Detecting Extratropical Cyclones of the Northern Hemisphere with Single Shot Detector
Abstract
:1. Introduction
1.1. Background
1.2. Recent Works
Our Contributions
- We proposed a novel procedure to create labeled ETC datasets that can be used by all object detection models.
- We explored the performance of Single Shot Detector in ETC detection of the northern hemisphere by conducting experiments on binary ETC detection for datasets of single ETC categories and multiclass ETC detection for the entire dataset.
2. Data
2.1. Data Acquisition
2.2. Defining Extratropical Cyclones
3. Method
3.1. Model Selection
3.2. Overview of Workflow
4. Experiments and Results
4.1. Description of Experiments
4.2. ETC Detection of Single Categories with SSD
4.3. ETC Detection of Multiple Categories with SSD
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Extratropical Cyclone. 1998. Available online: https://www.britannica.com/science/extratropical-cyclone (accessed on 1 July 2021).
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Lucas, B.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI), Vancouver, BC, Canada, 24–28 August 1981; pp. 674–679. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 25–29 August 2012; Volume 1, pp. 1097–1105. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; proceedings, part 1. pp. 21–37. [Google Scholar]
- Bietti, A.; Mairal, J. Invariance and Stability of Deep Convolutional Representations. In Proceedings of the NIPS 2017-31st Conference on Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1622–1632. [Google Scholar]
- Zhao, Z.-Q.; Zheng, P.; Xu, S.-T.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, N.; Kishtawal, C. Objective Detection of Center of Tropical Cyclone in Remotely Sensed Infrared Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1031–1035. [Google Scholar] [CrossRef]
- Camargo, S.J.; Zebiak, S.E. Improving the Detection and Tracking of Tropical Cyclones in Atmospheric General Circulation Models. Weather Forecast. 2002, 17, 1152–1162. [Google Scholar] [CrossRef]
- Matsuoka, D.; Nakano, M.; Sugiyama, D.; Uchida, S. Deep learning approach for detecting tropical cyclones and their precursors in the simulation by a cloud-resolving global nonhydrostatic atmospheric model. Prog. Earth Planet. Sci. 2018, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bonfanti, C.K.; Stewart, J.; Hal, D.; Govett, M. Tropical and Extratropical Cyclone Detection Using Deep Learning. J. Appl. Meteorol. Climatol. 2020, 59, 1971–1985. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Knapp, K.R.; Diamond, H.J.; Kossin, J.P.; Kruk, M.C.; Schreck, C.J., III. International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4; NOAA National Centers for Environmental Information (NCEI): Asheville, NC, USA, 2018. [Google Scholar]
- Goodman, S.J. Chapter 1—GOES-R Series Introduction; The GOES-R Series; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–3. [Google Scholar]
- Tsai, H.-C.; Lu, K.-C.; Elsberry, R.L.; Lu, M.-M.; Sui, C.-H. Tropical Cyclone–like Vortices Detection in the NCEP 16-Day Ensemble System over the Western North Pacific in 2008: Application and Forecast Evaluation. Weather Forecast. 2011, 26, 77–93. [Google Scholar] [CrossRef] [Green Version]
- Steiner, A.; Köhler, C.; Metzinger, I.; Braun, A.; Zirkelbach, M.; Ernst, D.; Tran, P.; Ritter, B. Critical weather situations for renewable energies—Part A: Cyclone detection for wind power. Renew. Energy 2017, 101, 41–50. [Google Scholar] [CrossRef]
- Park, M.-S.; Kim, M.; Lee, M.-I.; Im, J.; Park, S. Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and intensity analyses using decision trees. Remote Sens. Environ. 2016, 183, 205–214. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on single levels from 1979 to present. In Copernicus Climate Change Service (C3S) Climate Data Store (CDS); ECMWF: Reading, UK, 2018. [Google Scholar]
- ZAMG. 1998. Available online: http://www.zamg.ac.at/docu/Manual/SatManu/CMs/index.htm (accessed on 15 June 2021).
- Bonfanti, C.; Trailovic, L.; Stewart, J.; Govett, M. Machine Learning: Defining Worldwide Cyclone Labels for Training. In Proceedings of the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; pp. 753–760. [Google Scholar]
- Sharma, V.; Mir, R.N. A comprehensive and systematic look up into deep learning based object detection techniques: A review. Comput. Sci. Rev. 2020, 38, 100301. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the European Conference on Computer Vision, Boston, MA, USA, 7–12 June 2014; pp. 740–755. [Google Scholar]
- Everingham, M.; Gool, L.V.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2009, 88, 303–338. [Google Scholar] [CrossRef] [Green Version]
TimeStep | Duration | Displacements between Timestep | Distance from Neighboring Cyclones | Mean Sea Level Pressure |
---|---|---|---|---|
6 h | 24 h, or 6 timesteps | ≤666.72 km | ≥10 degrees | Local minimum (8 points) |
Category of ETC | Training Iterations | Training Time | Total Loss * | mAP | Training Samples | Testing Samples |
---|---|---|---|---|---|---|
Developing | 240,000 | 6 h | 0.60 | 78.56% | 554 | 112 |
Mature | 240,000 | 6 h | 0.20 | 86.64% | 650 | 130 |
Declining | 240,000 | 6 h | 1.74 | 59.95% | 303 | 70 |
Training Iterations | Training Time | Total Loss * | mAP | Training Samples | Testing Samples |
---|---|---|---|---|---|
120,000 | 4 h | 1.39 | 69.65% | 1507 | 300 |
240,000 | 6 h | 0.59 | 79.34% | 1507 | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.; He, P.; Shi, Y. Detecting Extratropical Cyclones of the Northern Hemisphere with Single Shot Detector. Remote Sens. 2022, 14, 254. https://doi.org/10.3390/rs14020254
Shi M, He P, Shi Y. Detecting Extratropical Cyclones of the Northern Hemisphere with Single Shot Detector. Remote Sensing. 2022; 14(2):254. https://doi.org/10.3390/rs14020254
Chicago/Turabian StyleShi, Minjing, Pengfei He, and Yuli Shi. 2022. "Detecting Extratropical Cyclones of the Northern Hemisphere with Single Shot Detector" Remote Sensing 14, no. 2: 254. https://doi.org/10.3390/rs14020254
APA StyleShi, M., He, P., & Shi, Y. (2022). Detecting Extratropical Cyclones of the Northern Hemisphere with Single Shot Detector. Remote Sensing, 14(2), 254. https://doi.org/10.3390/rs14020254