Chlorinated Guaiane-Type Sesquiterpene Lactones as Cytotoxic Agents against Human Tumor Cells
Abstract
:1. Introduction
2. Results
2.1. Chlorinated Guaianolides Inhibit the Growth of Human Tumor Cells
2.2. Chlorinated Guaianolides Induce Apoptotic Cell Death
2.3. Chlorohyssopifolins A (1) and D (4) and Linichlorin A (6) Induce Externalization of Phosphatidylserine, Poly(ADP-ribose)Polymerase (PARP) Cleavage and Cytochrome c Release
2.4. Bcl-2 Over-Expression Did Not Block Apoptosis Induction by Chlorohyssopifolins A (1) or D (4) or Linichlorin A (6)
2.5. Chlorohyssopifolins A (1) and D (4) and Linichlorin A (6) Stimulate Caspase Activity and Processing
3. Discussion
4. Materials and Methods
4.1. Drugs and Reagents
4.2. Cell Culture
4.3. Assay for Growth Inhibition
4.4. Fluorescent Microscopy
4.5. Analysis by Flow Cytometry
4.6. Caspase Activity
4.7. Western Blot
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ren, Y.; Yu, J.; Kinghorn, A.D. Development of Anticancer Agents from Plant-Derived Sesquiterpene Lactones. Curr. Med. Chem. 2016, 23, 2397–2420. [Google Scholar] [CrossRef]
- Quintana, J.; Estévez, F. Recent Advances on Cytotoxic Sesquiterpene Lactones. Curr. Pharm. Des. 2018, 24, 4355–4361. [Google Scholar] [CrossRef]
- Ma, G.; Chen, K.; Zhang, L.; Li, Y. Advance in biological activities of natural guaiane-type sesquiterpenes. Med. Chem. Res. 2019, 28, 1339–1358. [Google Scholar] [CrossRef]
- Merfort, I. Perspectives on sesquiterpene lactones in inflammation and cancer. Curr. Drug Targets 2011, 12, 1560–1573. [Google Scholar] [CrossRef]
- Li, J.; Yoshida, Y.; Kurita, M.; Usuki, T. Cynaropicrin and inhibition of NF-κB activation: A structure activity relationship study. Bioorg. Med. Chem. Lett. 2019, 29, 1518–1521. [Google Scholar] [CrossRef]
- Zeng, J.; Zhan, J. Chlorinated natural products and related halogenases. Isr. J. Chem. 2019, 59, 387–402. [Google Scholar] [CrossRef]
- Engvild, K. Chlorine-containing natural compounds in higher plants. Phytochemistry 1986, 25, 781–791. [Google Scholar] [CrossRef]
- Bruno, M.; Rosselli, S.; Maggio, A.; Raccuglia, R.A.; Bastow, K.F.; Lee, K.H. Cytotoxic activity of some natural and synthetic guaianolides. J. Nat. Prod. 2005, 68, 1042–1046. [Google Scholar] [CrossRef]
- Scotti, M.T.; Fernandes, M.B.; Ferreira, M.J.; Emerenciano, V.P. Quantitative structure-activity relationship of sesquiterpene lactones with cytotoxic activity. Bioorg. Med. Chem. 2007, 15, 2927–2934. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541. [Google Scholar] [CrossRef]
- Delbridge, A.R.; Strasser, A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 2015, 22, 1071–1080. [Google Scholar] [CrossRef] [Green Version]
- Tummers, B.; Green, D.R. Caspase-8: Regulating life and death. Immunol. Rev. 2017, 277, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Julien, O.; Wells, J.A. Caspases and their substrates. Cell Death Differ. 2017, 24, 1380–1389. [Google Scholar] [CrossRef]
- Cohen, G.M. Caspases: The executioners of apoptosis. Biochem J. 1997, 326, 1–16. [Google Scholar] [CrossRef] [Green Version]
- González, A.G.; Bermejo, J.; Breton, J.L.; Massanet, G.M.; Domínguez, B.; Amaro, J.M. The chemistry of the Compositae. Part XXX1. Absolute configuration of the sesquiterpene lactones centaurepensin (chlorohyssopifolin A), acroptilin (chlorohyssopifolin C), and repin. J. Chem. Soc. Perkin Trans. I 1976, 1663–1666. [Google Scholar] [CrossRef]
- González, A.G.; Bermejo, J.; Bretón, J.L.; Massanet, G.M.; Triana, J. Chlorohyssopifolin C, D, E and vahlenin, four new sesquiterpene lactones from Centaurea hyssopifolia. Phytochemistry 1974, 13, 1193–1197. [Google Scholar] [CrossRef]
- González, A.G.; Bermejo, J.; Amaro, J.M.; Massanet, G.M.; Galindo, A.; Cabrera, I. Sesquiterpene lactones from Centaurea linifolia Vahl. Can. J. Chem. 1978, 56, 491–494. [Google Scholar] [CrossRef] [Green Version]
- González, A.G.; Bermejo, J.; Massanet, G.M.; Amaro, J.M. Action of silver nitrate on chlorinated sesquiterpene lactones. An. Quim. 1978, 74, 1443–1445. [Google Scholar]
- Harris, P.; Ralph, P. Human leukemic models of myelomonocytic development: A review of the HL-60 and U937 cell lines. J. Leukoc. Biol. 1985, 37, 407–422. [Google Scholar] [CrossRef]
- Chanput, W.; Peters, V.; Wichers, H. THP-1 and U937 Cells. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 147–159. [Google Scholar]
- Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; Saliba, N.A.; Darwiche, N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov. Today 2010, 15, 668–678. [Google Scholar] [CrossRef]
- Guzman, M.L.; Rossi, R.M.; Karnischky, L.; Li, X.; Peterson, D.R.; Howard, D.S.; Jordan, C.T. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 2005, 105, 4163–4169. [Google Scholar] [CrossRef]
- Ghantous, A.; Sinjab, A.; Herceg, Z.; Darwiche, N. Parthenolide: From plant shoots to cancer roots. Drug Discov Today 2013, 18, 894–905. [Google Scholar] [CrossRef]
- Zhang, Q.; Lu, Y.; Ding, Y.; Zhai, J.; Ji, Q.; Ma, W.; Yang, M.; Fan, H.; Long, J.; Tong, Z.; et al. Guaianolide sesquiterpene lactones, a source to discover agents that selectively inhibit acute myelogenous leukemia stem and progenitor cells. J. Med. Chem. 2012, 55, 8757–8769. [Google Scholar] [CrossRef]
- Costantino, V.V.; Lobos-Gonzalez, L.; Ibañez, J.; Fernandez, D.; Cuello-Carrión, F.D.; Valenzuela, M.A.; Barbieri, M.A.; Semino, S.N.; Jahn, G.A.; Quest, A.F.; et al. Dehydroleucodine inhibits tumor growth in a preclinical melanoma model by inducing cell cycle arrest, senescence and apoptosis. Cancer Lett. 2016, 372, 10–23. [Google Scholar] [CrossRef]
- Tukov, F.F.; Anand, S.; Gadepalli, R.S.; Gunatilaka, A.A.; Matthews, J.C.; Rimoldi, J.M. Inactivation of the cytotoxic activity of repin, a sesquiterpene lactone from Centaurea repens. Chem. Res. Toxicol. 2004, 17, 1170–1176. [Google Scholar] [CrossRef]
- Amundson, S.A.; Myers, T.G.; Scudiero, D.; Kitada, S.; Reed, J.C.; Fornace, A.J., Jr. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res. 2000, 60, 6101–6110. [Google Scholar]
- Ooi, L.C.; Watanabe, N.; Futamura, Y.; Sulaiman, S.F.; Darah, I.; Osada, H. Identification of small molecule inhibitors of p27(Kip1) ubiquitination by high-throughput screening. Cancer Sci. 2013, 104, 1461–1467. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Rubio, S.; Quintana, J.; Eiroa, J.L.; Triana, J.; Estévez, F. Acetyl derivative of quercetin 3-methyl ether-induced cell death in human leukemia cells is amplified by the inhibition of ERK. Carcinogenesis 2007, 28, 2105–2113. [Google Scholar] [CrossRef] [Green Version]
- Estévez-Sarmiento, F.; Hernández, E.; Brouard, I.; León, F.; García, C.; Quintana, J.; Estévez, F. 3′-Hydroxy-3,4′-dimethoxyflavone-induced cell death in human leukaemia cells is dependent on caspases and reactive oxygen species and attenuated by the inhibition of JNK/SAPK. Chem. Biol. Interact. 2018, 288, 1–11. [Google Scholar] [CrossRef]
IC50 (µM) | ||||
---|---|---|---|---|
HL-60 | U-937 | U-937/Bcl-2 | SK-MEL-1 | |
Chlorohyssopifolin A (1) | 5.9 ± 0.9 | 2.9 ± 1.2 | 1.7 ± 1.5 | 3.4 ± 0.6 |
Chlorohyssopifolin B (2) | 7.5 ± 1.5 | 9.2 ± 2.7 | 13.4 ± 3.7 | 11.5 ± 2.0 |
Chlorohyssopifolin C (3) | 4.1 ± 2.1 | 5.2 ± 2.5 | 1.2 ± 0.8 | 6.9 ± 0.9 |
Chlorohyssopifolin D (4) | 4.9 ± 1.8 | 3.9 ± 1.4 | 1.0 ± 0.6 | 7.6 ± 1.4 |
Chlorohyssopifolin E (5) | – | – | – | – |
Linichlorin A (6) | 1.2 ± 0.6 | 1.9 ± 0.5 | 2.9 ± 1.8 | 3.6 ± 1.3 |
Linichlorin C (7) | 4.9 ± 1.7 | 5.0 ± 0.4 | 12.8 ± 1.9 | 10.5 ± 0.4 |
11,13-Dihydrochlorohyssopifolin C (8) | – | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estévez-Sarmiento, F.; Saavedra, E.; Ruiz-Estévez, M.; León, F.; Quintana, J.; Brouard, I.; Estévez, F. Chlorinated Guaiane-Type Sesquiterpene Lactones as Cytotoxic Agents against Human Tumor Cells. Int. J. Mol. Sci. 2020, 21, 9767. https://doi.org/10.3390/ijms21249767
Estévez-Sarmiento F, Saavedra E, Ruiz-Estévez M, León F, Quintana J, Brouard I, Estévez F. Chlorinated Guaiane-Type Sesquiterpene Lactones as Cytotoxic Agents against Human Tumor Cells. International Journal of Molecular Sciences. 2020; 21(24):9767. https://doi.org/10.3390/ijms21249767
Chicago/Turabian StyleEstévez-Sarmiento, Francisco, Ester Saavedra, Mercedes Ruiz-Estévez, Francisco León, José Quintana, Ignacio Brouard, and Francisco Estévez. 2020. "Chlorinated Guaiane-Type Sesquiterpene Lactones as Cytotoxic Agents against Human Tumor Cells" International Journal of Molecular Sciences 21, no. 24: 9767. https://doi.org/10.3390/ijms21249767
APA StyleEstévez-Sarmiento, F., Saavedra, E., Ruiz-Estévez, M., León, F., Quintana, J., Brouard, I., & Estévez, F. (2020). Chlorinated Guaiane-Type Sesquiterpene Lactones as Cytotoxic Agents against Human Tumor Cells. International Journal of Molecular Sciences, 21(24), 9767. https://doi.org/10.3390/ijms21249767