Multiclass ECG Signal Analysis Using Global Average-Based 2-D Convolutional Neural Network Modeling
Abstract
:1. Introduction
1.1. Background
1.2. Electrocardiography
1.3. Three-Layer Process
1.4. Motivation
2. Key Contributions
- Present an overview of ECG and its significance in detecting different arrhythmia types and cardiac conditions.
- Present a layer-based model for ECG analysis including acquisition, preprocessing and classification processes and summarize the components.
- Present an optimized CNN network based on a global averaging technique to improve the classification accuracy significantly.
- Present a detailed literature review of ECG analysis and classification algorithms using traditional and machine learning approaches for both offline simulations and real-time systems.
- Discuss and present the proposed CNN architecture and summarize its components and parameters for our simulation results.
- Present detailed results for three simulation experiments performed using our proposed model and its comparison with related work in this area.
- Present a hardware implementation of our proposed model in accordance with the three-layer ECG analysis process.
- Discuss ECG classification and outline applications for real-time monitoring systems, including portable and wearable devices and ECG sensor networks for the adaptation of our proposed model.
3. Paper Organization
4. Related Work
4.1. Traditional Approaches
4.2. Machine Learning Approaches
5. Proposed Model
- ECG data acquisition, which is explained in Section 5.1
- Preprocessing of the acquired data for the denoising process and conversion of 1-D ECG signal to 2-D image, explained in Section 5.2
- Data is organized into multiple datasets. Description of this procedure is explained in Section 5.3. The organized datasets are used to train the proposed CNN architecture to perform multiple experiments described in Section 6.
- A 2-D CNN model is trained on the organized datasets. Explanations are provided in Section 5.4.
5.1. Data Acquisition
5.2. Preprocessing
5.3. Dataset Preparation
5.4. CNN Architecture
Algorithm 1: Adaptive Moment ADAM |
- — — — — — — — |
6. Results
6.1. First Experiment
6.2. Second Experiment
6.3. Third Experiment
6.4. Fourth Experiment
7. Discussion
7.1 Research Tools and Applications
8. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Full form |
1-D | One Dimensional |
2-D | Two Dimensional |
AAMI | Association for the Advancement of Medical Instrumentation |
Accuracy | |
AdaBoost | Adaptive Boosting |
AdaGrad | Adaptive Gradient |
ADAM | Adaptive Moment |
AF | Atrial Fibrillation |
ANF | Adaptive Notch Filter |
ANN | Artificial Neural Network |
AWS | Amazon Web Services |
CHD | Coronary Heart Disease |
CNN | Convolutional Neural Network |
CSVM | Complex Support Vector Machine |
CVD | Cardiovascular Disease |
DenseNet | Densely connected CNN |
DS1 | Dataset1 |
DS2 | Dataset2 |
DS3.1 & DS3.2 | Dataset3 |
DT | Decision Trees |
DWT | Discrete Wavelet Transform |
ECG | Electrocardiogram |
EMD | Empirical Mode Decomposition |
ESCDB | European ST-T Database |
F1-score | |
FE | Feature Engineering |
FFT | Fast Fourier Transform |
FIR | Finite Impulse Response |
False Negative | |
False Positive | |
GA | Genetic Algorithm |
GSM | Global System for Mobile Communication |
IEF | Isoelectric Energy Function |
LSTM | Long-Short Term Memory |
MDA | Multicriteria Decision Analysis |
MI | Myocardial Infarction |
MITDB | MIT-BIH Arrhythmia Database |
MMNNS | Multi-Module Neural Network System |
MSVM | Multiclass Support Vector Machine |
OSHW | Open Source HardWare |
PDA | Personal Digital Assistant |
Positive Predictive Value | |
QLV | Quad Level Vector |
RBDT | Rule Based Decision Tree |
ReLU | Rectified Linear Unit |
RF | Random Forest |
RMSProp | Root Mean Square Propagation |
RUS | Random Under Sampling |
Sensitivity | |
Specificity | |
SSRLS | State Space Recursive Least Square |
SVM | Support Vector Machine |
TD | Time Domain |
True Negative | |
True Positive | |
WFDB | WaveForm-DataBase |
WT | Wavelet Transform |
References
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart disease and stroke statistics update: A report from the American Heart Association. Circulation 2018. [Google Scholar] [CrossRef] [PubMed]
- Wasimuddin, M.; Elleithy, K.; Abuzneid, A.; Faezipour, M.; Abuzaghleh, O. Stages-Based ECG Signal Analysis from Traditional Signal Processing to Machine Learning Approaches: A Survey. IEEE Access 2020, 8, 177782–177803. [Google Scholar] [CrossRef]
- Wasimuddin, M.; Elleithy, K.; Abuzneid, A.; Faezipour, M.; Abuzaghleh, O. ECG Signal Analysis Using 2-D Image Classification with Convolutional Neural Network. In Proceedings of the International Conference on Computational Science and Computational Intelligence, Special Track: International Symposium on Health Informatics & Medical Systems CSCI-ISHI’2019, Las Vegas, NV, USA, 5–7 December 2019; pp. 949–954. [Google Scholar]
- Taddei, A.; Distante, G.; Emdin, M.; Pisani, P.; Moody, G.; Zeelenberg, C.; Marchesi, C. The European ST-T database: Standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography. Eur. Heart J. 1992, 13, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Samol, A.; Bischof, K.; Luani, B.; Pascut, D.; Wiemer, M.; Kaese, S. Single-lead ECG recordings including Einthoven and Wilson Leads by a smartwatch: A new era of patient directed early ECG differential diagnosis of cardiac diseases? Sensors 2019, 19, 4377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajakariar, K.; Koshy, A.N.; Sajeev, J.K.; Nair, S.; Roberts, L.; Teh, A.W. Accuracy of a smartwatch based single-lead electrocardiogram device in detection of atrial fibrillation. Heart 2020, 106, 665–670. [Google Scholar] [CrossRef]
- Haverkamp, H.T.; Fosse, S.O.; Schuster, P. Accuracy and usability of single-lead ECG from smartphones-A clinical study. Indian Pacing Electrophysiol. J. 2019, 19, 145–149. [Google Scholar] [CrossRef]
- Jaros, R.; Martinek, R.; Danys, L. Comparison of different electrocardiography with vectorcardiography transformations. Sensors 2019, 19, 3072. [Google Scholar] [CrossRef] [Green Version]
- Fauci, A.S.; Kasper, D.L.; Hauser, S.L.; Longo, D.L. Harrison’s Principles of Internal Medicine; McGraw-Hill, Medical Publishing Division New York: New York, NY, USA, 2008; Volume 2. [Google Scholar]
- Goldberger, A. Atrioventricular (AV) Heart Block. In Clinical Electrocardiography: A Simplified Approach; Elsevier: Amsterdam, The Netherlands, 2006; pp. 203–214. [Google Scholar]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M.; Gertych, A.; San Tan, R. A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 2017, 89, 389–396. [Google Scholar] [CrossRef]
- Lastre-Dominguez, C.; Shmaliy, Y.S.; Ibarra-Manzano, O.; Vazquez-Olguin, M. Denoising and Features Extraction of ECG Signals in State Space Using Unbiased FIR Smoothing. IEEE Access 2019, 7, 152166–152178. [Google Scholar] [CrossRef]
- Razzaq, N.; Sheikh, S.A.A.; Salman, M.; Zaidi, T. An intelligent adaptive filter for elimination of power line interference from high resolution electrocardiogram. IEEE Access 2016, 4, 1676–1688. [Google Scholar] [CrossRef]
- Chen, B.; Li, Y.; Cao, X.; Sun, W.; He, W. Removal of Power Line Interference From ECG Signals Using Adaptive Notch Filters of Sharp Resolution. IEEE Access 2019, 7, 150667–150676. [Google Scholar] [CrossRef]
- Shirbani, F.; Setarehdan, S.K. ECG power line interference removal using combination of FFT and adaptive non-linear noise estimator. In Proceedings of the 21st Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 14–16 May 2013; pp. 1–5. [Google Scholar]
- Furno, G.S.; Tompkins, W.J. A learning filter for removing noise interference. IEEE Trans. Biomed. Eng. 1983, 30, 234–235. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Malagore, I.A.; Afsar, F.A. Detection and localization of myocardial infarction using k-nearest neighbor classifier. J. Med. Syst. 2012, 36, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Fujita, H.; Sudarshan, V.K.; Oh, S.L.; Adam, M.; Koh, J.E.; Tan, J.H.; Ghista, D.N.; Martis, R.J.; Chua, C.K.; et al. Automated detection and localization of myocardial infarction using electrocardiogram: A comparative study of different leads. Knowl.-Based Syst. 2016, 99, 146–156. [Google Scholar] [CrossRef]
- Sun, L.; Lu, Y.; Yang, K.; Li, S. ECG analysis using multiple instance learning for myocardial infarction detection. IEEE Trans. Biomed. Eng. 2012, 59, 3348–3356. [Google Scholar] [CrossRef] [PubMed]
- Moody, G.B.; Mark, R.G. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 2001, 20, 45–50. [Google Scholar] [CrossRef]
- Hii, P.C.; Chung, W.Y. A comprehensive ubiquitous healthcare solution on an Android™ mobile device. Sensors 2011, 11, 6799–6815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, F.; Cheng, Y.; He, Y.; He, Q.; Li, Y. A wearable context-aware ECG monitoring system integrated with built-in kinematic sensors of the smartphone. Sensors 2015, 15, 11465–11484. [Google Scholar] [CrossRef] [Green Version]
- Rajpurkar, P.; Hannun, A.Y.; Haghpanahi, M.; Bourn, C.; Ng, A.Y. Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv 2017, arXiv:1707.01836. [Google Scholar]
- Kłosowski, G.; Rymarczyk, T.; Wójcik, D.; Skowron, S.; Cieplak, T.; Adamkiewicz, P. The Use of Time-Frequency Moments as Inputs of LSTM Network for ECG Signal Classification. Electronics 2020, 9, 1452. [Google Scholar] [CrossRef]
- Oresko, J.J. Portable Heart Attack Warning System by Monitoring the ST Segment via Smartphone Electrocardiogram Processing. Ph.D. Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2010. [Google Scholar]
- Farhan, M.S.; Nahiyan, K.T. Myocardial Ischemia Detection from Slope of ECG ST Segment. Bangladesh J. Med Phys. 2017, 10, 12–24. [Google Scholar] [CrossRef]
- Rad, M.Z.; Ghuchani, S.R.; Bahaadinbeigy, K.; Khalilzadeh, M.M. Real time recognition of heart attack in a smart phone. Acta Inform. Med. 2015, 23, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchaipichat, N.; Thanawattano, C.; Buakhamsri, A. The Development of ST-Episode Detection in Holter Monitoring for Myocardial Ischemia. Procedia Comput. Sci. 2016, 86, 188–191. [Google Scholar] [CrossRef] [Green Version]
- Oktivasari, P.; Hasyim, M.; Amy, H.; Freddy, H. A Simple Real-Time System for Detection of Normal and Myocardial Ischemia in The ST segment and T Wave ECG Signal. In Proceedings of the International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 24–25 July 2019; pp. 327–331. [Google Scholar]
- Bentes, P.; Nadal, J. A Telediagnosis Assistance System for Multiple-Lead Electrocardiography. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Di Marco, L.Y.; Chiari, L. A wavelet-based ECG delineation algorithm for 32-bit integer online processing. Biomed. Eng. Online 2011, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.P.; Almeida, R.; Olmos, S.; Rocha, A.P.; Laguna, P. A wavelet-based ECG delineator: Evaluation on standard databases. IEEE Trans. Biomed. Eng. 2004, 51, 570–581. [Google Scholar] [CrossRef]
- Khan, T.T.; Sultana, N.; Reza, R.B.; Mostafa, R. ECG feature extraction in temporal domain and detection of various heart conditions. In Proceedings of the International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, Bangladesh, 21–23 May 2015; pp. 1–6. [Google Scholar]
- Faezipour, M.; Saeed, A.; Bulusu, S.C.; Nourani, M.; Minn, H.; Tamil, L. A patient-adaptive profiling scheme for ECG beat classification. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1153–1165. [Google Scholar] [CrossRef] [Green Version]
- Bulusu, S.C.; Faezipour, M.; Ng, V.; Nourani, M.; Tamil, L.S.; Banerjee, S. Transient ST-segment episode detection for ECG beat classification. In Proceedings of the NIH Life Science Systems and Applications Workshop (LiSSA), Bethesda, MD, USA, 7–8 April 2011; pp. 121–124. [Google Scholar]
- Afsar, F.A.; Arif, M.; Yang, J. Detection of ST segment deviation episodes in ECG using KLT with an ensemble neural classifier. Physiol. Meas. 2008, 29, 747. [Google Scholar] [CrossRef]
- Ghaffari, A.; Homaeinezhad, M.; Akraminia, M.; Atarod, M.; Daevaeiha, M. A robust wavelet-based multi-lead electrocardiogram delineation algorithm. Med. Eng. Phys. 2009, 31, 1219–1227. [Google Scholar] [CrossRef]
- Xu, M.; Wei, S.; Qin, X.; Zhang, Y.; Liu, C. Rule-based method for morphological classification of ST segment in ECG signals. J. Med Biol. Eng. 2015, 35, 816–823. [Google Scholar] [CrossRef]
- Saadi, D.B.; Tanev, G.; Flintrup, M.; Osmanagic, A.; Egstrup, K.; Hoppe, K.; Jennum, P.; Jeppesen, J.L.; Iversen, H.K.; Sorensen, H.B. Automatic real-time embedded QRS complex detection for a novel patch-type electrocardiogram recorder. IEEE J. Transl. Eng. Health Med. 2015, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, M. Ischemia detection using isoelectric energy function. Comput. Biol. Med. 2016, 68, 76–83. [Google Scholar] [CrossRef]
- Bhoi, A.K.; Sherpa, K.S.; Khandelwal, B. Arrhythmia and ischemia classification and clustering using QRS-ST-T (QT) analysis of electrocardiogram. Clust. Comput. 2018, 21, 1033–1044. [Google Scholar] [CrossRef]
- Haddadi, R.; Abdelmounim, E.; El Hanine, M.; Belaguid, A. ST Segment Analysis Using Wavelet Transform. IJCSNS Int. J. Comput. Sci. Netw. Secur. 2017, 17, 102–107. [Google Scholar]
- Kayikcioglu, İ.; Akdeniz, F.; Köse, C.; Kayikcioglu, T. Time-frequency approach to ECG classification of myocardial infarction. Comput. Electr. Eng. 2020, 84, 106621. [Google Scholar] [CrossRef]
- Goletsis, Y.; Papaloukas, C.; Fotiadis, D.I.; Likas, A.; Michalis, L.K. Automated ischemic beat classification using genetic algorithms and multicriteria decision analysis. IEEE Trans. Biomed. Eng. 2004, 51, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, M. Statistical analysis of ST segments in ECG signals for detection of ischaemic episodes. Trans. Inst. Meas. Control 2018, 40, 819–830. [Google Scholar] [CrossRef]
- Hadjem, M.; Naït-Abdesselam, F.; Khokhar, A. ST-segment and T-wave anomalies prediction in an ECG data using RUSBoost. In Proceedings of the 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich, Germany, 14–16 September 2016; pp. 1–6. [Google Scholar]
- Faziludeen, S.; Sabiq, P. ECG beat classification using wavelets and SVM. In Proceedings of the IEEE Conference on Information & Communication Technologies, Thuckalay, India, 11–12 April 2013; pp. 815–818. [Google Scholar]
- Elhaj, F.A.; Salim, N.; Harris, A.R.; Swee, T.T.; Ahmed, T. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Programs Biomed. 2016, 127, 52–63. [Google Scholar] [CrossRef]
- Jannah, N.; Hadjiloucas, S. Detection of ECG arrhythmia conditions using CSVM and MSVM classifiers. In Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 12 December 2015; pp. 1–2. [Google Scholar]
- Exarchos, T.P.; Tsipouras, M.G.; Exarchos, C.P.; Papaloukas, C.; Fotiadis, D.I.; Michalis, L.K. A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree. Artif. Intell. Med. 2007, 40, 187–200. [Google Scholar] [CrossRef]
- Pandit, D.; Zhang, L.; Aslam, N.; Liu, C.; Hossain, A.; Chattopadhyay, S. An efficient abnormal beat detection scheme from ECG signals using neural network and ensemble classifiers. In Proceedings of the 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA), Dhaka, Bangladesh, 18–20 December 2014; pp. 1–6. [Google Scholar]
- Laguna, P.; Mark, R.G.; Goldberg, A.; Moody, G.B. A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG. In Proceedings of the Computers in Cardiology 1997, Lund, Sweden, 7–10 September 1997; pp. 673–676. [Google Scholar]
- Papaloukas, C.; Fotiadis, D.I.; Likas, A.; Michalis, L.K. An ischemia detection method based on artificial neural networks. Artif. Intell. Med. 2002, 24, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Zhang, H.; Pi, D.; Dai, C. A novel multi-module neural network system for imbalanced heartbeats classification. Expert Syst. Appl. X 2019, 1, 100003. [Google Scholar] [CrossRef]
- Salem, M.; Taheri, S.; Yuan, J.S. ECG arrhythmia classification using transfer learning from 2-dimensional deep CNN features. In Proceedings of the IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, USA, 17–19 October 2018; pp. 1–4. [Google Scholar]
- Wang, H.; Zhao, W.; Xu, Y.; Hu, J.; Yan, C.; Jia, D.; You, T. ST Segment Change Classification Based on Multiple Feature Extraction Using ECG. In Proceedings of the 2018 Computing in Cardiology Conference (CinC), Maastricht, The Netherlands, 23–26 September 2018; Volume 45, pp. 1–4. [Google Scholar]
- Izci, E.; Ozdemir, M.A.; Degirmenci, M.; Akan, A. Cardiac Arrhythmia Detection from 2D ECG Images by Using Deep Learning Technique. In Proceedings of the Medical Technologies Congress (TIPTEKNO), Izmir, Turkey, 3–5 October 2019; pp. 1–4. [Google Scholar]
- Jun, T.J.; Nguyen, H.M.; Kang, D.; Kim, D.; Kim, D.; Kim, Y.H. ECG arrhythmia classification using a 2-D convolutional neural network. arXiv 2018, arXiv:1804.06812. [Google Scholar]
- Wu, Y.; Yang, F.; Liu, Y.; Zha, X.; Yuan, S. A comparison of 1-D and 2-D deep convolutional neural networks in ECG classification. arXiv 2018, arXiv:1810.07088. [Google Scholar]
- Davies, E.R. Machine Vision: Theory, Algorithms, Practicalities; Elsevier: San Francisco, CA, USA, 2004. [Google Scholar]
- Smith, S. Digital Signal Processing: A Practical Guide for Engineers and Scientists; Elsevier: Burlington, MA, USA, 2013. [Google Scholar]
- Zidelmal, Z.; Amirou, A.; Adnane, M.; Belouchrani, A. QRS detection based on wavelet coefficients. Comput. Methods Programs Biomed. 2012, 107, 490–496. [Google Scholar] [CrossRef]
- Curtin, A.E.; Burns, K.V.; Bank, A.J.; Netoff, T.I. QRS complex detection and measurement algorithms for multichannel ECGs in cardiac resynchronization therapy patients. J. Transl. Eng. Health Med. 2018, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Na, R.X.; Rayside, D. Accurate ECG R-peak detection for telemedicine. In Proceedings of the IEEE Canada International Humanitarian Technology Conference-(IHTC), Montreal, QC, Canada, 1–4 June 2014; pp. 1–5. [Google Scholar]
- Sadhukhan, D.; Mitra, M. R-Peak Detection Algorithm for ECG using Double Difference And RR Interval Processing. Procedia Technol. 2012, 4, 873–877. [Google Scholar] [CrossRef] [Green Version]
- Setiawidayat, S.; Indra, M.R.; Sargowo, D.; Sakti, S. Determining the ECG 1 cycle wave using Discrete data. J. Theor. Appl. Inf. Technol. 2016, 88, 107. [Google Scholar]
- Mousavi, S.; Afghah, F. Inter-and intra-patient ECG heartbeat classification for arrhythmia detection: A sequence to sequence deep learning approach. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 1308–1312. [Google Scholar]
- Huang, H.; Liu, J.; Zhu, Q.; Wang, R.; Hu, G. A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals. Biomed. Eng. Online 2014, 13, 90. [Google Scholar] [CrossRef] [Green Version]
- Garcia, G.; Moreira, G.; Menotti, D.; Luz, E. Inter-patient ECG heartbeat classification with temporal VCG optimized by PSO. Nat. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Alfaras, M.; Soriano, M.C.; Ortín, S. A fast machine learning model for ECG-based heartbeat classification and arrhythmia detection. Front. Phys. 2019, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- De Chazal, P.; O’Dwyer, M.; Reilly, R.B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 2004, 51, 1196–1206. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Zhou, M. ECG classification using wavelet packet entropy and random forests. Entropy 2016, 18, 285. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323. [Google Scholar]
- Higgins, S.L. A novel patch for heart rhythm monitoring: Is the Holter monitor obsolete? Future Cardiol. 2013, 9, 325–333. [Google Scholar] [CrossRef]
- Burns, A.; Greene, B.R.; McGrath, M.J.; O’Shea, T.J.; Kuris, B.; Ayer, S.M.; Stroiescu, F.; Cionca, V. SHIMMER™—A wireless sensor platform for noninvasive biomedical research. IEEE Sensors J. 2010, 10, 1527–1534. [Google Scholar] [CrossRef]
- Song, S.J.; Cho, N.; Kim, S.; Yoo, J.; Yoo, H.J. A 2 Mb/s wideband pulse transceiver with direct-coupled interface for human body communications. In Proceedings of the International Solid State Circuits Conference-Digest of Technical Papers, San Francisco, CA, USA, 6–9 February 2006; pp. 2278–2287. [Google Scholar]
- Kim, H.; Yazicioglu, R.F.; Merken, P.; Van Hoof, C.; Yoo, H.J. ECG signal compression and classification algorithm with quad level vector for ECG holter system. IEEE Trans. Inf. Technol. Biomed. 2009, 14, 93–100. [Google Scholar]
- Kim, H.; Choi, S.; Yoo, H.J. A low power 16-bit RISC with lossless compression accelerator for body sensor network system. In Proceedings of the Asian Solid-State Circuits Conference, Hangzhou, China, 13–15 November 2006; pp. 207–210. [Google Scholar]
- He, K.; Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5353–5360. [Google Scholar]
- Faezipour, M.; Faezipour, M. System Dynamics Modeling for Smartphone-Based Healthcare Tools: Case Study on ECG Monitoring. IEEE Syst. J. 2020. [Google Scholar] [CrossRef]
- Faezipour, M.; Faezipour, M. Sustainable Smartphone-Based Healthcare Systems: A Systems Engineering Approach to Assess the Efficacy of Respiratory Monitoring Apps. Sustain. Spec. Issue Glob. Health Policy Health Serv. Syst. -Health 2020, 12, 5061. [Google Scholar]
- Wasimuddin, M.; Gupta, N. Design and implementation of Least Mean Square adaptive filter on fetal electrocardiography. In Proceedings of the Zone 1 Conference of the American Society for Engineering Education, Bridgeport, CT, USA, 3–5 April 2014; pp. 1–5. [Google Scholar]
Database Collection | Filename | Class | # of Images Per Class | Datasets |
---|---|---|---|---|
Collection 1 | E0106 | Normal, Abnormal | 70 | DS1 300 images |
E0107 | Normal, Abnormal | 38 | ||
E0111 | Normal, Abnormal | 61 | ||
E0113 | Normal, Abnormal | 244 | ||
E0115 | Normal, Abnormal | 53 | ||
E0129 | Normal, Abnormal | 161 | ||
E0133 | Normal, Abnormal | 119 | ||
E0154 | Normal, Abnormal | 55 | ||
E0155 | Normal, Abnormal | 323 | ||
E0205 | Normal, Abnormal | 277 | ||
E0405 | Normal, Abnormal | 126 | ||
E0417 | Normal, Abnormal | 34 | ||
E0501 | Normal, Abnormal | 135 | ||
E0606 | Normal, Abnormal | 172 | ||
E1304 | Normal, Abnormal | 150 | ||
Collection 2 | E0104 | Normal, Abnormal | 23 | DS2 300 images |
E0105 | Normal, Abnormal | 77 | ||
E0118 | Normal, Abnormal | 192 | ||
E0119 | Normal, Abnormal | 362 | ||
E0602 | Normal, Abnormal | 480 | ||
E0605 | Normal, Abnormal | 1277 | ||
Collection 3 | E0105 | Normal, Abnormal | 77 | DS3.1 300 images |
E0108 | Normal, Abnormal | 117 | ||
E0113 | Normal, Abnormal | 245 | ||
E0114 | Normal, Abnormal | 299 | ||
E0147 | Normal, Abnormal | 73 | ||
E0162 | Normal, Abnormal | 143 | ||
Collection 4 | E0105 | Normal, Abnormal | DS3.2 TrainingSet 200 images | DS3.2 300 images |
E0108 | Normal, Abnormal | |||
E0113 | Normal, Abnormal | |||
E0114 | Normal, Abnormal | |||
E0411 | Normal, Abnormal | |||
E0413 | Normal, Abnormal | |||
E0147 | Normal, Abnormal | DS3.2 TestingSet 100 images | ||
E0162 | Normal, Abnormal | |||
E0306 | Normal, Abnormal |
Name | Layer Type | Size | Learnables |
---|---|---|---|
Imageinput | Image input | 28 × 28 | - |
1-4 Layer1_Conv | Convolution | 5 × 5 | Weights 5 × 5 × 3 × 4, Bias 1 × 1 × 4, Total (304) |
1-4 Layer1_Relu | Activation Function | - | - |
1-4 Layer1_Pooling | Global Average | 1 × 1 | - |
1-4 Fully Connected | Neural Network | 1 × 1 × 3 | Weights 3 × 4, Bias 3 × 1, Total (15) |
1-4 Softmax | Activation Function | - | - |
1-4 Output Layer | Classification Output | - | - |
Option | Exp1: Value | Exp2: Value | Exp3: Value |
---|---|---|---|
MiniBatch Size | 60 | 40 | 40 |
1-4 No. of Epochs | 250 | 250 | 250 |
1-4 Iterations per Epoch | 7 | 10 | 15 |
1-4 Maximum Iteration | 1750 | 2500 | 3750 |
1-4 Validation Frequency | 10 | 10 | 15 |
1-4 Initial Learning Rate (LR) () | 0.1 | 0.1 | 0.1 |
1-4 LR Schedule | piecewise | piecewise | piecewise |
1-4 LR Drop Factor | 0.07 | 0.06 | 0.08 |
1-4 Gradient Threshold Method | l2 norm | l2 norm | l2 norm |
1-4 GradientDecayFactor () | 0.9 | 0.9 | 0.9 |
1-4 Shuffle | Every Epoch | Every Epoch | Every Epoch |
1-4 Execution Environment | Two 2080Ti GPUs | Two 2080Ti GPUs | Two 2080Ti GPUs |
Approach | Class [Ref.], Year | Detection Method | Performance Metrics | Dataset |
---|---|---|---|---|
Traditional | Ischemia [44], 2004 | GA + MDA | 91%sen, 91%spe | |
Normal, Abnormal [38], 2015 | Rule Based | 90.1%acc, 98.9%sen | ||
Normal, Ischemic [40], 2016 | Threshold based | 98.12%sen, 98.16%spe | ||
ST-Segment changes [41], 2016 | Pan-Tompkins | 97.03%success-rate, 0.0297err | ||
Normal, Abnormal [42], 2017 | Iso-electric Level | 98.2%sen, 97.17%ppv | ||
Normal, Abnormal [45], 2018 | Statistical Features | 97.71%sen, 96.89%ppv | ||
MI [43], 2020 | Time-Frequency | 94.23%acc,95.72%sen,98.15%spe | ||
Normal, Abnormal | Proposed (2-D CNN) | 98.89%acc, [97.8%sen,100%spe]N, [100%sen,97.8%spe]Abnormal | ESCDB | |
Machine Learning | Ischemic [53], 2002 | ANN+PCA | 90%sen, 90%spe | |
Ischemic [44], 2004 | MDA-based GA | 91%sen, 91%spe | ||
Normal, Ischemic [50], 2007 | DT+Fuzzy Model | 91.7%acc, 91.2%sen, 92.2%spe | ||
QRS-Complex delineation [36], 2008 | DWT | 90.75%sen, 89.2%ppv | ||
ST-Segment changes, Multiclass [35], 2011 | SVM | [93.33%acc]ST, [96.35%acc]Multiclass | ||
Normal, Abnormal [51], 2014 | ANN | 98.73%acc | ||
N, V, S, F [49], 2015 | MSVM+CSVM | [86%acc]MSVM, [94%acc]CSVM | ||
ST-Segment and T-Wave anomalies [46], 2016 | DT and RUSBoost | 86%sen, 94.85%ppv, 77%acc, 0.6f1 | ||
Control, AF, VF, ST [55], 2018 | CNN | 97.23%acc, 97.02%sen, 97.76%ppv, 97.35%f1 | ||
Normal, ST-Changes [56], 2018 | RF | 86.9%acc, 85.18%sen[ST-Normal], 87.35%sen[ST-depressed], 88.06%sen[ST-elevated] | ||
S, V [54], 2019 | ANN+MMNNS | 98.8%acc, 91%sen, 99.3%spe, 90%ppv | ||
Normal, ST-Change, V-Change | Proposed (2-D CNN) | 99.26%acc, [100%sen,100%spe]N, [97.8%sen,100%spe]ST, [100%sen,97.8%spe]V | ESCDB |
Experiment | # of Classes | Accuracy (acc) | Sensitivity (sen) | Specificity (spe) | Final Learning Rate | Final Validation Loss (Error) |
---|---|---|---|---|---|---|
Exp1: Lead 3 with DS1 | 2 | 98.89% | 100%Abnormal, 97.8%Normal | 97.8%Abnormal, 100%Normal | 0.0195 | |
Exp2: Lead 5 with DS2 | 2 | 97.77% | 100%Abnormal, 95.7%Normal | 95.6%Abnormal, 100%Normal | 0.15 | |
Exp3: Lead 3 Intra-patient scheme with DS3.1 | 3 | 99.26% | 100%Normal, 97.8%ST-Change, 100%V-Change | 100%Normal, 100%ST-Change, 97.8%V-Change | 0.0371 | |
Exp3: Lead 3 Inter-patient scheme with DS3.2 | 3 | 87.33% | 79.2%Normal, 83%ST-Change, 100%V-Change | 84%Normal, 78%ST-Change, 100%V-Change | 0.2647 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasimuddin, M.; Elleithy, K.; Abuzneid, A.; Faezipour, M.; Abuzaghleh, O. Multiclass ECG Signal Analysis Using Global Average-Based 2-D Convolutional Neural Network Modeling. Electronics 2021, 10, 170. https://doi.org/10.3390/electronics10020170
Wasimuddin M, Elleithy K, Abuzneid A, Faezipour M, Abuzaghleh O. Multiclass ECG Signal Analysis Using Global Average-Based 2-D Convolutional Neural Network Modeling. Electronics. 2021; 10(2):170. https://doi.org/10.3390/electronics10020170
Chicago/Turabian StyleWasimuddin, Muhammad, Khaled Elleithy, Abdelshakour Abuzneid, Miad Faezipour, and Omar Abuzaghleh. 2021. "Multiclass ECG Signal Analysis Using Global Average-Based 2-D Convolutional Neural Network Modeling" Electronics 10, no. 2: 170. https://doi.org/10.3390/electronics10020170