Influences of Postharvest Storage and Processing Techniques on Antioxidant and Nutraceutical Properties of Rubus idaeus L.: A Mini-Review
Abstract
:1. Introduction
2. Postharvest Storage
2.1. Cold/Modified Atmosphere Storage
2.2. Frozen Storage
3. Processing Techniques
3.1. Juicing
3.2. Freeze-Drying
3.3. Hot Air-Drying
3.4. Microwave-Drying
3.5. Heat Pump-Drying
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Patel, A.; Rojas-Vera, J.; Dacke, C. Therapeutic constituents and actions of Rubus species. Curr. Med. Chem. 2004, 11, 1501–1512. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Snyder, D.M. Raspberries and human health: A review. J. Agric. Food Chem. 2010, 58, 3871–3883. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.; Brennan, R. Raspberry: Breeding, Challenges and Advances; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-99030-9. [Google Scholar]
- De Souza, V.R.; Pereira, P.A.P.; da Silva, T.L.T.; de Oliveira Lima, L.C.; Pio, R.; Queiroz, F. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem. 2014, 156, 362–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, A.; Rhone, M.; Lyons, T.J. Berries: Emerging impact on cardiovascular health. Nutr. Rev. 2010, 68, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Pantelidis, G.; Vasilakakis, M.; Manganaris, G.; Diamantidis, G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Yang, J.; Cui, J.; Chen, J.; Yao, J.; Hao, Y.; Fan, Y.; Liu, Y. Evaluation of physicochemical properties in three raspberries (Rubus idaeus) at five ripening stages in northern China. Sci. Hortic. 2020, 263, 109146. [Google Scholar] [CrossRef]
- Tosun, M.; Ercisli, S.; Karlidag, H.; Sengul, M. Characterization of red raspberry (Rubus idaeus L.) genotypes for their physicochemical properties. J. Food Sci. 2009, 74, C575–C579. [Google Scholar] [CrossRef]
- Mazur, S.P.; Nes, A.; Wold, A.B.; Remberg, S.F.; Aaby, K. Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons. Food Chem. 2014, 160, 233–240. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jimenez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Sivakumaran, S.; Huffman, L.; Sivakumaran, S.; Drummond, L. The nutritional composition of Zespri® SunGold kiwifruit and Zespri® Sweet Green kiwifruit. Food Chem. 2018, 238, 195–202. [Google Scholar] [CrossRef]
- Lee, H.S.; Coates, G.A. Vitamin C in frozen, fresh squeezed, unpasteurized, polyethylene-bottled orange juice: A storage study. Food Chem. 1999, 65, 165–168. [Google Scholar] [CrossRef]
- Statistics Division FAOSTAT—Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#home (accessed on 1 July 2020).
- FAO. Global Food Losses and Food Waste—Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- Haffner, K.; Rosenfeld, H.J.; Skrede, G.; Wang, L. Quality of red raspberry Rubus idaeus L. cultivars after storage in controlled and normal atmospheres. Postharvest Biol. Technol. 2002, 24, 279–289. [Google Scholar] [CrossRef]
- Forney, C.F.; Jamieson, A.R.; Munro Pennell, K.D.; Jordan, M.A.; Fillmore, S.A.E. Relationships between fruit composition and storage life in air or controlled atmosphere of red raspberry. Postharvest Biol. Technol. 2015, 110, 121–130. [Google Scholar] [CrossRef]
- Callesen, O.; Holm, B. Storage results with red raspberry. Acta Hortic. 1989, 247–254. [Google Scholar] [CrossRef]
- Sablani, S.S.; Andrews, P.K.; Davies, N.M.; Walters, T.; Saez, H.; Bastarrachea, L. Effects of air and freeze drying on phytochemical content of conventional and organic berries. Dry. Technol. 2011, 29, 205–216. [Google Scholar] [CrossRef]
- Si, X.; Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Li, Z. Comparison of different drying methods on the physical properties, bioactive compounds and antioxidant activity of raspberry powders: Effect of drying method on properties of raspberry powders. J. Sci. Food Agric. 2016, 96, 2055–2062. [Google Scholar] [CrossRef]
- Mejia-Meza, E.I.; Yanez, J.A.; Remsberg, C.M.; Takemoto, J.K.; Davies, N.M.; Rasco, B.; Clary, C. Effect of dehydration on raspberries: Polyphenol and anthocyanin retention, antioxidant capacity, and antiadipogenic activity. J. Food Sci. 2010, 75, H5–H12. [Google Scholar] [CrossRef]
- Sadowska, K.; Andrzejewska, J.; Klóska, Ł. Influence of freezing, lyophilisation and air-drying on the total monomeric anthocyanins, vitamin C and antioxidant capacity of selected berries. Int. J. Food Sci. Technol. 2017, 52, 1246–1251. [Google Scholar] [CrossRef]
- Bermúdez-Soto, M.J.; Tomás-Barberán, F.A. Evaluation of commercial red fruit juice concentrates as ingredients for antioxidant functional juices. Eur. Food Res. Technol. 2004, 219, 133–141. [Google Scholar] [CrossRef]
- Bustos, M.C.; Rocha-Parra, D.; Sampedro, I.; de Pascual-Teresa, S.; León, A.E. The influence of different air-drying conditions on bioactive compounds and antioxidant activity of berries. J. Agric. Food Chem. 2018, 66, 2714–2723. [Google Scholar] [CrossRef]
- Weber, F.; Larsen, L.R. Influence of fruit juice processing on anthocyanin stability. Food Res. Int. 2017, 100, 354–365. [Google Scholar] [CrossRef]
- Michalska, A.; Łysiak, G. Bioactive compounds of blueberries: Postharvest factors influencing the nutritional value of products. Int. J. Mol. Sci. 2015, 16, 18642–18663. [Google Scholar] [CrossRef] [PubMed]
- Furtado, P.; Figueiredo, P.; Chaves das Neves, H.; Pina, F. Photochemical and thermal degradation of anthocyanidins. J. Photochem. Photobiol. Chem. 1993, 75, 113–118. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Hamadziripi, E.T.; Theron, K.I.; Muller, M.; Steyn, W.J. Apple compositional and peel color differences resulting from canopy microclimate affect consumer preference for eating quality and appearance. HortScience 2014, 49, 384–392. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.M.; Lee, K.T.; Lee, S.H.; Song, J.K. Origin of human colour preference for food. J. Food Eng. 2013, 119, 508–515. [Google Scholar] [CrossRef]
- Prokop, P.; Fančovičová, J. Beautiful fruits taste good: The aesthetic influences of fruit preferences in humans. Anthropol. Anz. 2012, 69, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Pritts, M.P. Raspberries and related fruits. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 4916–4921. ISBN 978-0-12-227055-0. [Google Scholar]
- Krüger, E.; Dietrich, H.; Schöpplein, E.; Rasim, S.; Kürbel, P. Cultivar, storage conditions and ripening effects on physical and chemical qualities of red raspberry fruit. Postharvest Biol. Technol. 2011, 60, 31–37. [Google Scholar] [CrossRef]
- Oduse, K.A.; Cullen, D. An investigation into the fruit firmness properties of some progeny and cultivars of red raspberry (Rubus idaeus). J. Environ. Sci. Toxicol. Food Technol. 2012, 1, 4–12. [Google Scholar] [CrossRef]
- Zhang, D.; Quantick, P.C. Antifungal effects of chitosan coating on fresh strawberries and raspberries during storage. J. Hortic. Sci. Biotechnol. 1998, 73, 763–767. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Louadj, L.; Rizzo, P.; De Salvo, E.; Sicari, V. The Influence of film and storage on the phenolic and antioxidant properties of red raspberries (Rubus idaeus L.) cv. Erika. Antioxidants 2019, 8, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortellino, G.; De Vecchi, P.; Lo Scalzo, R.; Ughini, V.; Granelli, G.; Buccheri, M. Ready-to-eat raspberries: Qualitative and nutraceutical characteristics during shelf-life. Adv. Hortic. Sci. 2018, 399–406. [Google Scholar] [CrossRef]
- Mullen, W.; Stewart, A.J.; Lean, M.E.J.; Gardner, P.; Duthie, G.G.; Crozier, A. Effect of freezing and storage on the phenolics, ellagitannins, flavonoids, and antioxidant capacity of red raspberries. J. Agric. Food Chem. 2002, 50, 5197–5201. [Google Scholar] [CrossRef] [PubMed]
- Giovanelli, G.; Limbo, S.; Buratti, S. Effects of new packaging solutions on physico-chemical, nutritional and aromatic characteristics of red raspberries (Rubus idaeus L.) in postharvest storage. Postharvest Biol. Technol. 2014, 98, 72–81. [Google Scholar] [CrossRef]
- Stavang, J.A.; Freitag, S.; Foito, A.; Verrall, S.; Heide, O.M.; Stewart, D.; Sønsteby, A. Raspberry fruit quality changes during ripening and storage as assessed by colour, sensory evaluation and chemical analyses. Sci. Hortic. 2015, 195, 216–225. [Google Scholar] [CrossRef]
- Kalt, W.; Forney, C.F.; Martin, A.; Prior, R.L. Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J. Agric. Food Chem. 1999, 47, 4638–4644. [Google Scholar] [CrossRef]
- Ali, L.; Svensson, B.; Alsanius, B.W.; Olsson, M.E. Late season harvest and storage of Rubus berries—Major antioxidant and sugar levels. Sci. Hortic. 2011, 129, 376–381. [Google Scholar] [CrossRef]
- Dziedzic, E.; Błaszczyk, J.; Bieniasz, M.; Dziadek, K.; Kopeć, A. Effect of modified (MAP) and controlled atmosphere (CA) storage on the quality and bioactive compounds of blue honeysuckle fruits (Lonicera caerulea L.). Sci. Hortic. 2020, 265, 109226. [Google Scholar] [CrossRef]
- Yang, M.; Ban, Z.; Luo, Z.; Li, J.; Lu, H.; Li, D.; Chen, C.; Li, L. Impact of elevated O2 and CO2 atmospheres on chemical attributes and quality of strawberry (Fragaria × ananassa Duch.) during storage. Food Chem. 2020, 307, 125550. [Google Scholar] [CrossRef]
- Agar, I.T.; Streif, J.; Bangerth, F. Effect of high CO2 and controlled atmosphere (CA) on the ascorbic and dehydroascorbic acid content of some berry fruits. Postharvest Biol. Technol. 1997, 11, 47–55. [Google Scholar] [CrossRef]
- González-Orozco, B.D.; Mercado-Silva, E.M.; Castaño-Tostado, E.; Vázquez-Barrios, M.E.; Rivera-Pastrana, D.M. Effect of short-term controlled atmospheres on the postharvest quality and sensory shelf life of red raspberry (Rubus idaeus L.). CyTA-J. Food 2020, 18, 352–358. [Google Scholar] [CrossRef]
- De Ancos, B.; González, E.M.; Cano, M.P. Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J. Agric. Food Chem. 2000, 48, 4565–4570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Türkben, C.; Sarıburun, E.; Demir, C.; Uylaşer, V. Effect of freezing and frozen storage on phenolic compounds of raspberry and blackberry cultivars. Food Anal. Methods 2010, 3, 144–153. [Google Scholar] [CrossRef]
- Häkkinen, S.H.; Kärenlampi, S.O.; Mykkänen, H.M.; Heinonen, I.M.; Törrönen, A.R. Ellagic acid content in berries: Influence of domestic processing and storage. Eur. Food Res. Technol. 2000, 212, 75–80. [Google Scholar] [CrossRef]
- Šamec, D.; Piljac-Žegarac, J. Fluctuations in the levels of antioxidant compounds and antioxidant capacity of ten small fruits during one year of frozen storage. Int. J. Food Prop. 2015, 18, 21–32. [Google Scholar] [CrossRef]
- Bobinalt, R.; Viškelis, P. Quality of Raspberry Fruits after Frozen Storage. In Proceedings of the 5th International Technical Symposium on Food Processing, Monitoring Technology in Bioprocesses and Food Quality Management, Postdam, Germany, 31 August–2 September 2009. [Google Scholar]
- De Ancos, B.; Ibañez, E.; Reglero, G.; Cano, M.P. Frozen storage effects on anthocyanins and volatile compounds of raspberry fruit. J. Agric. Food Chem. 2000, 48, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Rommel, A.; Heatherbell, D.A.; Wrolstad, R.E. Red raspberry juice and wine: Effect of processing and storage on anthocyanin pigment composition, color and appearance. J. Food Sci. 1990, 55, 1011–1017. [Google Scholar] [CrossRef]
- Boyles, M.J.; Wrolstad, R.E. Anthocyanin composition of red raspberry juice: Influences of cultivar, processing, and environmental factors. J. Food Sci. 1993, 58, 1135–1141. [Google Scholar] [CrossRef]
- Reque, P.M.; Steffens, R.S.; Jablonski, A.; Flôres, S.H.; Rios, A.D.O.; de Jong, E.V. Cold storage of blueberry (Vaccinium spp.) fruits and juice: Anthocyanin stability and antioxidant activity. J. Food Compos. Anal. 2014, 33, 111–116. [Google Scholar] [CrossRef]
- Piljac-Žegarac, J.; Šamec, D. Antioxidant stability of small fruits in postharvest storage at room and refrigerator temperatures. Food Res. Int. 2011, 44, 345–350. [Google Scholar] [CrossRef]
- Allan, A.C.; Espley, R.V. MYBs drive novel consumer traits in fruits and vegetables. Trends Plant Sci. 2018, 23, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Espley, R.V.; Bovy, A.; Bava, C.; Jaeger, S.R.; Tomes, S.; Norling, C.; Crawford, J.; Rowan, D.; McGhie, T.K.; Brendolise, C.; et al. Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnol. J. 2013, 11, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Sójka, M.; Macierzyński, J.; Zaweracz, W.; Buczek, M. Transfer and mass balance of ellagitannins, anthocyanins, flavan-3-ols, and flavonols during the processing of red raspberries (Rubus idaeus L.) to juice. J. Agric. Food Chem. 2016, 64, 5549–5563. [Google Scholar] [CrossRef] [PubMed]
- Sablani, S.S.; Andrews, P.K.; Davies, N.M.; Walters, T.; Saez, H.; Syamaladevi, R.M.; Mohekar, P.R. Effect of thermal treatments on phytochemicals in conventionally and organically grown berries: Effect of thermal treatments on phytochemicals in berries. J. Sci. Food Agric. 2010, 90, 769–778. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, C.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications. Crit. Rev. Food Sci. Nutr. 2017, 57, 501–523. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Hall, R.D.; Capanoglu, E. A Review on the effect of drying on antioxidant potential of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2016, 56, S110–S129. [Google Scholar] [CrossRef]
- Ratti, C. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- Novaković, M.M.; Stevanović, S.M.; Gorjanović, S.Ž.; Jovanovic, P.M.; Tešević, V.V.; Janković, M.A.; Sužnjević, D.Ž. Changes of hydrogen peroxide and radical-scavenging activity of raspberry during osmotic, convective, and freeze-drying. J. Food Sci. 2011, 76, C663–C668. [Google Scholar] [CrossRef]
- Stamenković, Z.; Pavkov, I.; Radojčin, M.; Tepić Horecki, A.; Kešelj, K.; Bursać Kovačević, D.; Putnik, P. Convective drying of fresh and frozen raspberries and change of their physical and nutritive properties. Foods 2019, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Harguindeguy, M.; Fissore, D. On the effects of freeze-drying processes on the nutritional properties of foodstuff: A review. Dry. Technol. 2020, 38, 846–868. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Espín, J.C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables: Phenolics and food quality. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Caritá, A.C.; Fonseca-Santos, B.; Shultz, J.D.; Michniak-Kohn, B.; Chorilli, M.; Leonardi, G.R. Vitamin C: One compound, several uses. Advances for delivery, efficiency and stability. Nanomedicine Nanotechnol. Biol. Med. 2020, 24, 102117. [Google Scholar] [CrossRef] [PubMed]
- Goula, A.M.; Adamopoulos, K.G. Retention of ascorbic acid during drying of tomato halves and tomato pulp. Dry. Technol. 2006, 24, 57–64. [Google Scholar] [CrossRef]
- Rodriguez, A.; Rodriguez, M.M.; Lemoine, M.L.; Mascheroni, R.H. Study and comparison of different drying processes for dehydration of raspberries. Dry. Technol. 2017, 35, 689–698. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.; Bruno, E.; Paola, C.; Campañone, L.; Mascheroni, R.H. Experimental study of dehydration processes of raspberries (Rubus Idaeus) with microwave and solar drying. Food Sci. Technol. 2019, 39, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Chen, G.; Zhang, B.; Fu, X. Current applications and new opportunities for the thermal and non-thermal processing technologies to generate berry product or extracts with high nutraceutical contents. Food Res. Int. 2017, 100, 19–30. [Google Scholar] [CrossRef]
- Perera, C.O.; Rahman, M.S. Heat pump dehumidifier drying of food. Trends Food Sci. Technol. 1997, 8, 75–79. [Google Scholar] [CrossRef]
- Ong, S.P.; Law, C.L. Drying kinetics and antioxidant phytochemicals retention of salak fruit under different drying and pretreatment conditions. Dry. Technol. 2011, 29, 429–441. [Google Scholar] [CrossRef]
- Maillard, M.-N.; Berset, C. Evolution of antioxidant activity during kilning: Role of insoluble bound phenolic acids of barley and malt. J. Agric. Food Chem. 1995, 43, 1789–1793. [Google Scholar] [CrossRef]
- Dalmadi, I.; Rapeanu, G.; Van Loey, A.; Smout, C.; Hendrickx, M. Characterization and inactivation by thermal and pressure processing of strawberry (Fragaria × ananassa) polyphenol oxidase: A kinetic study. J. Food Biochem. 2006, 30, 56–76. [Google Scholar] [CrossRef]
- Queiroz, C.; Mendes Lopes, M.L.; Fialho, E.; Valente-Mesquita, V.L. Polyphenol oxidase: Characteristics and mechanisms of browning control. Food Rev. Int. 2008, 24, 361–375. [Google Scholar] [CrossRef]
- Beekwilder, J.; Jonker, H.; Meesters, P.; Hall, R.D.; van der Meer, I.M.; Ric de Vos, C.H. Antioxidants in raspberry: On-Line analysis links antioxidant activity to a diversity of individual metabolites. J. Agric. Food Chem. 2005, 53, 3313–3320. [Google Scholar] [CrossRef] [PubMed]
- Taşeri, L.; Aktaş, M.; Şevik, S.; Gülcü, M.; Uysal Seçkin, G.; Aktekeli, B. Determination of drying kinetics and quality parameters of grape pomace dried with a heat pump dryer. Food Chem. 2018, 260, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Lo Piccolo, E.; Landi, M.; Massai, R.; Remorini, D.; Guidi, L. Girled-induced anthocyanin accumulation in red-leafed Prunus cerasifera: Effect on photosynthesis, photoprotection and sugar metabolism. Plant Sci. 2020, 294, 110456. [Google Scholar] [CrossRef] [PubMed]
- Ceccanti, C.; Landi, M.; Antichi, D.; Guidi, L.; Manfrini, L.; Monti, M.; Tosti, G.; Frasconi, C. Bioactive Properties of fruits and leafy vegetables managed with integrated, organic, and organic no-tillage practices in the Mediterranean area: A two-year rotation experiment. Agronomy 2020, 10, 841. [Google Scholar] [CrossRef]
Storage Conditions | Influence on Antioxidant Compounds and Activity | References |
---|---|---|
Cold storage 1–2 °C | Phenols (↑↓) | [35,38] |
Anthocyanins (↑) | [15,35,38,39] | |
Ellagic acid (=) | [38] | |
Ascorbic acid (=) | [15,35,38] | |
Antioxidant capacity (=) | [35] | |
Cold storage ~5 °C | Phenols (=) | [40,41] |
Anthocyanins (↑) | [40,41] | |
Ellagitannins (↑) | [37] | |
Ascorbic acid (↓) | [37,40] | |
Antioxidant capacity (=↑) | [37,40,41] | |
Controlled atmosphere | Anthocyanins (=) | [15] |
Ascorbic acid (=) | [15,42] | |
Frozen storage ~1 year | Phenols (=↑) | [43,44,45] |
Anthocyanins (=↓) | [45,46] | |
Ellagic acid (↓) | [43,47] | |
Ascorbic acid (↓) | [43,45] | |
Antioxidant capacity (=) | [43,44] |
Processing Techniques | Conditions | Influence on Antioxidant Compounds and Activity | References |
---|---|---|---|
Juicing | Enzymatic treatment Thermal treatment | Phenols (↓) | [58,59] |
Anthocyanins (=↓) | [53,58,59] | ||
Ellagic acid (↓) | [58] | ||
Ellagitannins (↓) | [58] | ||
Antioxidant capacity (=↓) | [59] | ||
Freeze-drying | ~−50 °C | Phenols (=↓↑) | [18,19,21,61,62] |
Anthocyanins (=↓↑) | [18,19,21,62] | ||
Ellagic acid (↓) | [20] | ||
Ascorbic acid (=↓) | [21,62] | ||
Antioxidant capacity (=↓) | [18,19,62] | ||
Hot air drying | ~65 °C | Phenols (↓) | [19,20,62] |
Anthocyanins (↓) | [19,20,21,59] | ||
Ellagic acid (↓) | [20] | ||
Ascorbic acid (↓) | [21,62] | ||
Antioxidant capacity (↓) | [19,20] | ||
Microwave | Microwave | Phenols (↓) | [63,64] |
Antioxidant capacity (↓) | [63,64] | ||
Microwave/hot air | Phenols (↓) | [20,63,64] | |
Anthocyanins (↓) | [20] | ||
Antioxidant capacity (↓) | [20,63,64] | ||
Microwave/IR | Phenols (↓) | [19] | |
Anthocyanins (↓) | [19] | ||
Antioxidant capacity (↓) | [19] | ||
Microwave/vacuum | Phenols (↓) | [20] | |
Anthocyanins (↓) | [20] | ||
Antioxidant capacity (↓) | [20] | ||
Heat pump | 30–35 °C | Phenols (↓) | [our results, see Table 3] |
Anthocyanins (↓) | |||
Ascorbic acid (↓) | |||
Antioxidant capacity (↓) |
Units | Fresh | Hot Air 65 °C | Heat Pump | |
---|---|---|---|---|
TPz | mg GAy eq. g−1 dw | 152.36 ± 5.13 a x | 123.31 ± 6.00 b | 119.27 ± 12.28 b |
TA | mg Cya glu. eq. g−1 dw | 1.18 ± 0.03 a | 0.78 ± 0.07 c | 1.03 ± 0.09 b |
AA | mg g−1 dw | 2.01 ± 0.13 a | 1.01 ± 0.08 c | 1.20 ± 0.05 b |
TAC | mg Trolox eq. g−1 dw | 83.44 ± 3.45 a | 32.20 ± 1.76 b | 31.38 ± 4.06 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccolo, E.L.; Martìnez Garcìa, L.; Landi, M.; Guidi, L.; Massai, R.; Remorini, D. Influences of Postharvest Storage and Processing Techniques on Antioxidant and Nutraceutical Properties of Rubus idaeus L.: A Mini-Review. Horticulturae 2020, 6, 105. https://doi.org/10.3390/horticulturae6040105
Piccolo EL, Martìnez Garcìa L, Landi M, Guidi L, Massai R, Remorini D. Influences of Postharvest Storage and Processing Techniques on Antioxidant and Nutraceutical Properties of Rubus idaeus L.: A Mini-Review. Horticulturae. 2020; 6(4):105. https://doi.org/10.3390/horticulturae6040105
Chicago/Turabian StylePiccolo, Ermes Lo, Leani Martìnez Garcìa, Marco Landi, Lucia Guidi, Rossano Massai, and Damiano Remorini. 2020. "Influences of Postharvest Storage and Processing Techniques on Antioxidant and Nutraceutical Properties of Rubus idaeus L.: A Mini-Review" Horticulturae 6, no. 4: 105. https://doi.org/10.3390/horticulturae6040105
APA StylePiccolo, E. L., Martìnez Garcìa, L., Landi, M., Guidi, L., Massai, R., & Remorini, D. (2020). Influences of Postharvest Storage and Processing Techniques on Antioxidant and Nutraceutical Properties of Rubus idaeus L.: A Mini-Review. Horticulturae, 6(4), 105. https://doi.org/10.3390/horticulturae6040105