Foliar Aspersion of Salicylic Acid Improves Nutraceutical Quality and Fruit Yield in Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Plant Material and Experimental Conditions
2.3. Yield and Weight Loss of Fruits
2.4. Biophysical Fruit Quality and Firmness
2.5. Total Soluble Solids, Total Phenols, Flavonoids and Antioxidant Capacity
2.6. Lycopene Extraction and Vitamin C Content
2.7. Statistical Analysis
3. Results
3.1. Yield
3.2. Fruit Quality
3.2.1. Firmness and Weight Loss
3.2.2. Total Soluble Solids (TSS)
3.3. Nutraceutical Quality
3.3.1. Total Phenols and Flavonoids
3.3.2. Antioxidant Capacity
3.3.3. Lycopene and Vitamin C
3.3.4. Regression and Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kerketta, A.; Bahadur, V.; Rajesh, J. Performance of different tomato genotypes (Solanum lycopersicum L.) for growth, yield and quality traits under allahabad condition. J. Pharmacogn. Phytochem. 2018, 7, 1766–1769. [Google Scholar]
- Talens, P.; Mora, L.; Bramley, P.M.; Fraser, P.D. Antioxidant compounds and their bioaccessibility in tomato fruit and puree obtained from a Detiolated-1 (DET-1) down-regulated genetically modified genotype. Food Chem. 2016, 213, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Tada, Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant. Sci. 2014, 5, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Chávez, E.; Barrera-Tovar, R.; Muñoz-Márquez, E.; Ojeda-Barrios, D.; Anchondo-Nájera, Á. Efecto del ácido salicílico sobre biomasa, actividad fotosintética, contenido nutricional y productividad del chile jalapeño. Rev. Chapingo Ser. Hortic. 2011, 17, 63–68. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, J.; Li, G.; Yuan, M.; Zhang, Z.; Yuan, S.; Zhang, H. Effect of salicylic acid on the antioxidant system and photosystem II in wheat seedlings. Biologia Plant. 2016, 60, 139–147. [Google Scholar] [CrossRef]
- Preciado-Rangel, P.; Reyes-Pérez, J.J.; Ramírez-Rodríguez, S.C.; Salas-Pérez, L.; Fortis-Hernández, M.; Murillo-Amador, B.; Troyo-Diéguez, E. Foliar aspersion of salicylic acid improves phenolic and flavonoid compounds, and also the fruit yield in cucumber (Cucumis sativus L.). Plants 2019, 8, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahan, M.S.; Wang, Y.; Shu, S.; Zhong, M.; Chen, Z.; Wu, J.; Guo, S. Exogenous salicylic acid increases the heat tolerance in tomato (Solanum lycopersicum L.) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Scient. Hortic. 2019, 247, 421–429. [Google Scholar] [CrossRef]
- Hao, W.; Guo, H.; Zhang, J.; Hu, G.; Yao, Y.; Dong, J. Hydrogen Peroxide is Involved in Salicylic Acid-Elicited Rosmarinic Acid Production in Salvia miltiorrhiza Cell Cultures. Sci. World J. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Alali, A.A.; Awad, M.A.; Al-Qurashi, A.D.; Mohamed, S.A. Postharvest gum Arabic and salicylic acid dipping affect quality and biochemical changes of ‘Grand Nain’ bananas during shelf life. Scient. Hortic. 2018, 237, 51–58. [Google Scholar] [CrossRef]
- Mendoza, D.; Cuaspud, O.; Arias, J.P.; Ruiz, O.; Arias, M. Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana. Biotech. Rep. 2018, 19, e00273. [Google Scholar] [CrossRef]
- Biruete-Guzmán, A.; Juárez-Hernández, E.; Sieiro-Ortega, E.; Romero-Viruegas, R.; Silencio-Barrita, J.L. Los nutracéuticos. Lo que es conveniente saber. Rev. Mex. Pediat. 2009, 76, 136–145. [Google Scholar]
- Calderon-Montano, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini-Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef] [PubMed]
- Vicente, O.; Boscaiu, M. Flavonoids: Antioxidant compounds for plant defence... and for a healthy human diet. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Gunes, A.; Inal, A.; Alpaslan, M.; Eraslan, F.; Bagci, E.G.; Cicek, N. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J. Plant. Physiol. 2007, 164, 728–736. [Google Scholar] [CrossRef]
- Rivas-San Vicente, M.; Plasencia, J. Salicylic acid beyond defense: Its role in plant growth and development. J. Exp. Bot. 2011, 62, 3321–3338. [Google Scholar] [CrossRef] [Green Version]
- Steiner, A.A. A universal method for preparing nutrient solutions of a certain desired composition. Plant. Soil 1961, 15, 134–154. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Chen, W.; Weng, Y.-M.; Tseng, C.-Y. Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods. Food chem. 2003, 83, 85–92. [Google Scholar] [CrossRef]
- Fish, W.W.; Perkins-Veazie, P.; Collins, J.K. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Comp. Anal. 2002, 15, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Padayatt, S.J.; Daruwala, R.; Wang, Y.; Eck, P.K.; Song, J.; Koh, W.S.; Levine, M. Vitamin C: From molecular actions to optimum intake. In Handbook of Antioxidants, 2nd ed.; Cadenas, E., Packer, L., Eds.; CRC press: Washington DC, USA, 2001; pp. 117–145. Available online: https://books.google.com.mx/books?id=Oq2WyueoZwIC&pg=PA117&dq=Vitamin+C:+from+molecular+actions+to+optimum+intake.&hl=es-419&sa=X&ved=2ahUKEwjsw_G6847sAhXPsZ4KHcdUD5cQ6AEwAHoECAMQAg#v=onepage&q=Vitamin%20C%3A%20from%20molecular%20actions%20to%20optimum%20intake.&f=false (accessed on 31 July 2020).
- SAS Version 9.3, SAS Institute: Cary, NC, USA. 2010. Available online: http://support.sas.com/software/93/ (accessed on 3 August 2020).
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics. (With special Reference to the Biological Sciences); McGraw-Hill Book Company: New York, NY, USA, 1962. [Google Scholar] [CrossRef]
- Basit, A.; Shah, K.; Rahman, M.U.; Xing, L.; Zuo, X.; Han, M.; Alam, N.; Khan, F.; Ahme, I.; Khalid, M.A. Salicylic acid an emerging growth and flower inducing hormone in marigold (Tagetes sp. L.). Pure. Appl. Biol. 2018, 7, 1301–1308. [Google Scholar] [CrossRef]
- Moggia, C.; Graell, J.; Lara, I.; González, G.; Lobos, G.A. Firmness at harvest impacts postharvest fruit softening and internal browning development in mechanically damaged and non-damaged highbush blueberries (Vaccinium corymbosum L.). Front. Plant. Sci. 2017, 8, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.Z.; Mele, M.A.; Choi, K.-Y.; Baek, J.P.; Kang, H. Salicylic acid in nutrient solution influence the fruit quality and shelf life of cherry tomato grown in hydroponics. Sains Malays. 2018, 47, 537–542. [Google Scholar] [CrossRef]
- Shafiee, M.; Taghavi, T.; Babalar, M. Addition of salicylic acid to nutrient solution combined with postharvest treatments (hot water, salicylic acid, and calcium dipping) improved postharvest fruit quality of strawberry. Scient. Hortic. 2010, 124, 40–45. [Google Scholar] [CrossRef]
- Boyero-Polo, L.; Juanes-Fernández, L.; Preciado-Riesco, A.; Sánchez-Tello, D.; Fathallah, O.; Núñez-Calvo, R.; Salamanca-Núñez, C.; Gallego-Nogueras, P. Contenido de vitamina C y azúcar en zumo de naranja y derivados industriales. Meridies 2019, 22, 33–38. [Google Scholar]
- Baninaiem, E.; Mirzaaliandastjerdi, A.; Rastegar, S.; Abbaszade, K. Effect of pre- and postharvest salicylic acid treatment on quality characteristics of tomato during cold storage. Adv. Hort. Sci. 2016, 30, 183–192. [Google Scholar] [CrossRef]
- De la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Phenolic Compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 253–271. [Google Scholar] [CrossRef]
- González-Paramás, A.M.; Ayuda-Durán, B.; Martínez, S.; González-Manzano, S.; Santos-Buelga, C. The Mechanisms Behind the Biological Activity of Flavonoids. Curr. Med. Chem. 2019, 26, 6976–6990. [Google Scholar] [CrossRef] [PubMed]
- Suleman, M.; Khan, A.; Baqi, A.; Kakar, M.S.; Ayub, M. 2. Antioxidants, its role in preventing free radicals and infectious diseases in human body. Pure. Appl. Biol. 2019, 8, 380–388. [Google Scholar] [CrossRef]
- Kumar, N.; Tokas, J.; Kumar, P.; Singal, H.R. Effect of salicylic acid on post-harvest quality of tomato (Solanum lycopersicum L.) fruit. Int. J. Chem. Stud. 2018, 6, 1744–1747. [Google Scholar]
- Ghadage, S.R.; Mane, K.A.; Agrawal, R.S.; Pawar, V.N. Tomato lycopene: Potential health benefits. Pharma Innov. J. 2019, 8, 1245–1248. [Google Scholar]
- Kant, K.; Arora, A.; Singh, V.P. Salicylic acid influences biochemical characteristics of harvested tomato (Solanum lycopersicon L.) during ripening. Ind. J. Plant. Physiol. 2016, 21, 50–55. [Google Scholar] [CrossRef]
- Yactayo-Chang, J.P.; Acosta-Gamboa, L.M.; Nepal, N.; Lorence, A. The Role of Plant High-Throughput Phenotyping in the Characterization of the Response of High Ascorbate Plants to Abiotic Stresses. In Ascorbic Acid in Plant Growth, Development and Stress Tolerance; Hossain, M., Munné-Bosch, S., Burritt, D., Diaz-Vivancos, P., Packer, L., Fujita, M., Lorence, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 321–354. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Yu, O. Metabolic engineering of flavonoids in plants and microorganisms. Appl. Microbiol. Biotech. 2011, 91, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Askari, E.; Ehsanzadeh, P. Effectiveness of exogenous salicylic acid on root and shoot growth attributes, productivity, and water use efficiency of waterdeprived fennel genotypes. Hortic. Environ. Biotechnol. 2015, 56, 687. [Google Scholar] [CrossRef]
- El Tayeb, M.A.; Ahmed, N.L. Response of wheat cultivars to drought and salicylic acid. Am. Euras. J. Agron. 2010, 3, 1–7. [Google Scholar]
- Vázquez-Díaz, D.A.; Salas-Pérez, L.; Preciado-Rangel, P.; Segura-Castruita, M.Á.; González-Fuentes, J.A.; Valenzuela-García, J.R. Efecto del ácido salicílico en la producción y calidad nutracéutica de frutos de tomate. Rev. Mex. Cienc. Agríc. 2016, 17, 3405–3414. [Google Scholar]
- Hayat, Q.; Hayat, S.; Irfan, M.; Ahmad, A. Effect of exogenous salicylic acid under changing environment: A review. Env. Experim. Bot. 2010, 68, 14–25. [Google Scholar] [CrossRef]
- Larqué-Saavedra, A.; Martín-Mex, R.; Nexticapan-Garcéz, Á.; Vergara-Yoisura, S.; Gutiérrez-Rendón, M. Efecto del ácido salicílico en el crecimiento de plántulas de tomate (Lycopersicon esculentum Mill.). Rev. Chap. Ser. Hortic. 2010, 16, 183–187. [Google Scholar]
- Terry-Alfonso, E.; Ruiz-Padron, J.; Carillo-Sosa, Y. Efecto de diferentes manejos nutricionales sobre el rendimiento y calidad de frutos de tomate. Agron. Mesoam. 2018, 29, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Sahu, R.K.; Agrawal, A.K.; Sinha, G. Extension of Shelf Life of Custard Apple (Annona squamosa L.) Through Post Harvest Treatments. Madr. Agric. J. 2016, 103, 62–66. [Google Scholar]
- Youssef, R.A.; El-Azab, M.E.; Mahdy, H.A.; Essa, E.M.; Mohammed, K.A. Effect of salicylic acid on growth, yield, nutritional status and physiological properties of sunflower plant under salinity stress. Int. J. Pharm. Phytoph. Res. 2017, 7, 54–58. [Google Scholar]
- Aghdam, M.S.; Asghari, M.; Farmani, B.; Mohayeji, M.; Moradbeygi, H. Impact of postharvest brassinosteroids treatment on PAL activity in tomato fruit in response to chilling stress. Scient. Hortic. 2012, 144, 116–120. [Google Scholar] [CrossRef]
- Ezzat, A.; Ammar, A.; Szabó, Z.; Holb, I. Salicylic acid treatment saves quality and enhances antioxidant properties of apricot fruit. Hort. Sci. 2017, 44, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Swallah, M.S.; Sun, H.; Affoh, R.; Fu, H.; Yu, H. Antioxidant Potential Overviews of Secondary Metabolites (polyphenols) in Fruits. Int. J. Food Sci. 2020, 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hafeznia, M.; Mashayekhi, K.; Ghaderifar, F.; Mousavizadeh, S.J. Tomato morphological and biochemical characteristics in response to foliar applying of salicylic acid. Int. J. Biosci. 2014, 5, 237–243. [Google Scholar] [CrossRef]
- Sariñana-Aldaco, O.; Sanchez-Chavez, E.; Fortis-Hernández, M.; González-Fuentes, J.A.; Moreno-Resendez, A.; Rojas-Duarte, A.; Preciado-Rangel, P. Improvement of the nutraceutical quality and yield of tomato by application of salicylic acid. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 882–892. [Google Scholar] [CrossRef]
- Fenech, M.; Amaya, I.; Valpuesta, V.; Botella, M.A. Vitamin C content in fruits: Biosynthesis and regulation. Front. Plant. Sci. 2019, 9, 2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
(SA) (mM) | Fruit Number | Polar Diameter (mm) | Equatorial Diameter (mm) | Fruit Weight (g) | Yield (kg plant−1) |
---|---|---|---|---|---|
0.00 | 21.6 ± 1.6 b * | 56.70 ± 8.5 c * | 41.9 ± 6.6 b * | 100.7 ± 9.6 NS | 2.17 ± 0.1 b * |
0.025 | 23.8 ± 2.7 ab | 61.20 ± 3.3 abc | 47.4 ± 4.1 a | 108.3 ± 9.06 | 2.57 ± 0.3 a |
0.05 | 23.8 ± 1.9 ab | 67.07 ± 4.6 a | 45.6 ± 4.2 ab | 108.9 ± 5.2 | 2.60 ± 0.3 a |
0.075 | 25.0 ± 3.2 a | 63.02 ± 2.4 ab | 47.5 ± 0.9 a | 104.3 ± 6.1 | 2.59 ± 0.2 a |
0.100 | 22.5 ± 2.8 ab | 61.20 ± 2.7 bc | 44.7 ± 2.6 ab | 107.5 ± 15.5 | 2.44 ±0.6 a |
0.125 | 22.6 ± 4.04 ab | 63.50 ± 2.9 ab | 44.5 ± 5.1 ab | 108.8 ± 10.3 | 2.48 ± 0.5 a |
SA (mM) | Firmness (N) | Weight Loss (%) | TSS (°Brix) |
---|---|---|---|
0.00 | 6.4 ± 0.65 c * | 15.4 ± 3.96 a * | 6.0 ± 0.37 c * |
0.025 | 7.7 ± 0.91 bc | 15.0 ± 1.37 a | 6.6 ± 0.40 abc |
0.05 | 8.5 ± 0.99 ab | 10.9 ± 2.47 b | 6.2 ± 0.44 bc |
0.075 | 8.7 ± 1.07 ab | 11.3 ± 3.42 b | 7.1 ± 0.51 a |
0.100 | 8.9 ± 1.54 ab | 9.4 ± 2.08 c | 7.0 ± 0.83 a |
0.125 | 9.2 ± 1.94 a | 9.3 ± 4.3 c | 6.9 ± 0.76 ab |
SA (mM) | Total Phenols (mg GA g−1 DW) | Flavonoids (mg CE g−1 DW) | Antiox. Capacity (% Inhibition) | Lycopene (mg kg−1 DW) | Vitamin C (mg 100 g−1 FW) |
---|---|---|---|---|---|
0.00 | 18.9 ± 3.3 b * | 3.5 ± 1.2 c * | 69.01 ± 2.1 b * | 76.5 ± 9.3 b * | 19.6 ± 1.6 c * |
0.025 | 20.8 ± 0.8 ab | 4.7 ± 0.1 bc | 72.04 ± 3.2 b | 85.9 ± 2.3 ab | 20.5 ± 1.6 bc |
0.05 | 21.7 ± 2.9 ab | 5.3 ± 1.3 bc | 76.01 ± 1.3 ab | 86.9 ± 2.2 ab | 23.7 ± 1.7 ab |
0.075 | 23.2 ± 2.9 ab | 5.9 ± 1.6 bc | 80.58 ± 7.4 a | 89.3 ± 1.9 a | 24.7 ± 1.2 a |
0.100 | 24.6 ± 4.2 a | 6.8 ± 1.6 ab | 81.87 ± 4.2 a | 89.5 ± 2.2 a | 25.1 ± 0.9 a |
0.125 | 26.4 ± 4.2 a | 9.4 ± 2.1 a | 82.92 ± 2.1 a | 89.5 ± 2.2 a | 25.9 ± 0.2 a |
Response Variable (y) | Linear Regression Model (Axis x: SA in mM) | Correlation Coefficient (r) | p (uncorr) |
---|---|---|---|
Total Phenols (TP) | TP = 57.6 SA + 19 | 0.996 | 0.0001 |
Flavonoids (Fl) | Fl = 41.6 SA + 3.333 | 0.958 | 0.0026 |
Antiox. Capacity (AC) | AC = 118.41 SA + 69.671 | 0.976 | 0.0009 |
Lycopene (Ly) | Ly = 89.371 SA + 80.681 | 0.833 | 0.0397 |
Vitamin C (VitC) | VitC = 52.914 SA + 19.943 | 0.954 | 0.0031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sariñana-Aldaco, O.; Sánchez-Chávez, E.; Troyo-Diéguez, E.; Tapia-Vargas, L.M.; Díaz-Pérez, J.C.; Preciado-Rangel, P. Foliar Aspersion of Salicylic Acid Improves Nutraceutical Quality and Fruit Yield in Tomato. Agriculture 2020, 10, 482. https://doi.org/10.3390/agriculture10100482
Sariñana-Aldaco O, Sánchez-Chávez E, Troyo-Diéguez E, Tapia-Vargas LM, Díaz-Pérez JC, Preciado-Rangel P. Foliar Aspersion of Salicylic Acid Improves Nutraceutical Quality and Fruit Yield in Tomato. Agriculture. 2020; 10(10):482. https://doi.org/10.3390/agriculture10100482
Chicago/Turabian StyleSariñana-Aldaco, Oscar, Esteban Sánchez-Chávez, Enrique Troyo-Diéguez, Luis Mario Tapia-Vargas, Juan Carlos Díaz-Pérez, and Pablo Preciado-Rangel. 2020. "Foliar Aspersion of Salicylic Acid Improves Nutraceutical Quality and Fruit Yield in Tomato" Agriculture 10, no. 10: 482. https://doi.org/10.3390/agriculture10100482
APA StyleSariñana-Aldaco, O., Sánchez-Chávez, E., Troyo-Diéguez, E., Tapia-Vargas, L. M., Díaz-Pérez, J. C., & Preciado-Rangel, P. (2020). Foliar Aspersion of Salicylic Acid Improves Nutraceutical Quality and Fruit Yield in Tomato. Agriculture, 10(10), 482. https://doi.org/10.3390/agriculture10100482