Physical, Mechanical and Biological Properties of Phenolic Acid-Grafted Soluble Soybean Polysaccharide Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Phenolic Acid-g-SSPS
2.3. Structure Analysis of Phenolic Acid-g-SSPS
2.3.1. Fourier Transform-Infrared Spectrometry (FT-IR)
2.3.2. UV-Vis Spectroscopy
2.3.3. Proton Nuclear Magnetic Resonance Spectroscopy (1 H NMR)
2.3.4. The Grafting Ratio of Phenolic Acid-g-SSPS
2.4. Antioxidant Activity of Phenolic Acid-g-SSPS
2.4.1. DPPH Radical Scavenging Ability
2.4.2. Reducing Power
2.5. Preparation of Phenolic Acid-g-SSPS Films
2.6. Physical and Mechanical Properties
2.6.1. Thickness
2.6.2. Moisture Content and Water Solubility
2.6.3. Water Vapor Permeability (WVP)
2.6.4. Mechanical Properties
2.7. The Released Phenol Content and DPPH Radical Scavenging Activity
2.8. Antibacterial Activity of Phenolic Acid-g-SSPS Films
2.9. Statistical Analysis
3. Results
3.1. FT-IR Spectra of Phenolic Acid-g-SSPS
3.2. UV-Vis Spectra of Phenolic Acid-g-SSPS
3.3. 1 H NMR Spectra of Phenolic Acid-g-SSPS
3.4. The Grafting Ratio of Phenolic Acid-g-SSPS
3.5. Antioxidant Activity of Phenolic Acid-g-SSPS
3.5.1. DPPH Radical Scavenging Activity
3.5.2. Reducing Power
3.6. Properties of Phenolic Acid-g-SSPS Films
3.6.1. Thickness
3.6.2. Moisture Content and Water Solubility
3.6.3. Water Vapor Permeability
3.6.4. Mechanical Property
3.7. The released Phenol Content and DPPH Radical Scavenging Ability
3.8. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gironi, F.; Piemonte, V. Bioplastics and petroleum-based plastics: Strengths and weaknesses. Energy Sources Part A 2011, 33, 1949–1959. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Chen, Y.; Zhang, L.; Kan, J.; Jin, C.H. Physical, mechanical and antioxidant properties of chitosan films grafted with different hydroxybenzoic acids. Food Hydrocoll. 2017, 71, 176–186. [Google Scholar] [CrossRef]
- Salarbashi, D.; Tafaghodi, M.; Bazzaz, B.S.F.; Jafari, B. Characterization of soluble soybean (SSPS) polysaccharide and development of eco-friendly SSPS/TiO2 nanoparticle bionanocomposites. Int. J. Biol. Macromol. 2018, 112, 856–861. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Guan, X. Study on the characterization and viscosity properties of soybean polysaccharides. J. Food Saf. Qual. 2014, 5, 3331–3336. [Google Scholar]
- Wang, F.C.; Li, J.G.; Dong, Y.C. Research progress of application of polysaccharides and modified polysaccharides in film coatings for food preservation. Food Sci. 2012, 33, 299–304. [Google Scholar]
- Zhao, J.J.; Wei, T.; Wei, Z.H.; Yuan, F.; Gao, Y.X. Influence of soybean soluble polysaccharides and beet pectin on the physicochemical properties of lactoferrin-coated orange oil emulsion. Food Hydrocoll. 2015, 44, 443–452. [Google Scholar] [CrossRef]
- Ghazihoseini, S.; Alipoormazandarani, N.; Nafchi, A.M. The effects of nano-SiO2 on mechanical, barrier, and moisture sorption isotherm models of novel soluble soybean polysaccharide films. Int. J. Food Eng. 2015, 11, 833–840. [Google Scholar] [CrossRef]
- Tajika, S.; Maghsoudloua, Y.; Khodaiyanb, F.; Jafari, S.M.; Ghasemloub, M.; Aalami, M. Soluble soybean polysaccharide: A new carbohydrate to make a biodegradable film for sustainable green packaging. Carbohydr. Polym. 2013, 97, 817–824. [Google Scholar] [CrossRef]
- Salarbashi, D.; Tajik, S.; Ghasemlou, M.; Shojaee-Aliabadi, S.; Noghabi, M.S.; Khaksar, R. Characterization of soluble soybean polysaccharide film incorporated essential oil intended for food packaging. Carbohydr. Polym. 2013, 98, 1127–1136. [Google Scholar] [CrossRef]
- Liu, J.; Pu, H.M.; Liu, S.; Kan, J.; Jin, C.H. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review. Carbohydr. Polym. 2017, 174, 999–1017. [Google Scholar] [CrossRef]
- Lee, D.S.; Woo, J.Y.; Ahn, C.B.; Je, J.Y. Chitosan-hydroxycinnamic acid conjugates: Preparation, antioxidant and antimicrobial activity. Food Chem. 2014, 148, 97–104. [Google Scholar] [CrossRef]
- Liu, J.; Meng, C.G.; Yan, Y.H.; Shan, Y.N.; Kan, J.; Jin, C.H. Protocatechuic acid grafted onto chitosan: Characterization and antioxidant activity. Int. J. Biol. Macromol. 2016, 89, 518–526. [Google Scholar] [CrossRef]
- Xu, C.; Guan, S.; Xu, J.Q.; Gong, W.T.; Liu, T.Q.; Ma, X.H.; Sun, C.K. Preparation, characterization and antioxidant activity of protocatechuic acid grafted carboxymethyl chitosan and its hydrogel. Carbohydr. Polym. 2021, 252, 117210. [Google Scholar] [CrossRef]
- Liu, J.; Meng, C.G.; Liu, S.; Kan, J.; Jin, C.H. Preparation and characterization of protocatechuic acid grafted chitosan films with antioxidant activity. Food Hydrocoll. 2017, 63, 457–466. [Google Scholar] [CrossRef]
- Wu, C.H.; Tian, J.H.; Li, S.; Wu, T.T.; Hu, Y.Q.; Chen, S.G.; Sugawara, T.; Ye, X.Q. Structural properties of films and rheology of film-forming solutions of chitosan gallate for food packaging. Carbohydr. Polym. 2016, 146, 10–19. [Google Scholar] [CrossRef]
- Schreiber, S.B.; Bozell, J.J.; Hayes, D.G.; Zivanovic, S. Introduction of primary antioxidant activity to chitosan for application as a multifunctional food packaging material. Food Hydrocoll. 2013, 33, 207–214. [Google Scholar] [CrossRef]
- Lamarra, J.; Rivero, S.; Pinotti, A. Nanocomposite bilayers based on poly (vinyl alcohol) and chitosan functionalized with gallic acid. Int. J. Biol. Macromol. 2020, 146, 811–820. [Google Scholar] [CrossRef]
- Woranuch, S.; Yoksan, R. Preparation, characterization and antioxidant property of water-soluble ferulic acid grafted chitosan. Carbohydr. Polym. 2013, 96, 495–502. [Google Scholar] [CrossRef]
- Zhao, X.R. Synthesis, characterization and antimicrobial activity of a new preservative, 6-o-chitosan ester of p-hydroxybenzoic acid. Adv. Mat. Res. 2011, 189, 1049–1055. [Google Scholar] [CrossRef]
- Liu, J.; Lu, J.f.; Kan, J.; Tang, Y.Q.; Jin, C.H. Preparation, characterization and antioxidant activity of phenolic acids grafted carboxymethyl chitosan. Int. J. Biol. Macromol. 2013, 62, 85–93. [Google Scholar] [CrossRef]
- Liu, J.; Wen, X.Y.; Zhang, X.Q.; Pu, H.M.; Kan, J.; Jin, C.H. Extraction, characterization and in vitro antioxidant activity of polysaccharides from black soybean. Int. J. Biol. Macromol. 2015, 72, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Liu, C.; Huang, J.; Zheng, X.J.; Liu, S.J.; Lu, K.K.; Tang, K.Y.; Liu, J. Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packaging Shel. 2020, 24, 100485. [Google Scholar] [CrossRef]
- Grevenstuk, T.; Goncalves, S.; Almeida, S.; Coelho, N.; Quintas, C.; Gaspar, M.N.; Romano, A. Evaluation of the antioxidant and antimicrobial properties of in vitro cultured Drosera intermedia extracts. Nat. Prod. Commun. 2009, 4, 1063–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rui, L.; Xie, M.; Hu, B.; Zhou, L.; Yin, D.Y.; Zeng, X.X. A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid. Carbohydr. Polym. 2017, 173, 473–481. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; Gómez-Guillén, M.C.; Fernández-Martín, F.; Montero, P. Effects of gelatin origin, bovine-hide and tuna-skin, on the properties of compound gelatin-chitosan films. Food Hydrocoll. 2011, 25, 1461–1469. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Sun, T.; Xie, J.; Xue, B.; Li, X.H.; Gan, J.H.; Li, L.; Shao, Z.H. Functional properties and preservative effect on Penaeus vannamei of chitosan films with conjugated or incorporated chlorogenic acid. Int. J. Biol. Macromol. 2020, 159, 333–340. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Wu, Q.Q.; Gu, Y.Y.; Kan, J.; Jin, C.H. Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film. Food Hydrocoll. 2017, 73, 90–100. [Google Scholar] [CrossRef]
- Luo, L.J.; Wu, Y.; Liu, C.; Huang, L.; Zou, Y.; Shen, Y.B.; Lin, Q.L. Designing soluble soybean polysaccharides-based nanoparticles to improve sustained antimicrobial activity of nisin. Carbohydr. Polym. 2019, 225, 115251. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C.; Zheng, X.J.; Chen, M.; Tang, K.Y. Soluble soybean polysaccharide/nano zinc oxide antimicrobial nanocomposite films reinforced with microfibrillated cellulose. Int. J. Biol. Macromol. 2020, 159, 793–803. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Niksic, M.; Vrvic, M.M.; Todorovic, N.; Jakovljevic, D.L.; Griensven, J.L.D.V. Antioxidative activities and chemical characterization of polysaccharide extracts from the widely used mushrooms Ganoderma applanatum, Ganoderma lucidum, Lentinus edodes and Trametes versicolor. Food Compos. Anal. J. 2012, 26, 144–153. [Google Scholar] [CrossRef]
- Hu, Q.B.; Wang, T.R.; Zhou, M.Y.; Xue, J.Y.; Luo, Y.C. In vitro antioxidant-activity evaluation of gallic-acid-grafted chitosan conjugate synthesized by free-radical-induced grafting method. Agric. Food Chem. J. 2016, 64, 5893–5900. [Google Scholar] [CrossRef]
- Bai, R.Y.; Yong, H.M.; Zhang, X.; Liu, J.; Liu, J. Structural characterization and protective effect of gallic acid grafted O-carboxymethyl chitosan against hydrogen peroxide-induced oxidative damage. Int. Biol. Macromol. J. 2019, 143, 49–59. [Google Scholar] [CrossRef]
- Zhang, L.F.; Ye, X.Q.; Ding, T.; Sun, X.Y.; Xu, Y.T.; Liu, D.H. Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrason. Sonochem. 2013, 20, 222–231. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.L.; Li, J.H.; Yan, L.F.; Li, S.; Ye, X.Q.; Liu, D.H.; Ding, T.; Linhardt, R.J.; Orfila, C.; et al. Extraction and characterization of RG-I enriched pectic polysaccharides from mandarin citrus peel. Food Hydrocoll. 2018, 79, 579–586. [Google Scholar] [CrossRef]
- Casettari, L.; Casettari, L.; Gennari, D.; Angelino, P.; Ninfali, E. Castagnino, ORAC of chitosan and its derivatives. Food Hydrocoll. 2012, 28, 243–247. [Google Scholar] [CrossRef]
- Ozcelik, B.; Lee, J.H.; Min, D.B. Effects of light, oxygen, and pH on the absorbance of 2,2-diphenyl-1-picrylhydrazyl. Food. Sci. J. 2010, 68, 487–490. [Google Scholar] [CrossRef]
- Natella, F.; Nardini, M.; Felice, M.D.; Scaccini, C. Benzoic and cinnamic acid derivatives as antioxidants: Structure-activity relation. Agric. Food Chem. J. 1999, 47, 1453–1459. [Google Scholar] [CrossRef]
- Li, X.C.; Wang, X.Z.; Chen, D.F.; Chen, S.Z. Antioxidant activity and mechanism of protocatechuic acid in vitro. Funct. Foods Health D 2011, 7, 515–529. [Google Scholar] [CrossRef]
- Zhong, C.; Hou, P.F.; Li, Y.X.; Yang, W.Y.; Shu, M.; Wu, G.P. Characterization, antioxidant and antibacterial activities of gelatin film incorporated with protocatechuic acid and its application on beef preservation. LWT 2021, 151, 112154. [Google Scholar] [CrossRef]
- Ghani, S.; Barzegar, H.; Noshad, M.; Hojjati, M. The preparation, characterization and in vitro application evaluation of soluble soybean polysaccharide films incorporated with cinnamon essential oil nanoemulsions. Int. Biol. Macromol. J. 2018, 112, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Siripatrawan, U.; Vitchayakitti, W. Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll. 2016, 61, 695–702. [Google Scholar] [CrossRef]
- Park, S.I.; Zhao, Y.Y. Incorporation of a high concentration of mineral or vitamin into chitosan-based films. J. Agric. Food Chem. 2004, 52, 1933–1939. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.X.; Wang, Z.; Kadouh, H.; Zhou, K.Q. The antimicrobial, mechanical, physical and structural properties of chitosan-gallic acid films. LWT Food Sci. Technol. 2014, 57, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Perry, C.C.; Weatherly, M.; Beale, T.; Randriamahefa, A. Atomic force microscopy study of the antimicrobial activity of aqueous garlic versus ampicillin against Escherichia coli and Staphylococcus aureus. J. Sci. Food Agric. 2009, 89, 958–964. [Google Scholar] [CrossRef]
Films | Film Thickness (µm) | Moisture Content (%) | Water Solubility (%) | Water Vapor Permeability (×10−7 g mm/h cm2 Pa) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|---|---|---|
SSPS film | 60 ± 11 | 10.62 ± 0.21 a | 98.57 ± 0.35 d | 4.04 ± 0.059 d | 30.08 ± 1.54 d | 15.1 ± 1.68 d |
PPA-g-SSPS film | 62 ± 3 | 11.36 ± 0.14 b | 90.59 ± 1.36 c | 3.44 ± 0.032 a | 28.05 ± 1.33 c | 13.2 ± 1.12 c |
PA-g-SSPS film | 65 ± 6 | 11.00 ± 0.25 a | 87.58 ± 0.38 b | 3.66 ± 0.047 b | 24.57 ± 2.14 b | 12.5 ± 2.16 b |
GA-g-SSPS film | 69 ± 5 | 10.39 ± 0.21 a | 81.60 ± 1.27 a | 3.70 ± 0.051 c | 23.35 ± 1.77 a | 12 ± 1.68 a |
Films | Released Phenol Content (mg/g) | DPPH Radical Scavenging Activity (%) | Inhibition Zone (mm) | |
---|---|---|---|---|
Staphylococcus aureus | Escherichia coli | |||
SSPS film | 1.95 ± 0.47 a | 0.31 ± 0.11 a | 6.35 ± 0.12 b | 6.24 ± 0.18 b |
PPA-g-SSPS film | 6.16 ± 0.72 b | 5.94 ± 0.17 b | 7.91 ± 0.27 c | 7.28 ± 0.32 c |
PA-g-SSPS film | 8.45 ± 1.33 c | 63.62 ± 1.21 c | 8.77 ± 0.29 d | 8.36 ± 0.16 d |
GA-g-SSPS film | 12.05 ± 1.77 d | 81.47 ± 1.78 d | 10.20 ± 0.36 e | 9.59 ± 0.72 e |
Potassium sorbate | - | - | 10.12 ± 0.21 f | 9.87 ± 0.24 e |
Sterile water | - | - | 6.00 ± 0.00 a | 6.00 ± 0.00 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Huang, C.; Xie, J.; Shao, Z.; Li, X.; Bian, X.; Xue, B.; Gan, J.; Sun, T. Physical, Mechanical and Biological Properties of Phenolic Acid-Grafted Soluble Soybean Polysaccharide Films. Foods 2022, 11, 3747. https://doi.org/10.3390/foods11223747
Zhang M, Huang C, Xie J, Shao Z, Li X, Bian X, Xue B, Gan J, Sun T. Physical, Mechanical and Biological Properties of Phenolic Acid-Grafted Soluble Soybean Polysaccharide Films. Foods. 2022; 11(22):3747. https://doi.org/10.3390/foods11223747
Chicago/Turabian StyleZhang, Mengyang, Chen Huang, Jing Xie, Zehuai Shao, Xiaohui Li, Xiaojun Bian, Bin Xue, Jianhong Gan, and Tao Sun. 2022. "Physical, Mechanical and Biological Properties of Phenolic Acid-Grafted Soluble Soybean Polysaccharide Films" Foods 11, no. 22: 3747. https://doi.org/10.3390/foods11223747
APA StyleZhang, M., Huang, C., Xie, J., Shao, Z., Li, X., Bian, X., Xue, B., Gan, J., & Sun, T. (2022). Physical, Mechanical and Biological Properties of Phenolic Acid-Grafted Soluble Soybean Polysaccharide Films. Foods, 11(22), 3747. https://doi.org/10.3390/foods11223747