The Effect of Groove Shape on Molten Metal Flow Behaviour in Gas Metal Arc Welding
Abstract
:1. Introduction
2. Problem Description
3. Methods
3.1. Mathematical Model
3.2. Numerical Implementation
3.3. Experimental Setup and Procedure
4. Results and Discussion
4.1. Model Validation
4.2. Thermal and Fluid Flow Fields
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, H.L.; Mukherjee, T.; Zhang, W.; Zuback, J.S.; Knapp, G.L.; De, A.; DebRoy, T. Mechanistic models for additive manufacturing of metallic components. Prog. Mater. Sci. 2021, 116, 100703. [Google Scholar] [CrossRef]
- Norrish, J.; Polden, J.; Richardson, I. A review of wire arc additive manufacturing: Development, principles, process physics, implementation and current status. J. Phys. Appl. Phys. 2021, 54, 473001. [Google Scholar] [CrossRef]
- DebRoy, T.; David, S.A. Physical processes in fusion welding. Rev. Mod. Phys. 1995, 67, 85–112. [Google Scholar] [CrossRef]
- Aucott, L.; Dong, H.; Mirihanage, W.; Atwood, R.; Kidess, A.; Gao, S.; Wen, S.; Marsden, J.; Feng, S.; Tong, M.; et al. Revealing internal flow behaviour in arc welding and additive manufacturing of metals. Nat. Commun. 2018, 9, 5414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, S.A.; DebRoy, T. Current Issues and Problems in Welding Science. Science 1992, 257, 497–502. [Google Scholar] [CrossRef]
- Cook, P.S.; Murphy, A.B. Simulation of melt pool behaviour during additive manufacturing: Underlying physics and progress. Addit. Manuf. 2020, 31, 100909. [Google Scholar] [CrossRef]
- Zong, R.; Chen, J.; Wu, C.; Lou, D. Numerical analysis of molten metal behavior and undercut formation in high-speed GMAW. J. Mater. Process. Technol. 2021, 297, 117266. [Google Scholar] [CrossRef]
- Hu, Z.; Hua, L.; Qin, X.; Ni, M.; Ji, F.; Wu, M. Molten pool behaviors and forming appearance of robotic GMAW on complex surface with various welding positions. J. Manuf. Process. 2021, 64, 1359–1376. [Google Scholar] [CrossRef]
- Zargari, H.H.; Ito, K.; Kumar, M.; Sharma, A. Visualizing the vibration effect on the tandem-pulsed gas metal arc welding in the presence of surface tension active elements. Int. J. Heat Mass Transf. 2020, 161, 120310. [Google Scholar] [CrossRef]
- Wu, D.; Tashiro, S.; Wu, Z.; Nomura, K.; Hua, X.; Tanaka, M. Analysis of heat transfer and material flow in hybrid KPAW-GMAW process based on the novel three dimensional CFD simulation. Int. J. Heat Mass Transf. 2020, 147, 118921. [Google Scholar] [CrossRef]
- Wu, D.; Hua, X.; Ye, D.; Li, F. Understanding of humping formation and suppression mechanisms using the numerical simulation. Int. J. Heat Mass Transf. 2017, 104, 634–643. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Guo, H.; Tsai, H.L. Weld pool dynamics and the formation of ripples in 3D gas metal arc welding. Int. J. Heat Mass Transf. 2008, 51, 2537–2552. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.H.; Farson, D.F. Understanding Bead Hump Formation in Gas Metal Arc Welding Using a Numerical Simulation. Metall. Mater. Trans. B 2007, 38, 305–319. [Google Scholar] [CrossRef]
- Ushio, M.; Wu, C.S. Mathematical modeling of three-dimensional heat and fluid flow in a moving gas metal arc weld pool. Metall. Mater. Trans. B 1997, 28, 509–516. [Google Scholar] [CrossRef]
- Kim, J.W.; Na, S.J. A Study on the Three-Dimensional Analysis of Heat and Fluid Flow in Gas Metal Arc Welding Using Boundary-Fitted Coordinates. J. Eng. Ind. 1994, 116, 78–85. [Google Scholar] [CrossRef]
- Zhang, W.; Kim, C.H.; DebRoy, T. Heat and fluid flow in complex joints during gas metal arc welding—Part I: Numerical model of fillet welding. J. Appl. Phys. 2004, 95, 5210–5219. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Kim, C.H.; DebRoy, T. Heat and fluid flow in complex joints during gas metal arc welding—Part II: Application to fillet welding of mild steel. J. Appl. Phys. 2004, 95, 5220–5229. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Tsai, H.L. Modelling of transport phenomena in 3D GMAW of thick metals with V groove. J. Phys. D Appl. Phys. 2008, 41, 065202. [Google Scholar] [CrossRef]
- Chen, J.; Schwenk, C.; Wu, C.S.; Rethmeier, M. Predicting the influence of groove angle on heat transfer and fluid flow for new gas metal arc welding processes. Int. J. Heat Mass Transf. 2011, 55, 102–111. [Google Scholar] [CrossRef]
- Cho, Y.T.; Na, S.J. Application of Abel inversion in real-time calculations for circularly and elliptically symmetric radiation sources. Meas. Sci. Technol. 2005, 16, 878–884. [Google Scholar] [CrossRef]
- Cho, D.W.; Na, S.J.; Cho, M.H.; Lee, J.S. Simulations of weld pool dynamics in V-groove GTA and GMA welding. Weld. World 2013, 57, 223–233. [Google Scholar] [CrossRef]
- Cho, D.W.; Na, S.J.; Cho, M.H.; Lee, J.S. A study on V-groove GMAW for various welding positions. J. Mater. Process. Technol. 2013, 213, 1640–1652. [Google Scholar] [CrossRef]
- Sahoo, P.; Debroy, T.; McNallan, M.J. Surface tension of binary metal—Surface active solute systems under conditions relevant to welding metallurgy. Metall. Trans. B 1988, 19, 483–491. [Google Scholar] [CrossRef]
- Saldi, Z.S. Marangoni Driven Free Surface Flows in Liquid Weld Pools. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Mills, K.C. Fe-316 Stainless Steel. In Recommended Values of Thermophysical Properties for Selected Commercial Alloys; Elsevier: Amsterdam, The Netherlands, 2002; pp. 135–142. [Google Scholar] [CrossRef]
- Kim, C.S. Thermophysical Properties of Stainless Steels; Technical Report ANL-75-55; Argonne National Lab: Lemont, IL, USA, 1975. [Google Scholar] [CrossRef]
- Cho, M.H.; Lim, Y.C.; Farson, D.F. Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and final weld shape. Weld. J. 2006, 85, 271s–283s. [Google Scholar]
- Voller, V.R.; Swaminathan, C.R. General source-based method for solidification phase change. Numer. Heat Transf. Part Fundam. 1991, 19, 175–189. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Voller, V.R.; Prakash, C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int. J. Heat Mass Transf. 1987, 30, 1709–1719. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Kleijn, C.R.; Richardson, I.M. Sensitivity of Numerical Predictions to the Permeability Coefficient in Simulations of Melting and Solidification Using the Enthalpy-Porosity Method. Energies 2019, 12, 4360. [Google Scholar] [CrossRef] [Green Version]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Lin, M.L.; Eagar, T.W. Pressures produced by gas tungsten arcs. Metall. Trans. B 1986, 17, 601–607. [Google Scholar] [CrossRef]
- Tsai, N.S.; Eagar, T.W. Distribution of the heat and current fluxes in gas tungsten arcs. Metall. Trans. B 1985, 16, 841–846. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Kleijn, C.R.; Richardson, I.M. A simulation-based approach to characterise melt-pool oscillations during gas tungsten arc welding. Int. J. Heat Mass Transf. 2021, 164, 120535. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Kleijn, C.R.; Hermans, M.J.M.; Richardson, I.M. The effects of process parameters on melt-pool oscillatory behaviour in gas tungsten arc welding. J. Phys. D Appl. Phys. 2021, 54, 275303. [Google Scholar] [CrossRef]
- Liu, J.W.; Rao, Z.H.; Liao, S.M.; Tsai, H.L. Numerical investigation of weld pool behaviors and ripple formation for a moving GTA welding under pulsed currents. Int. J. Heat Mass Transf. 2015, 91, 990–1000. [Google Scholar] [CrossRef]
- Bai, X.; Colegrove, P.; Ding, J.; Zhou, X.; Diao, C.; Bridgeman, P.; roman Hönnige, J.; Zhang, H.; Williams, S. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. Int. J. Heat Mass Transf. 2018, 124, 504–516. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Na, S.J. A numerical analysis of a stationary gas tungsten welding arc considering various electrode angles. Weld. J. 1996, 75, 269s–279s. [Google Scholar]
- Lee, S.Y.; Na, S.J. Analysis of TIG Welding Arc Using Boundary-Fitted Coordinates. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 1995, 209, 153–164. [Google Scholar] [CrossRef]
- Unnikrishnakurup, S.; Rouquette, S.; Soulié, F.; Fras, G. Estimation of heat flux parameters during static gas tungsten arc welding spot under argon shielding. Int. J. Therm. Sci. 2017, 114, 205–212. [Google Scholar] [CrossRef]
- Tsao, K.C.; Wu, C.S. Fluid flow and heat transfer in GMA weld pools. Weld. J. 1988, 67, 70s–75s. [Google Scholar]
- Rao, Z.H.; Zhou, J.; Liao, S.M.; Tsai, H.L. Three-dimensional modeling of transport phenomena and their effect on the formation of ripples in gas metal arc welding. J. Appl. Phys. 2010, 107, 054905. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Hu, J.; Tsai, H.L. Three-dimensional modeling of arc plasma and metal transfer in gas metal arc welding. Int. J. Heat Mass Transf. 2009, 52, 1709–1724. [Google Scholar] [CrossRef]
- Schnick, M.; Fuessel, U.; Hertel, M.; Haessler, M.; Spille-Kohoff, A.; Murphy, A.B. Modelling of gas–metal arc welding taking into account metal vapour. J. Phys. D Appl. Phys. 2010, 43, 434008. [Google Scholar] [CrossRef] [Green Version]
- Murphy, A.B.; Lowke, J.J. Heat Transfer in Arc Welding. In Handbook of Thermal Science and Engineering; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 2657–2727. [Google Scholar] [CrossRef]
- Soderstrom, E.J.; Scott, K.M.; Mendez, P.F. Calorimetric measurement of droplet temperature in GMAW. Weld. J. 2011, 90, 77s–84s. [Google Scholar]
- Lin, Q.; Li, X.; Simpson, S.W. Metal transfer measurements in gas metal arc welding. J. Phys. D Appl. Phys. 2001, 34, 347–353. [Google Scholar] [CrossRef]
- Lancaster, J.F. (Ed.) The Physics of Welding, 2nd ed.; International Series on Materials Science of Technology; Pergamon Press: Oxford, UK, 1986. [Google Scholar]
- Zhang, G.; Goett, G.; Kozakov, R.; Uhrlandt, D.; Reisgen, U.; Willms, K.; Sharma, R.; Mann, S.; Lozano, P. Study of the arc voltage in gas metal arc welding. J. Phys. D Appl. Phys. 2018, 52, 085202. [Google Scholar] [CrossRef]
- Zhang, G.; Goett, G.; Uhrlandt, D.; Lozano, P.; Sharma, R. A simplified voltage model in GMAW. Weld. World 2020, 64, 1625–1634. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Kleijn, C.R.; Richardson, I.M. Numerical Study of Molten Metal Melt Pool Behaviour during Conduction-mode Laser Spot Melting. J. Phys. Appl. Phys. 2021, 54, 105304. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Kleijn, C.R.; Richardson, I.M. The Influence of Surface Deformation on Thermocapillary Flow Instabilities in Low Prandtl Melting Pools with Surfactants. In Proceedings of the 5th World Congress on Mechanical, Chemical, and Material Engineering, Lisbon, Portugal, 15–17 August 2019. [Google Scholar] [CrossRef]
- Sridharan, K.; Allen, T.; Anderson, M.; Cao, G.; Kulcinski, G. Emissivity of Candidate Materials for VHTR Applicationbs: Role of Oxidation and Surface Modification Treatments; Technical Report; University of Wisconsin: Madison, WI, USA, 2011. [Google Scholar] [CrossRef]
- Johnson, K.L.; Rodgers, T.M.; Underwood, O.D.; Madison, J.D.; Ford, K.R.; Whetten, S.R.; Dagel, D.J.; Bishop, J.E. Simulation and experimental comparison of the thermo-mechanical history and 3D microstructure evolution of 304L stainless steel tubes manufactured using LENS. Comput. Mech. 2017, 61, 559–574. [Google Scholar] [CrossRef]
- ANSYS Fluent. Release 19.2. Available online: https://www.ansys.com/products/fluids/ansys-fluent (accessed on 1 November 2021).
- Ubbink, O. Numerical Prediction of Two Fluid Systems with Sharp Interfaces. Ph.D. Thesis, Imperial College London (University of London), London, UK, 1997. [Google Scholar]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow, 1st ed.; Taylor & Francis Inc.: Singapore, 1980. [Google Scholar]
- Issa, R.I. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 1986, 62, 40–65. [Google Scholar] [CrossRef]
- Wu, F.; Flint, T.F.; Falch, K.V.; Smith, M.C.; Drakopoulos, M.; Mirihanage, W. Mapping flow evolution in gas tungsten arc weld pools. Int. J. Heat Mass Transf. 2021, 179, 121679. [Google Scholar] [CrossRef]
- Zhao, C.X.; van Steijn, V.; Richardson, I.M.; Kleijn, C.R.; Kenjeres, S.; Saldi, Z. Unsteady interfacial phenomena during inward weld pool flow with an active surface oxide. Sci. Technol. Weld. Join. 2009, 14, 132–140. [Google Scholar] [CrossRef]
- Kumar, S.; Shahi, A.S. Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints. Mater. Des. 2011, 32, 3617–3623. [Google Scholar] [CrossRef]
- Unnikrishnan, R.; Idury, K.S.N.S.; Ismail, T.P.; Bhadauria, A.; Shekhawat, S.K.; Khatirkar, R.K.; Sapate, S.G. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments. Mater. Charact. 2014, 93, 10–23. [Google Scholar] [CrossRef]
- Mohammed, G.; Ishak, M.; Aqida, S.; Abdulhadi, H. Effects of Heat Input on Microstructure, Corrosion and Mechanical Characteristics of Welded Austenitic and Duplex Stainless Steels: A Review. Metals 2017, 7, 39. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value | Unit |
---|---|---|
Welding current I | 220–280 | A |
Arc voltage U | 21.4–23.0 | V |
Wire feed rate uw | 7.0–8.7 | m min−1 |
Wire diameter dw | 1.2 (0.045) | mm (inch) |
Wire material | AISI 316L | – |
Travel speed V | 7.5 | mm s−1 |
Shielding gas | 97.5% Ar + 2.5% CO2 | – |
Shielding gas flow rate | 20 | l min−1 |
Inner diameter of the shielding cup | 20 | mm |
CTWD | 18 | mm |
Distance between the contact tip and the shielding cup edge | 2 | mm |
Torch angle | 90 | ∘ |
Property | Stainless Steel (AISI 316) | Gas | Unit |
---|---|---|---|
Density ρ | see Figure 2 | 1.623 | kg m−3 |
Specific heat capacity cp | see Figure 2 | 520.64 | J kg−1 K−1 |
Thermal conductivity k | see Figure 2 | 1.58 × 10−2 | W m−1 K−1 |
Viscosity μ | see Figure 2 | 2.12 × 10−5 | kg m−1 s−1 |
Latent heat of fusion | 2.7 × 105 | – | J kg−1 |
Liquidus temperature Tl | 1723 | – | K |
Solidus temperature Ts | 1658 | – | K |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebrahimi, A.; Babu, A.; Kleijn, C.R.; Hermans, M.J.M.; Richardson, I.M. The Effect of Groove Shape on Molten Metal Flow Behaviour in Gas Metal Arc Welding. Materials 2021, 14, 7444. https://doi.org/10.3390/ma14237444
Ebrahimi A, Babu A, Kleijn CR, Hermans MJM, Richardson IM. The Effect of Groove Shape on Molten Metal Flow Behaviour in Gas Metal Arc Welding. Materials. 2021; 14(23):7444. https://doi.org/10.3390/ma14237444
Chicago/Turabian StyleEbrahimi, Amin, Aravind Babu, Chris R. Kleijn, Marcel J. M. Hermans, and Ian M. Richardson. 2021. "The Effect of Groove Shape on Molten Metal Flow Behaviour in Gas Metal Arc Welding" Materials 14, no. 23: 7444. https://doi.org/10.3390/ma14237444
APA StyleEbrahimi, A., Babu, A., Kleijn, C. R., Hermans, M. J. M., & Richardson, I. M. (2021). The Effect of Groove Shape on Molten Metal Flow Behaviour in Gas Metal Arc Welding. Materials, 14(23), 7444. https://doi.org/10.3390/ma14237444