Improving the Indoor Air Quality of Residential Buildings during Bushfire Smoke Events
Abstract
:1. Introduction
2. Impacts of Bushfire Smoke
3. General Guidelines and Occupant Behaviour
4. Monitoring Studies
Sensor Technology for Monitoring
5. Factors Influencing IAQ
5.1. Building Envelope
5.2. Filter Technology and Portable Air Cleaners
Impact on Energy
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- US EPA. United States Environmental Protection Agency. Introduction to Indoor Air Quality. Indoor Air Pollution and Health. 2020. Available online: https://www.epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality (accessed on 31 December 2020).
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The national human activity pattern survey (Nhaps): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Sankhyan, S.; Vance, M.E.; Boedicker, E.K.; Decarlo, P.F.; Farmer, D.K.; Goldstein, A.H.; Katz, E.F.; Nazaroff, W.W.; Tian, Y.; et al. Indoor particulate matter during HOMEchem: Concentrations, size distributions, and exposures. Environ. Sci. Technol. 2020, 54, 7107–7116. [Google Scholar] [CrossRef]
- Brown, S.K. Volatile organic pollutants in new and established buildings in Melbourne, Australia. Indoor Air 2002, 12, 55–63. [Google Scholar] [CrossRef]
- Steinemann, A. Volatile emissions from common consumer products. Air Qual. Atmosphere Heal. 2015, 8, 273–281. [Google Scholar] [CrossRef]
- Brown, S.K. Bushfires and indoor built environments. Indoor Built Environ. 2018, 27, 145–147. [Google Scholar] [CrossRef]
- Dennekamp, M.; Abramson, M.J. The effects of bushfire smoke on respiratory health. Respirology 2011, 16, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; DeFries, R.S.; Kinney, P.; Bowman, D.M.; Brauer, M. Estimated global mortality attributable to smoke from landscape fires. Environ. Heal. Perspect. 2012, 120, 695–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barn, P.K.; Elliott, C.T.; Allen, R.W.; Kosatsky, T.; Rideout, K.; Henderson, S.B. Portable air cleaners should be at the forefront of the public health response to landscape fire smoke. Environ. Heal. 2016, 15, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical review of health impacts of wildfire smoke exposure. Environ. Heal. Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef] [Green Version]
- Johnston, F.; Hanigan, I.; Henderson, S.; Morgan, G.; Bowman, D. Extreme air pollution events from bushfires and dust storms and their association with mortality in Sydney, Australia 1994–2007. Environ. Res. 2011, 111, 811–816. [Google Scholar] [CrossRef]
- Liu, J.C.; Pereira, G.; Uhl, S.A.; Bravo, M.A.; Bell, M.L. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ. Res. 2015, 136, 120–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, S.B.; Johnston, F.H. Measures of forest fire smoke exposure and their associations with respiratory health outcomes. Curr. Opin. Allergy Clin. Immunol. 2012, 12, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Holstius, D.M.; Reid, C.E.; Jesdale, B.M.; Morello-Frosch, R. Birth Weight following Pregnancy during the 2003 Southern California Wildfires. Environ. Heal. Perspect. 2012, 120, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Yu, P.; Abramson, M.J.; Johnston, F.H.; Samet, J.M.; Bell, M.L.; Haines, A.; Ebi, K.L.; Li, S.; Guo, Y. Wildfires, global climate change, and human health. N. Engl. J. Med. 2020, 383, 2173–2181. [Google Scholar] [CrossRef]
- Liu, Y.; Stanturf, J.; Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 2010, 259, 685–697. [Google Scholar] [CrossRef]
- Spracklen, D.V.; Mickley, L.J.; Logan, J.A.; Hudman, R.C.; Yevich, R.; Flannigan, M.D.; Westerling, A.L. Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef]
- Sharples, J.J.; Cary, G.J.; Fox-Hughes, P.; Mooney, S.; Evans, J.P.; Fletcher, M.-S.; Fromm, M.; Grierson, P.F.; McRae, R.; Baker, P. Natural hazards in Australia: Extreme bushfire. Clim. Chang. 2016, 139, 85–99. [Google Scholar] [CrossRef]
- Ulpiani, G.; Ranzi, G.; Santamouris, M. Experimental evidence of the multiple microclimatic impacts of bushfires in af-fected urban areas: The case of Sydney during the 2019/2020 Australian season. Environ. Res. Comm. 2020, 2, 065005. [Google Scholar]
- Filkov, A.; Duff, T.; Penman, T. Determining Threshold Conditions for eExtreme Fire Behaviour; Annual Report 2019–2020, Report number 626; Bushfire and Natural Hazards CRC: Melbourne, VIC, Australia, November 2020. [Google Scholar]
- Campbell, S.L.; Jones, P.J.; Williamson, G.J.; Wheeler, A.J.; Lucani, C.; Bowman, D.M.J.S.; Johnston, F.H. Using digital technology to protect health in prolonged poor air quality episodes: A case study of the airrater app during the Australian 2019–2020 Rires. Fire 2020, 3, 40. [Google Scholar] [CrossRef]
- Boer, M.M. Resco de Dios, V.; Bradstock, R.A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. 2020, 10, 171–172. [Google Scholar] [CrossRef]
- Nazaroff, W.W. Exploring the consequences of climate change for indoor air quality. Environ. Res. Lett. 2013, 8, 015022. [Google Scholar] [CrossRef] [Green Version]
- Fisk, W.J. Review of some effects of climate change on indoor environmental quality and health and associated no-regrets mitigation measures. Build. Environ. 2015, 86, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Vardoulakis, S.; Jalaludin, B.B.; Morgan, G.G.; Hanigan, I.C.; Johnston, F.H. Bushfire smoke: Urgent need for a national health protection strategy. Med, J. Aust. 2020, 212, 349–353.e1. [Google Scholar] [CrossRef] [Green Version]
- Williamson, G.J.; Bowman, D.M.S.; Price, O.F.; Henderson, S.B.; Johnston, F.H. A transdisciplinary approach to under-standing the health effects of wildfire and prescribed fire smoke regimes. Environ. Res. Lett. 2016, 11, 125009. [Google Scholar] [CrossRef]
- WHO. Air Quality Guidelines: Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; 2006; Available online: https://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf (accessed on 19 December 2020).
- NEPM. National Environment Protection (Ambient Air Quality) Measure; 2016. Available online: https://soe.environment.gov.au/theme/ambient-air-quality/topic/2016/national-air-quality-standards (accessed on 20 December 2020).
- USEPA. United States Environmental Protection Agency. Reviewing National Ambient Air Quality Standards (NAAQS); 2020. Available online: https://www.epa.gov/naaqs/particulate-matter-pm-air-quality-standards (accessed on 5 January 2021).
- Yu, P.; Xu, R.; Abramson, M.J.; Li, S.; Guo, Y. Bushfires in Australia: A serious health emergency under climate change. Lancet Planet. Heal. 2020, 4, e7–e8. [Google Scholar] [CrossRef] [Green Version]
- Australian Government. National Environment Protection (Ambient Air Quality) Measure Review. National Environment Protection Council. 2016. Available online: https://www.legislation.gov.au/Details/F2016C00215 (accessed on 20 December 2020).
- CDPH. California Department of Public Health. Wildfire Smoke FAQs. 2020. Available online: https://www.cdph.ca.gov/Programs/EPO/Pages/BP_Wildfire_FAQs.aspx (accessed on 4 January 2021).
- EPA VIC. Environmental Protection Authority, Victoria, 2018, After a Fire: Cleaning up a Smoke-Affected Home. 2018. Available online: https://www.epa.vic.gov.au/about-epa/publications/1711 (accessed on 20 December 2020).
- NSW Government. Protect Yourself from Bushfire Smoke. 2020. Available online: https://www.health.nsw.gov.au/environment/air/Documents/protect-yourself-from-bushfire-smoke.pdf (accessed on 25 November 2020).
- Elbayoumi, M.; Ramli, N.A.; Yusof, N.F.F.M. Spatial and temporal variations in particulate matter concentrations in twelve schools environment in urban and overpopulated camps landscape. Build. Environ. 2015, 90, 157–167. [Google Scholar] [CrossRef]
- Martins, N.R.; da Graça, G.C. Impact of PM2. 5 in indoor urban environments: A review. Sustain. Cities Soc. 2018, 42, 259–275. [Google Scholar] [CrossRef]
- Luo, N.; Weng, W.; Xu, X.; Hong, T.; Fu, M.; Sun, K. Assessment of occupant-behavior-based indoor air quality and its impacts on human exposure risk: A case study based on the wildfires in Northern California. Sci. Total Environ. 2019, 686, 1251–1261. [Google Scholar] [CrossRef] [Green Version]
- Reisen, F.; Powell, J.C.; Dennekamp, M.; Johnston, F.H.; Wheeler, A.J. Is remaining indoors an effective way of reducing exposure to fine particulate matter during biomass burning events? J. Air Waste Manag. Assoc. 2019, 69, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Steinemann, A. Ten questions concerning fragrance-free policies and indoor environments. Build. Environ. 2019, 159, 106054. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Wigder, N.L. Ozone production from wildfires: A critical review. Atmospheric Environ. 2012, 51, 1–10. [Google Scholar] [CrossRef]
- Na, K.; Cocker, D.R. Fine organic particle, formaldehyde, acetaldehyde concentrations under and after the influence of fire activity in the atmosphere of Riverside, California. Environ. Res. 2008, 108, 7–14. [Google Scholar] [CrossRef]
- Malilay, J. A Review of Factors Affecting the Human Health Impacts of Air Pollutants from Forest Fires. Health Guidelines for Vegetation Fire Events: Background Papers. 1999. Available online: https://www.who.int/docstore/peh/Vegetation_fires/Backgroundpapers/BackgrPap8.pdf (accessed on 20 December 2020).
- Pantelic, J.; Dawe, M.; Licina, D. Use of IoT sensing and occupant surveys for determining the resilience of buildings to forest fire generated PM2. 5. PLoS ONE 2019, 14, 0223136. [Google Scholar]
- Shrestha, P.M.; Humphrey, J.L.; Carlton, E.J.; Adgate, J.L.; Barton, K.E.; Root, E.D.; Miller, S.L. Impact of outdoor air pollution on indoor air quality in low-income homes during wildfire seasons. Int. J. Environ. Res. Public Heal. 2019, 16, 3535. [Google Scholar] [CrossRef] [Green Version]
- Sapkota, A.; Symons, J.M.; Kleissl, J.; Wang, L.; Parlange, M.B.; Ondov, J.; Breysse, P.N.; Diette, G.B.; Eggleston, P.A.; Buckley, T.J. Impact of the 2002 Canadian forest fires on particulate matter air quality in Baltimore City. Environ. Sci. Technol. 2005, 39, 24–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reisen, F.; Meyer, C.M.; McCaw, L.; Powell, J.C.; Tolhurst, K.G.; Keywood, M.D.; Gras, J.L. Impact of smoke from biomass burning on air quality in rural communities in southern Australia. Atmospheric Environ. 2011, 45, 3944–3953. [Google Scholar] [CrossRef]
- Messier, K.P.; Tidwell, L.G.; Ghetu, C.C.; Rohlman, D.; Scott, R.P.; Bramer, L.M.; Dixon, H.M.; Waters, K.M.; Anderson, K.A. Indoor versus outdoor air quality during wildfires. Environ. Sci. Technol. Lett. 2019, 6, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Guérette, E.-A.; Paton-Walsh, C.; Desservettaz, M.; Smith, T.E.L.; Volkova, L.; Weston, C.J.; Meyer, C.P. Emissions of trace gases from Australian temperate forest fires: Emission factors and dependence on modified combustion efficiency. Atmospheric Chem. Phys. Discuss. 2018, 18, 3717–3735. [Google Scholar] [CrossRef] [Green Version]
- Koken, P.J.M.; Piver, W.T.; Ye, F.; Elixhauser, A.; Olsen, L.M.; Portier, C.J. Temperature, air pollution, and hospitalization for cardiovascular diseases among elderly people in Denver. Environ. Heal. Perspect. 2003, 111, 1312–1317. [Google Scholar] [CrossRef]
- Kang, C.-M.; Gold, D.R.; Koutrakis, P. Downwind O3 and PM2.5 speciation during the wildfires in 2002 and 2010. Atmospheric Environ. 2014, 95, 511–519. [Google Scholar] [CrossRef]
- Nazaroff, W.W.; Weschler, C.J. Cleaning products and air fresheners: Exposure to primary and secondary air pollutants. Atmospheric Environ. 2004, 38, 2841–2865. [Google Scholar] [CrossRef]
- McDonald, B.C.; De Gouw, J.A.; Cui, Y.Y.; Kim, S.-W.; Gentner, D.R.; Isaacman-VanWertz, G.; Goldstein, A.H.; Harley, R.A.; Frost, G.J.; Roberts, J.M.; et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.-Y.; Schneider, P.; Haugen, R.; Vogt, M. Performance Assessment of a Low-Cost PM2.5 Sensor for a near Four-Month Period in Oslo, Norway. Atmosphere 2019, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Holder, A.L.; Mebust, A.K.; Maghran, L.A.; McGown, M.R.; Stewart, K.E.; Vallano, D.M.; Elleman, R.A.; Baker, K.R. Field evalua-tion of low-cost particulate matter sensors for measuring wildfire smoke. Sensors 2020, 20, 4796. [Google Scholar] [CrossRef]
- Rai, A.C.; Kumar, P.; Pilla, F.; Skouloudis, A.N.; Di Sabatino, S.; Ratti, C.; Yasar, A.; Rickerby, D. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 2017, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Sayahi, T.; Butterfield, A.; Kelly, K. Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environ. Pollut. 2019, 245, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Delp, W.W.; Singer, B.C. Wildfire smoke adjustment factors for low-cost and professional PM2.5 Monitors with optical Sensors. Sensors 2020, 20, 3683. [Google Scholar] [CrossRef]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [PubMed]
- Mehadi, A.; Moosmüller, H.; Campbell, D.E.; Ham, W.; Schweizer, D.; Tarnay, L.; Hunter, J. Laboratory and field evaluation of real-time and near real-time PM2.5 smoke monitors. J. Air Waste Manag. Assoc. 2020, 70, 158–179. [Google Scholar] [CrossRef] [PubMed]
- Ilacqua, V.; Dawson, J.; Breen, M.; Singer, S.; Berg, A. Effects of climate change on residential infiltration and air pollution exposure. J. Expo. Sci. Environ. Epidemiol. 2015, 27, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, M.; Syme, M. Air tightness of New Australian residential buildings. Procedia Eng. 2017, 180, 33–40. [Google Scholar] [CrossRef]
- Munro, C.; Seagren, J. The Smoke Infiltration Situation in the Aftermath of the Devastation Bushfire. Events. Ecolibrium, AIRAH. 2020. Available online: https://www.airah.org.au/Content_Files/EcoLibrium/2020/04-20-Eco-001.pdf (accessed on 20 December 2020).
- Fisk, W.J.; Chan, W.R. Health benefits and costs of filtration interventions that reduce indoor exposure to PM2.5 during wildfires. Indoor Air 2016, 27, 191–204. [Google Scholar] [CrossRef] [Green Version]
- Stauffer, D.A.; Autenrieth, D.A.; Hart, J.F.; Capoccia, S. Control of wildfire-sourced PM2.5 in an office setting using a commercially available portable air cleaner. J. Occup. Environ. Hyg. 2020, 17, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, A.J.; Gibson, M.D.; MacNeill, M.; Ward, T.J.; Wallace, L.A.; Kuchta, J.; Seaboyer, M.; Dabek-Zlotorzynska, E.; Guernsey, J.R.; Stieb, D.M. Impacts of air cleaners on indoor air quality in residences impacted by wood smoke. Environ. Sci. Technol. 2014, 48, 12157–12163. [Google Scholar] [CrossRef] [PubMed]
- Sublett, J.L. Effectiveness of air filters and air cleaners in allergic respiratory diseases: A review of the recent literature. Curr. Allergy Asthma Rep. 2011, 11, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barn, P.; Larson, T.I.; Noullett, M.; Kennedy, S.; Copes, R.; Brauera, M. Infiltration of forest fire and residential wood smoke: An evaluation of air cleaner effectiveness. J. Expo. Sci. Environ. Epidemiol. 2007, 18, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Chuang, H.C.; Ho, K.F.; Lin, L.Y.; Chang, T.Y.; Hong, G.B.; Ma, C.M.; Liu, I.J.; Chuang, K.J. Long-term indoor air con-ditioner filtration and cardiovascular health: A randomized crossover intervention study. Environ. Int. 2017, 106, 91–96. [Google Scholar] [CrossRef]
- Reisen, F.; Brown, S.K. Implications for community health from exposure to bushfire air toxics. Environ. Chem. 2006, 3, 235–243. [Google Scholar] [CrossRef]
- World Health Organization. Air Quality Guidelines for Europe, 2nd ed; WHO European Series No.91; WHO Regional Office for Europe: Copenhagen, Denmark, 2000; Available online: https://apps.who.int/iris/handle/10665/107335 (accessed on 4 January 2021).
- Australian Government. National Environment Protection (Air Toxics) Measure ACT, 2004; Environment Protection and Heritage Council: Canberra, Australia, 2004. [Google Scholar]
- Sidheswaran, M.A.; Destaillats, H.; Sullivan, D.P.; Cohn, S.; Fisk, W.J. Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters. Build. Environ. 2012, 47, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Haghighat, F.; Lee, C.-S.; Pant, B.; Bolourani, G.; Lakdawala, N.; Bastani, A. Evaluation of various activated carbons for air cleaning–Towards design of immune and sustainable buildings. Atmospheric Environ. 2008, 42, 8176–8184. [Google Scholar] [CrossRef]
- Alavy, M.; Siegel, J.A. IAQ and energy implications of high efficiency filters in residential buildings: A review (RP-1649). Sci. Technol. Built Environ. 2019, 25, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Keefe, A. Evidence Review: Filtration in Institutional Settings during Wildfire Smoke Events. BC Centre for Disease Control, Vancouver BC. 2014. Available online: http://www.bccdc.ca/resource-gallery/Documents/Guidelines%20and%20Forms/Guidelines%20and%20Manuals/Health-Environment/WFSG_EvidenceReview_FiltrationinInstitutions_FINAL_v3_edstrs.pdf (accessed on 5 January 2021).
- Stephens, B.; Novoselac, A.; Siegel, J. The Effects of Filtration on Pressure Drop and Energy Consumption in Res-idential HVAC Systems (RP-1299). HVAC R Res. 2010, 16, 273–294. [Google Scholar]
- Walker, I.S.; Faulkner, D.; Dickerhoff, D.J.; Turner, W.J.N. Energy Implications of In Line Filtration in California Homes. ASHRAE Trans. 2013, 119, 399–417. [Google Scholar]
- Wotawa, G.; Trainer, M. The influence of Canadian forest fires on pollutant concentrations in the United States. Science 2000, 288, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Walter, C.M.; Schneider-Futschik, E.K.; Knibbs, L.D.; Irving, L.B. Health impacts of bushfire smoke exposure in Australia. Respirology 2020, 25, 495–501. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors 2017, 17, 1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desservettaz, M.; Phillips, F.; Naylor, T.; Price, O.; Samson, S.; Kirkwood, J.; Paton-Walsh, C. Air quality impacts of smoke from hazard reduction burns and domestic wood heating in Western Sydney. Atmosphere 2019, 10, 557. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajagopalan, P.; Goodman, N. Improving the Indoor Air Quality of Residential Buildings during Bushfire Smoke Events. Climate 2021, 9, 32. https://doi.org/10.3390/cli9020032
Rajagopalan P, Goodman N. Improving the Indoor Air Quality of Residential Buildings during Bushfire Smoke Events. Climate. 2021; 9(2):32. https://doi.org/10.3390/cli9020032
Chicago/Turabian StyleRajagopalan, Priyadarsini, and Nigel Goodman. 2021. "Improving the Indoor Air Quality of Residential Buildings during Bushfire Smoke Events" Climate 9, no. 2: 32. https://doi.org/10.3390/cli9020032
APA StyleRajagopalan, P., & Goodman, N. (2021). Improving the Indoor Air Quality of Residential Buildings during Bushfire Smoke Events. Climate, 9(2), 32. https://doi.org/10.3390/cli9020032