- Delgado, D.; del Pozo-Rodriguez, A.; Solinis, M.A.; Aviles-Triqueros, M.; Weber, B.H.F.; Fernandez, E.; Gascon, A.R. Dextran and protamine-based solid lipid nanoparticles as potential vectors for the treatment of X-Linked juvenile retinoschisis. Hum. Gene Ther. 2012, 23, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Sarra, G.M.; Stephens, C.; de Alwis, M.; Bainbridge, J.W.B.; Smith, A.J.; Thrasher, A.J.; Ali, R.R. Gene replacement therapy in the retinal degeneration slow (RDs) mouse: The effect on retinal degeneration following partial transduction of the retina. Hum. Mol. Genet. 2001, 10, 2353–2361. [Google Scholar] [CrossRef] [PubMed]
- Gimble, J.M.; Zvonic, S.; Floyd, Z.E.; Kassem, M.; Nuttall, M.E. Playing with bone and fat. J. Cell. Biochem. 2006, 98, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Dezawa, M.; Kanno, H.; Hoshino, M.; Cho, H.; Matsumoto, N.; Itokazu, Y.; Tajima, N.; Yamada, H.; Sawada, H.; Ishikawa, H.; et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J. Clin. Investig. 2004, 113, 1701–1710. [Google Scholar] [CrossRef] [PubMed]
- Gregory, C.A.; Prockop, D.J.; Spees, J.L. Non-hematopoietic bone marrow stem cells: Molecular control of expansion and differentiation. Exp. Cell Res. 2005, 306, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Woodbury, D.; Schwarz, E.J.; Prockop, D.J.; Black, I.B. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 2000, 61, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.D.; Cheng, H.; Wang, J.C.; Feng, X.M.; Li, Y.N.; Xiao, H.X. The isolation and cultivation of bone marrow stem cells and evaluation of differences for neural-like cells differentiation under the induction with neurotrophic factors. Cytotechnology. Available online: link.springer.com/article/10.1007/s10616-013-9654-3 (accessed on 1 January 2014). [CrossRef]
- Gu, S.; Xing, C.; Han, J.; Tso, M.O.; Hong, J. Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Mol. Vis. 2009, 15, 99–107. [Google Scholar] [PubMed]
- Khoury, M.; Alcayaga-Miranda, F.; Illanes, S.E.; Figueroa, F.E. The promising potential of menstrual stem cells for antenatal diagnosis and cell therapy. Front. Immunol. 2014, 5, 205. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Melendez, M.; Yawno, T.; Jenkin, G.; Miller, S.L. Stem cell therapy to protect and repair the developing brain: A review of mechanisms of action of cord blood and amnion epithelial derived cells. Front. Neurosci. 2013, 7, 194. [Google Scholar]
- Bexell, D.; Svensson, A.; Bengzon, J. Stem cell-based therapy for malignant glioma. Cancer Treat. Rev. 2013, 39, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Lanzoni, G.; Oikawa, T.; Wang, Y.F.; Cui, C.B.; Carpino, G.; Cardinale, V.; Gerber, D.; Gabriel, M.; Dominguez-Bendala, J.; Furth, M.E.; et al. Concise review: Clinical programs of stem cell therapies for liver and pancreas. Stem Cells 2013, 31, 2047–2060. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.T.; Handorf, A.M.; Jeon, W.B.; Li, W.J. Stem cell-based tissue engineering approaches for musculoskeletal regeneration. Curr. Pharm. Des. 2013, 19, 3429–3445. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, G.M.; Gowing, G.; Svendsen, S.; Svendsen, C.N. The past, present and future of stem cell clinical trials for ALS. Exp. Neurol. Available online: http://www.sciencedirect.com/science/article/pii/S0014488614000739 (accessed on 2 February 2014). [CrossRef]
- Kim, J.H.; Lee, S.R.; Song, Y.S.; Lee, H.J. Stem cell therapy in bladder dysfunction: Where are we? and where do we have to go? Biomed. Res. Int. 2013, 2013, 930713. [Google Scholar]
- Fortino, V.R.; Pelaez, D.; Cheung, H.S. Concise review: Stem cell therapies for neuropathic pain. Stem Cell Trans. Med. 2013, 2, 394–399. [Google Scholar] [CrossRef]
- Maeshima, A.; Nakasatomi, M.; Nojima, Y. Regenerative medicine for the kidney: Renotropic factors, renal stem/progenitor cells, and stem cell therapy. Biomed. Res. Int. 2014, 2014, 595493. [Google Scholar]
- Kwon, S.U.; Yeung, A.C.; Ikeno, F. The role of large animal studies in cardiac regenerative therapy concise review of translational stem cell research. Korean Circ. J. 2013, 43, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, P.; Brayman, K.L. Stem cell therapy to cure type 1 diabetes: From hype to hope. Stem Cells Trans. Med. 2013, 2, 328–336. [Google Scholar] [CrossRef]
- Salibian, A.A.; Widgerow, A.D.; Abrouk, M.; Evans, G.R. Stem cells in plastic surgery: A review of current clinical and translational applications. Arch. Plast. Surg. 2013, 40, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Wang, S.; Girman, S.; McGill, T.; Ragaglia, V.; Lund, R. Human adult bone marrow-derived somatic cells rescue vision in a rodent model of retinal degeneration. Exp. Eye Res. 2010, 91, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.D.; Hubschman, J.P.; Heilwell, G.; Franco-Cardenas, V.; Pan, C.K.; Ostrick, R.M.; Mickunas, E.; Gay, R.; Klimanskaya, I.; Lanza, R. Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet 2012, 379, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Kauper, K.; McGovern, C.; Sherman, S.; Heatherton, P.; Rapoza, R.; Stabila, P.; Dean, B.; Lee, A.; Borges, S.; Bouchard, B.; et al. Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7484–7491. [Google Scholar] [CrossRef]
- Nadri, S.; Yazdani, S.; Arefian, E.; Gohari, Z.; Eslaminejad, M.B.; Kazemi, B.; Soleimani, M. Mesenchymal stem cells from trabecular meshwork become photoreceptor-like cells on amniotic membrane. Neurosci. Lett. 2013, 541, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, R.C.; Messias, A.; Voltarelli, J.C.; Messias, K.; Arcieri, R.S.; Jorge, R. Resolution of macular oedema associated with retinitis pigmentosa after intravitreal use of autologous BM-derived hematopoietic stem cell transplantation. Bone Marrow Trans. 2013, 48, 612–613. [Google Scholar] [CrossRef]
- Singh, M.S.; MacLaren, R.E. Stem cells as a therapeutic tool for the blind: Biology and future prospects. Proc. Biol. Sci. R. Soc. B 2011, 278, 3009–3016. [Google Scholar] [CrossRef]
- Tao, Y.X.; Xu, H.W.; Yin, Z.Q.; FitzGibbon, T. Noggin induces human bone marrow-derived mesenchymal stem cells to differentiate into neural and photoreceptor cells. Indian J. Exp. Biol. 2010, 48, 444–452. [Google Scholar] [PubMed]
- Nadri, S.; Kazemi, B.; Eeslaminejad, M.B.; Yazdani, S.; Soleimani, M. High yield of cells committed to the photoreceptor-like cells from conjunctiva mesenchymal stem cells on nanofibrous scaffolds. Mol. Biol. Rep. 2013, 40, 3883–3890. [Google Scholar] [CrossRef] [PubMed]
- Tomita, M.; Adachi, Y.; Yamada, H.; Takahashi, K.; Kiuchi, K.; Oyaizu, H.; Ikebukuro, K.; Kaneda, H.; Matsumura, M.; Ikehara, S. Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina. Stem Cells 2002, 20, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.H.; Wu, Q.; Song, B.W.; Lu, B.; Zhang, Y. Differentiation of rat mesenchymal stem cells transplanted into the subretinal space of sodium iodate-injected rats. Clin. Exp. Ophthalmol. 2008, 36, 666–671. [Google Scholar] [CrossRef]
- Arnhold, S.; Absenger, Y.; Klein, H.; Addicks, K.; Schraermeyer, U. Transplantation of bone marrow-derived mesenchymal stem cells rescue photoreceptor cells in the dystrophic retina of the rhodopsin knockout mouse. Graefes Arch Clin. Exp. 2007, 245, 414–422. [Google Scholar] [CrossRef]
- Hue, D.M.; Dong, F.T.; Yu, W.H.; Gao, F. Differentiation of mesenchymal stem cell in the microenviroment of retinitis pigmentosa. Int. J. Ophthalmol.-Chi 2010, 3, 216–219. [Google Scholar]
- Colozza, G.; Locker, M.; Perron, M. Shaping the eye from embryonic stem cells: Biological and medical implications. World J. Stem Cells 2012, 4, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lu, B.; Girman, S.; Duan, J.; McFarland, T.; Zhang, Q.S.; Grompe, M.; Adamus, G.; Appukuttan, B.; Lund, R. Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology. PLoS One 2010, 5, e9200. [Google Scholar] [CrossRef] [PubMed]
- Mauri, M.; Lentini, D.; Gravati, M.; Foudah, D.; Biella, G.; Costa, B.; Toselli, M.; Parenti, M.; Coco, S. Mesenchymal stem cells enhance GABAergic transmission in co-cultured hippocampal neurons. Mol. Cell. Neurosci. 2012, 49, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.E. Bone marrow-derived stem cells preserve cone vision in retinitis pigmentosa. J. Clin. Investig. 2004, 114, 755–757. [Google Scholar] [CrossRef] [PubMed]
- Otani, A.; Dorrell, M.I.; Kinder, K.; Moreno, S.K.; Nusinowitz, S.; Banin, E.; Heckenlively, J.; Friedlander, M. Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J. Clin. Investig. 2004, 114, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, U.; Oriyakhel, W.; Kenna, P.F.; Linke, S.; Richard, G.; Petrowitz, B.; Humphries, P.; Farrar, G.J.; Ader, M. Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice. Exp. Eye Res. 2008, 86, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar] [PubMed]
- Selander, R.K.; Kaufman, D.W. Genic variability and strategies of adaptation in animals. Proc. Natl. Acad. Sci. USA 1973, 70, 1875–1877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bok, D. Transplantation of retinal pigment epithelial cells and immune response in the subretinal space. Investig. Ophthalmol. Vis. Sci. 1998, 39, 1021–1027. [Google Scholar]
- Hambright, D.; Park, K.Y.; Brooks, M.; McKay, R.; Swaroop, A.; Nasonkin, I.O. Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina. Mol. Vis. 2012, 18, 920–936. [Google Scholar] [PubMed]
- MacLaren, R.E.; Buch, P.K.; Smith, A.J.; Balaggan, K.S.; MacNeil, A.; Taylor, J.S.; Osborne, N.N.; Ali, R.R. CNTF gene transfer protects ganglion cells in rat retinae undergoing focal injury and branch vessel occlusion. Exp. Eye Res. 2006, 83, 1118–1127. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.F.; FitzGibbon, T.; He, J.R.; Yin, Z.Q. Localization and developmental expression patterns of CSPG-cs56 (aggrecan) in normal and dystrophic retinas in two rat strains. Exp. Neurol. 2012, 234, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Tucker, B.A.; Park, I.H.; Qi, S.D.; Klassen, H.J.; Jiang, C.; Yao, J.; Redenti, S.; Daley, G.Q.; Young, M.J. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One 2011, 6, e18992. [Google Scholar] [CrossRef] [PubMed]
- Pearson, R.A.; Barber, A.C.; West, E.L.; MacLaren, R.E.; Duran, Y.; Bainbridge, J.W.; Sowden, J.C.; Ali, R.R. Targeted disruption of outer limiting membrane junctional proteins (Crb1 and ZO-1) increases integration of transplanted photoreceptor precursors into the adult wild-type and degenerating retina. Cell Transpl. 2010, 19, 487–503. [Google Scholar] [CrossRef]
- Jiang, C.; Klassen, H.; Zhang, X.; Young, M. Laser injury promotes migration and integration of retinal progenitor cells into host retina. Mol. Vis. 2010, 16, 983–990. [Google Scholar] [PubMed]
- West, E.L.; Pearson, R.A.; Tschernutter, M.; Sowden, J.C.; MacLaren, R.E.; Ali, R.R. Pharmacological disruption of the outer limiting membrane leads to increased retinal integration of transplanted photoreceptor precursors. Exp. Eye Res. 2008, 86, 601–611. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
He, Y.; Zhang, Y.; Liu, X.; Ghazaryan, E.; Li, Y.; Xie, J.; Su, G. Recent Advances of Stem Cell Therapy for Retinitis Pigmentosa. Int. J. Mol. Sci. 2014, 15, 14456-14474. https://doi.org/10.3390/ijms150814456
He Y, Zhang Y, Liu X, Ghazaryan E, Li Y, Xie J, Su G. Recent Advances of Stem Cell Therapy for Retinitis Pigmentosa. International Journal of Molecular Sciences. 2014; 15(8):14456-14474. https://doi.org/10.3390/ijms150814456
Chicago/Turabian StyleHe, Yuxi, Yan Zhang, Xin Liu, Emma Ghazaryan, Ying Li, Jianan Xie, and Guanfang Su. 2014. "Recent Advances of Stem Cell Therapy for Retinitis Pigmentosa" International Journal of Molecular Sciences 15, no. 8: 14456-14474. https://doi.org/10.3390/ijms150814456
APA StyleHe, Y., Zhang, Y., Liu, X., Ghazaryan, E., Li, Y., Xie, J., & Su, G. (2014). Recent Advances of Stem Cell Therapy for Retinitis Pigmentosa. International Journal of Molecular Sciences, 15(8), 14456-14474. https://doi.org/10.3390/ijms150814456