Spatial Retrievals of Atmospheric Carbon Dioxide from Satellite Observations
Abstract
:1. Introduction
2. Spatial Retrieval Methodology
2.1. Model and Notation
2.2. The Spatial Objective Function
2.3. State Vector
2.4. A Tractable Linear Model
- If is block-diagonal, then so is .
- If is block-diagonal, then so is .
- If both are block-diagonal, then so are and . This would imply that dependence across footprints is being ignored. Further, the posterior covariances for individual footprints will typically be incorrect.
2.5. Considerations for Degeneracy
3. Numerical Study
3.1. Simulation and Retrieval Configuration
- Operational, , where is an identity matrix with a dimension matching the number of spatial locations. The OCO-2 operational prior covariance for a single footprint, , is used at all locations, assuming no spatial correlation. This is essentially a single-footprint retrieval. In this case, the prior standard deviations for the CO2 profile are substantially larger than those in (see Figure 3 of [30]).
- Spatial, . The within-footprint operational correlation structure is extended between footprints by averaging parameters (see (A1) in Appendix A.1), yielding a multivariate spatial correlation matrix . This is combined with the standard deviations used in the operational retrieval, represented in the diagonal matrix .
- True, . The prior covariance is set to the true data-generating spatial covariance.
3.2. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AirMSPI | Airborne Multiangle SpectroPolarimetric Imager |
AOD | Aerosol Optical Depth |
CAR | Conditional Autoregressive |
GMRF | Gaussian Markov Random Field |
GOSAT | Greenhouse Gas Observing Satellite |
GP | Gaussian Process |
MAE | Mean Absolute Error |
MAIA | Multi-Angle Imager for Aerosols |
MISR | Multi-angle Imaging SpectroRadiometer |
MSE | Mean Squared Error |
OCO-2/3 | Orbiting Carbon Observatory-2/3 |
OE | Optimal Estimation |
PARASOL | Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with |
Observations from a Lidar | |
PC | Principal Component |
PMA | Pointing Mirror Assembly |
POLDER | Polarization and Directionality of the Earth’s Reflectances |
QOI | Quantity of Interest |
REML | Restricted Maximum Likelihood |
SAM | Snapshot Area Mode |
TCCON | Total Carbon Column Observing Network |
Appendix A
Appendix A.1. Spatial Statistical Model Estimation
- Run a single-footprint simulation experiment of the full retrieval system for the location of interest.
- Estimate the retrieval error covariance from the simulation results.
- Assemble OCO-2 retrievals for orbits in the month of interest within 300 km of the TCCON site.
- Estimate the within-footprint covariance from the OCO-2 retrievals.
- Estimate the spatial correlation parameters and from the OCO-2 retrievals, one state vector element at a time.
References
- Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt. 2009, 48, 6716–6733. [Google Scholar] [CrossRef] [PubMed]
- Eldering, A.; O’Dell, C.W.; Wennberg, P.O.; Crisp, D.; Gunson, M.; Viatte, C.; Avis, C.; Braverman, A.; Castano, R.; Chang, A.; et al. The Orbiting Carbon Observatory-2: First 18 months of science data products. Atmos. Meas. Tech. 2017, 10, 549–563. [Google Scholar] [CrossRef] [Green Version]
- Crowell, S.; Baker, D.; Schuh, A.; Basu, S.; Jacobson, A.R.; Chevallier, F.; Liu, J.; Deng, F.; Feng, L.; McKain, K.; et al. The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network. Atmos. Chem. Phys. 2019, 19, 9797–9831. [Google Scholar] [CrossRef] [Green Version]
- Eldering, A.; Taylor, T.E.; O’Dell, C.W.; Pavlick, R. The OCO-3 mission: Measurement objectives and expected performance based on 1 year of simulated data. Atmos. Meas. Tech. 2019, 12, 2341–2370. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.E.; Crisp, D.; DeCola, P.L.; Olsen, S.C.; Randerson, J.T.; Michalak, A.M.; Alkhaled, A.; Rayner, P.; Jacob, D.J.; Suntharalingam, P.; et al. Precision requirements for space-based data. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Chevallier, F.; Bréon, F.M.; Rayner, P.J. Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Cressie, N. Mission CO2ntrol: A statistical scientist’s role in remote sensing of atmospheric carbon dioxide. J. Am. Stat. Assoc. 2018, 113, 152–168. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding; World Scientific: Hackensack, NJ, USA, 2000. [Google Scholar]
- O’Dell, C.W.; Connor, B.; Boesch, H.; O’Brien, D.; Frankenberg, C.; Castano, R.; Eldering, A.; Fisher, B.; Gunson, M.; McDuffie, J.; et al. The ACOS CO2 retrieval algorithm–Part 1: Description and validation against synthetic observations. Atmos. Meas. Tech. 2012, 5, 99–121. [Google Scholar] [CrossRef] [Green Version]
- O’Dell, C.W.; Eldering, A.; Wennberg, P.O.; Crisp, D.; Gunson, M.R.; Fisher, B.; Frankenberg, C.; Kiel, M.; Lindqvist, H.; Mandrake, L.; et al. Improved Retrievals of Carbon Dioxide from the Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmos. Meas. Tech. 2018, 11, 6539–6576. [Google Scholar] [CrossRef] [Green Version]
- Wunch, D.; Toon, G.C.; Blavier, J.F.L.; Washenfelder, R.A.; Notholt, J.; Connor, B.J.; Griffith, D.W.; Sherlock, V.; Wennberg, P.O. The Total Carbon Column Observing Network. Philos. Trans. R. Soc. A 2011, 369. [Google Scholar] [CrossRef] [Green Version]
- Worden, J.R.; Doran, G.; Kulawik, S.; Eldering, A.; Crisp, D.; Frankenberg, C.; O’Dell, C.; Bowman, K. Evaluation and Attribution of OCO-2 XCO2 Uncertainties. Atmos. Meas. Tech. 2017, 10, 2759–2771. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Cressie, N.; Wunch, D. Inference for Errors-in-Variables Models in the Presence of Spatial and Temporal Dependence with an Application to a Satellite Remote Sensing Campaign. Technometrics 2019, 61, 187–201. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.D.; Keppel-Aleks, G.; Doney, S.C.; Fendrock, M.; Luis, K.; Maziére, M.D.; Hase, F.; Petri, C.; Pollard, D.F.; Roehl, C.M.; et al. A Geostatistical Framework for Quantifying the Imprint of Mesoscale Atmospheric Transport on Satellite Trace Gas Retrievals. J. Geophys. Res. 2019, 124. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J.L.; Ducos, F.; Sinyuk, A.; Lopatin, A. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech. 2011, 4, 975–1018. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Diner, D.J.; Dubovik, O.; Schechner, Y. A correlated multi-pixel inversion approach for aerosol remote sensing. Remote Sens. 2019, 11, 746. [Google Scholar] [CrossRef] [Green Version]
- Diner, D.J.; Boland, S.W.; Brauer, M.; Bruegge, C.; Burke, K.A.; Chipman, R.; Di Girolamo, L.; Garay, M.J.; Hasheminassab, S.; Hyer, E.; et al. Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: From MISR to MAIA. J. Appl. Remote Sens. 2018, 12, 042603. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, M.; Nakajima, T. Development of a remote sensing algorithm to retrieve atmospheric aerosol properties using multi-wavelength and multi-pixel information. J. Geophys. Res. Atmos. 2017, 122, 6347–6378. [Google Scholar] [CrossRef] [Green Version]
- Livesey, N.J.; Van Snyder, W.; Read, W.G.; Wagner, P.A. Retrieval algorithms for the EOS Microwave limb sounder (MLS). IEEE Trans. Geosci. Remote Sens. 2006, 44, 1144–1155. [Google Scholar] [CrossRef]
- Hobbs, J.; Braverman, A.; Cressie, N.; Granat, R.; Gunson, M. Simulation-based Uncertainty Quantification for estmating CO2 from satellite data. SIAM/ASA J. Uncertain. Quantif. 2017, 5, 956–985. [Google Scholar] [CrossRef] [Green Version]
- Genton, M.G.; Kleiber, W. Cross-Covariance Functions for Multivariate Geostatistics. Stat. Sci. 2015, 30, 147–163. [Google Scholar] [CrossRef]
- Stein, M.L. Interpolation of Spatial Data: Some Theory for Kriging; Springer: New York, NY, USA, 1999. [Google Scholar]
- Cressie, N.; Wikle, C.K. Statistics for Spatio-Temporal Data; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Wang, Y.; Jiang, X.; Yu, B.; Jiang, M. A hierarchical Bayesian approach for aerosol retrieval using MISR data. J. Am. Stat. Assoc. 2013, 108, 483–493. [Google Scholar] [CrossRef]
- Yao, S.; Wang, Y.; Yu, B. Efficient aerosol retrieval for Multi-angle Imaging SpectroRadiometer (MISR): A Bayesian approach. arXiv 2017, arXiv:1708.01948. [Google Scholar]
- Osterman, G.; Eldering, A.; Avis, C.; Chafin, B.; O’Dell, C.; Frankenberg, C.; Fisher, B.; Mandrake, L.; Wunch, D.; Granat, R.; et al. Orbiting Carbon Observatory-2: Data Product User’s Guide, Operational L1 and L2 Data Versions 8 and Lite File Version 9. 2018. Available online: https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_DUG.V9.pdf (accessed on 3 March 2020).
- Nassar, R.; Hill, T.G.; McLinden, C.A.; Wunch, D.; Jones, D.B.A.; Crisp, D. Quantifying CO2 Emissions From Individual Power Plants From Space. Geophys. Res. Lett. 2017, 44. [Google Scholar] [CrossRef] [Green Version]
- Diallo, M.; Legras, B.; Ray, E.; Engel, A.; Anel, J.A. Global distribution of CO2 in the upper troposphere and stratosphere. Atmos. Chem. Phys. 2017, 17, 3861–3878. [Google Scholar] [CrossRef] [Green Version]
- Chevallier, F.; Broquet, G.; Pierangelo, C.; Crisp, D. Probabilistic global maps of the CO2 column at daily and monthly scales from sparse satellite measurements. J. Geophys. Res. Atmos. 2017, 122, 7614–7629. [Google Scholar] [CrossRef]
- Nguyen, H.; Cressie, N.; Hobbs, J. Sensitivity of Optimal Estimation satellite retrievals to misspecification of the prior mean and covariance, with application to OCO-2 retrievals. Remote Sens. 2019, 11, 2770. [Google Scholar] [CrossRef] [Green Version]
- Gneiting, T.; Katzfuss, M. Probabilistic forecasting. Annu. Rev. Stat. Its Appl. 2014, 1, 125–151. [Google Scholar] [CrossRef]
- Jacobs, N.; Simpson, W.R.; Wunch, D.; O’Dell, C.W.; Osterman, G.B.; Hase, F.; Blumenstock, T.; Tu, Q.; Frey, M.; Dubey, M.K.; et al. Quality controls, bias, and seasonality of CO2 columns in the boreal forest with Orbiting Carbon Observatory-2, Total Carbon Column Observing Network, and EM27/SUN measurements. Atmos. Meas. Tech. 2020, 13, 5033–5063. [Google Scholar] [CrossRef]
- Wunch, D.; Wennberg, P.O.; Osterman, G.; Fisher, B.; Naylor, B.; Roehl, C.M.; O’Dell, C.; Mandrake, L.; Viatte, C.; Kiel, M.; et al. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON. Atmos. Meas. Tech. 2017, 10, 2209–2238. [Google Scholar] [CrossRef] [Green Version]
- Chevallier, F. On the statistical optimality of CO2 atmospheric inversions assimilating CO2 column retrievals. Atmos. Chem. Phys. 2015, 15, 11133–11145. [Google Scholar] [CrossRef] [Green Version]
- Paciorek, C.; Schervish, M. Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 2006, 17, 483–506. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.L. Nonstationary Spatial Covariance Functions; Technical Report No. 21; University of Chicago: Chicago, IL, USA, 2005. [Google Scholar]
- Kulawik, S.S.; O’Dell, C.; Nelson, R.R.; Taylor, T.E. Validation of OCO-2 error analysis using simulated retrievals. Atmos. Meas. Tech. 2019, 12, 5317–5334. [Google Scholar] [CrossRef] [Green Version]
- Higham, N. Computing the nearest correlation matrix—A problem from finance. IMA J. Numer. Anal. 2002, 22, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.; Maechler, M. Matrix: Sparse and Dense Matrix Classes and Methods; R Package Version 1.2-18; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
Collection | Number of Elements |
---|---|
CO2 Vertical Profile | 20 |
Surface Pressure | 1 |
Surface Albedo | 6 = 2 per band × 3 bands |
Aerosols | 12 = 3 per type × 4 types |
Lamont | Wollongong | Wollongong | ||||
---|---|---|---|---|---|---|
Oct 2015 | Dec 2016 | Jun 2017 | ||||
State Vector Element | ||||||
XCO2 [ppm] | 396.34 | 395.72 | 398.84 | 400.76 | 399.98 | 402.02 |
Surface Pressure [hPa] | 986.36 | 983.60 | 949.81 | 945.89 | 953.18 | 952.27 |
Strong CO2 Mean Albedo | 0.194 | 0.118 | 0.147 | 0.183 | 0.133 | 0.097 |
Strong CO2 Albedo Slope | 0 | 0 | 0 | |||
Weak CO2 Mean Albedo | 0.204 | 0.193 | 0.213 | 0.223 | 0.212 | 0.231 |
Weak CO2 Albedo Slope | 0 | 0 | 0 | |||
O2 A-Band Mean Albedo | 0.300 | 0.258 | 0.261 | 0.338 | 0.252 | 0.232 |
O2 A-Band Albedo Slope | 0 | 0 | 0 | |||
Aerosol Type 1 | Sulfate | Sulfate | Sulfate | |||
Log Optical Depth | −3.72 | −3.72 | −4.26 | −4.09 | −4.80 | −4.89 |
Profile Height | 0.83 | 0.90 | 0.79 | 0.90 | 0.93 | 0.90 |
Log Profile Thickness | −2.65 | −3.00 | −2.32 | −3.00 | −3.49 | −3.00 |
Aerosol Type 2 | Dust | Sea Salt | Sea Salt | |||
Log Optical Depth | −6.13 | −4.72 | −5.27 | −4.11 | −5.36 | −4.95 |
Profile Height | 0.72 | 0.90 | 0.82 | 0.90 | 0.91 | 0.90 |
Log Profile Thickness | −2.50 | −3.00 | −3.19 | −3.00 | −3.76 | −3.00 |
Cloud Ice | ||||||
Log Optical Depth | −5.26 | −4.38 | −5.16 | −4.38 | −5.90 | −4.38 |
Profile Height | 0.17 | 0.15 | 0.23 | 0.16 | 0.01 | 0.20 |
Log Profile Thickness | −3.22 | −3.22 | −3.22 | −3.22 | −3.22 | −3.22 |
Cloud Water | ||||||
Log Optical Depth | −5.13 | −4.38 | −4.89 | −4.38 | −5.10 | −4.38 |
Profile Height | 0.86 | 0.75 | 0.86 | 0.75 | 1.08 | 0.75 |
Log Profile Thickness | −2.30 | −2.30 | −2.30 | −2.30 | −2.30 | −2.30 |
XCO2 | Full State | |||||
---|---|---|---|---|---|---|
Site | Method | Marginal Log Score | Joint Log Score | MSE | MAE | MSE |
Lamont | True | −1318 | −Inf | 0.46 | 0.73 | 0.75 |
Oct 2015 | Operational | −90 | −90 | 0.63 | 0.51 | 0.62 |
Spatial | −22 | 25 | 0.03 | 0.24 | 0.27 | |
Wollongong | True | −44863 | −Inf | 16.07 | 4.72 | 4.74 |
Dec 2016 | Operational | −87 | −87 | 0.88 | 0.76 | 0.78 |
Spatial | −23 | 12 | 0.11 | 0.43 | 0.46 | |
Wollongong | True | −11818 | −Inf | 6.25 | 3.02 | 3.12 |
Jun 2017 | Operational | −61 | −61 | 0.20 | 0.53 | 0.56 |
Spatial | −12 | 0.2 | 0.04 | 0.44 | 0.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hobbs, J.; Katzfuss, M.; Zilber, D.; Brynjarsdóttir, J.; Mondal, A.; Berrocal, V. Spatial Retrievals of Atmospheric Carbon Dioxide from Satellite Observations. Remote Sens. 2021, 13, 571. https://doi.org/10.3390/rs13040571
Hobbs J, Katzfuss M, Zilber D, Brynjarsdóttir J, Mondal A, Berrocal V. Spatial Retrievals of Atmospheric Carbon Dioxide from Satellite Observations. Remote Sensing. 2021; 13(4):571. https://doi.org/10.3390/rs13040571
Chicago/Turabian StyleHobbs, Jonathan, Matthias Katzfuss, Daniel Zilber, Jenný Brynjarsdóttir, Anirban Mondal, and Veronica Berrocal. 2021. "Spatial Retrievals of Atmospheric Carbon Dioxide from Satellite Observations" Remote Sensing 13, no. 4: 571. https://doi.org/10.3390/rs13040571
APA StyleHobbs, J., Katzfuss, M., Zilber, D., Brynjarsdóttir, J., Mondal, A., & Berrocal, V. (2021). Spatial Retrievals of Atmospheric Carbon Dioxide from Satellite Observations. Remote Sensing, 13(4), 571. https://doi.org/10.3390/rs13040571