Piezoresistance Characterization of Silicon Nanowires in Uniaxial and Isostatic Pressure Variation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of SiNWs
- 1.
- Deposition of metal catalyst: Ag nanoparticles were deposited on the surface of the Si wafers by immersing the wafers in a solution of 3 M HF and M AgNO3 for 60 .
- 2.
- Wire etching: The samples were etched by immersing them in HF:H2O2 (5M:0.4M) solution to obtain vertically aligned SiNWs.
- 3.
2.2. Measurement Setups
3. Results
3.1. Electrical Response under Uniaxial Force
3.2. Electrical Response under Isostatic Pressure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, K.Q.; Wang, X.; Li, L.; Hu, Y.; Lee, S.T. Silicon nanowires for advanced energy conversion and storage. Nano Today 2013, 8, 75–97. [Google Scholar] [CrossRef]
- Heris, H.R.; Kateb, M.; Erlingsson, S.I.; Manolescu, A. Thermoelectric properties of tubular nanowires in the presence of a transverse magnetic field. Nanotechnology 2020, 31, 424006. [Google Scholar] [CrossRef] [PubMed]
- Heris, H.R.; Kateb, M.; Erlingsson, S.I.; Manolescu, A. Effects of transverse geometry on the thermal conductivity of Si and Ge nanowires. Surf. Interfaces 2022, 30, 101834. [Google Scholar] [CrossRef]
- Zhou, X.; Hu, J.; Li, C.; Ma, D.; Lee, C.; Lee, S. Silicon nanowires as chemical sensors. Chem. Phys. Lett. 2003, 369, 220–224. [Google Scholar] [CrossRef]
- Peng, K.Q.; Wang, X.; Lee, S.T. Gas sensing properties of single crystalline porous silicon nanowires. Appl. Phys. Lett. 2009, 95, 243112. [Google Scholar] [CrossRef]
- Smith, C.S. Piezoresistance effect in germanium and silicon. Phys. Rev. 1954, 94, 42–49. [Google Scholar] [CrossRef]
- Tufte, O.N.; Chapman, P.D.; Long, D. Silicon diffused-element piezoresistive diaphragms. J. Appl. Phys. 1962, 33, 3322–3327. [Google Scholar] [CrossRef]
- Tortonese, M.; Barrett, R.C.; Quate, C.F. Atomic resolution with an atomic force microscope using piezoresistive detection. Appl. Phys. Lett. 1993, 62, 834. [Google Scholar] [CrossRef]
- Ning, Y.; Loke, Y.; McKinnon, G. Fabrication and characterization of high g-force, silicon piezoresistive accelerometers. Sens. Actuators A Phys. 1995, 48, 55–61. [Google Scholar] [CrossRef]
- Wee, K.; Kang, G.; Park, J.; Kang, J.; Yoon, D.; Park, J.; Kim, T. Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosens. Bioelectron. 2005, 20, 1932–1938. [Google Scholar] [CrossRef]
- Tiwari, B.; Billot, M.; Clévy, C.; Agnus, J.; Piat, E.; Lutz, P. A two-axis piezoresistive force sensing tool for microgripping. Sensors 2021, 21, 6059. [Google Scholar] [CrossRef] [PubMed]
- Dorda, G. Piezoresistance in quantized conduction bands in silicon inversion layers. J. Appl. Phys. 1971, 42, 2053–2060. [Google Scholar] [CrossRef]
- He, R.; Yang, P. Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 2006, 1, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Yang, Z.; Zheng, L.; Kun, Z. Piezoresistive effect of n-type <111>-oriented Si nanowires under large tension/compression. Nanotechnology 2017, 28, 095702. [Google Scholar] [PubMed]
- Zhang, S.; Lou, L.; Lee, C. Piezoresistive silicon nanowire based nanoelectromechanical system cantilever air flow sensor. Appl. Phys. Lett. 2012, 100, 023111. [Google Scholar] [CrossRef]
- Cheng, W.; Yu, L.; Kong, D.; Yu, Z.; Wang, H.; Ma, Z.; Wang, Y.; Wang, J.; Pan, L.; Shi, Y. Fast-response and low-hysteresis flexible pressure sensor based on silicon nanowires. IEEE Electron Device Lett. 2018, 39, 1069–1072. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Lee, J.S. Recent Development of Flexible Tactile Sensors and Their Applications. Sensors 2021, 22, 50. [Google Scholar] [CrossRef]
- Kim, C.; Ahn, H.; Ji, T. Flexible Pressure Sensors Based on Silicon Nanowire Array Built by Metal-Assisted Chemical Etching. IEEE Electron Device Lett. 2020, 41, 1233–1236. [Google Scholar] [CrossRef]
- Ghosh, R.; Song, M.S.; Park, J.; Tchoe, Y.; Guha, P.; Lee, W.; Lim, Y.; Kim, B.; Kim, S.W.; Kim, M.; et al. Fabrication of piezoresistive Si nanorod-based pressure sensor arrays: A promising candidate for portable breath monitoring devices. Nano Energy 2021, 80, 105537. [Google Scholar] [CrossRef]
- Shiri, D.; Kong, Y.; Buin, A.; Anantram, M.P. Strain induced change of bandgap and effective mass in silicon nanowires. Appl. Phys. Lett. 2008, 93, 07314. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Ge, Y.; Li, M.; Yang, L.; Mao, X. Design optimization and fabrication of high-sensitivity SOI pressure sensors with high signal-to-noise ratios based on silicon nanowire piezoresistors. Micromachines 2016, 7, 187. [Google Scholar] [CrossRef] [PubMed]
- Rowe, A. Piezoresistance in silicon and its nanostructures. J. Mater. Res. 2014, 29, 731–744. [Google Scholar] [CrossRef]
- Toriyama, T.; Tanimoto, Y.; Sugiyama, S. Single crystal silicon nano-wire piezoresistors for mechanical sensors. J. Microelectromechanical Syst. 2002, 11, 605–611. [Google Scholar] [CrossRef]
- Toriyama, T.; Sugiyama, S. Single crystal silicon piezoresistive nano-wire bridge. Sens. Actuators A Phys. 2003, 108, 244–249. [Google Scholar] [CrossRef]
- Schmidt, V.; Wittemann, J.V.; Senz, S.; Gösele, U. Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv. Mater. 2009, 21, 2681–2702. [Google Scholar] [CrossRef]
- Shi, D.; Chen, Y.; Li, Z.; Dong, S.; Li, L.; Hou, M.; Liu, H.; Zhao, S.; Chen, X.; Wong, C.P.; et al. Anisotropic Charge Transport Enabling High-Throughput and High-Aspect-Ratio Wet Etching of Silicon Carbide. Small Methods 2022, 6, 2200329. [Google Scholar] [CrossRef]
- Svavarsson, H.G.; Hallgrimsson, B.H.; Niraula, M.; Lee, K.J.; Magnusson, R. Large arrays of ultra-high aspect ratio periodic silicon nanowires obtained via top-down route. Appl. Phys. A-Mater. Sci. Process. 2016, 122, 1–6. [Google Scholar] [CrossRef]
- Fakhri, E.; Sultan, M.; Manolescu, A.; Ingvarsson, S.; Plugaru, N.; Plugaru, R.; Svavarsson, H. Synthesis and photoluminescence study of silicon nanowires obtained by metal assisted chemical etching. In Proceedings of the 2021 International Semiconductor Conference (CAS), Sinaia, Romania, 6–8 October 2021; pp. 147–150. [Google Scholar]
- Plugaru, R.; Fakhri, E.; Romanitan, C.; Mihalache, I.; Craciun, G.; Plugaru, N.; Árnason, H.O.; Sultan, M.T.; Nemnes, G.A.; Ingvarsson, S.; et al. Structure and electrical behavior of silicon nanowires prepared by MACE process. arXiv 2022, arXiv:2206.05006. [Google Scholar] [CrossRef]
- Neuzil, P.; Wong, C.C.; Reboud, J. Electrically controlled giant piezoresistance in silicon nanowires. Nano Lett. 2010, 10, 1248–1252. [Google Scholar] [CrossRef]
- Danielsson, D.; Gudmundsson, J.; Svavarsson, H. Effect of hydrogenation on minority carrier lifetime in low-grade silicon. Phys. Scr. 2010, 2010, 014005. [Google Scholar] [CrossRef]
- Svavarsson, H.G.; Sultan, M.T.; Lee, K.J.; Magnusson, R. Hydrogenated silicon films for low-loss resonant reflectors operating in the visible region. In Proceedings of the 2020 IEEE Research and Applications of Photonics, Miramar Beach, FL, USA, 10–12 August 2020; pp. 1–2. [Google Scholar]
- Sultan, M.; Gudmundsson, J.T.; Manolescu, A.; Stoica, T.; Ciurea, M.; Svavarsson, H. Enhanced photoconductivity of embedded SiGe nanoparticles by hydrogenation. Appl. Surf. Sci. 2019, 479, 403–409. [Google Scholar] [CrossRef]
- Sultan, M.; Gudmundsson, J.T.; Manolescu, A.; Ciurea, M.; Svavarsson, H. The Effect of H 2/Ar Plasma Treatment Over Photoconductivity of Sige Nanoparticles Sandwiched Between Silicon Oxide Matrix. In Proceedings of the 2018 International Semiconductor Conference (CAS), Sinaia, Romania, 10–12 October 2018; pp. 257–260. [Google Scholar]
- Song, L.; Yang, D.; Yu, X. Investigation on the impact of hydrogen on the passivation of silicon surface states in clean and copper contaminated conditions. AIP Adv. 2019, 9, 105102. [Google Scholar] [CrossRef]
- Niquet, Y.M.; Delerue, C.; Krzeminski, C. Effects of strain on the carrier mobility in silicon nanowires. Nano Lett. 2012, 12, 3545–3550. [Google Scholar] [CrossRef]
- Matsuda, K.; Suzuki, K.; Yamamura, K.; Kanda, Y. Nonlinear piezoresistance effects in silicon. J. Appl. Phys. 1993, 73, 1838–1847. [Google Scholar] [CrossRef]
- Doll, J.C.; Pruitt, B.L. Piezoresistor Design and Applications; Springer: Berlin, Germany, 2013. [Google Scholar]
- Pataniya, P.M.; Bhakhar, S.A.; Tannarana, M.; Zankat, C.; Patel, V.; Solanki, G.; Patel, K.; Jha, P.K.; Late, D.J.; Sumesh, C. Highly sensitive and flexible pressure sensor based on two-dimensional MoSe2 nanosheets for online wrist pulse monitoring. J. Colloid Interface Sci. 2021, 584, 495–504. [Google Scholar] [CrossRef] [PubMed]
Sample | Etching Time (min) | SiNW Length (µm) |
---|---|---|
A | 1 | 0.7 |
B | 3 | 1.5 |
C | 5 | 2.2 |
D | 7 | 3 |
E | 40 | 10 |
F | 5 | 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fakhri, E.; Plugaru, R.; Sultan, M.T.; Hanning Kristinsson, T.; Örn Árnason, H.; Plugaru, N.; Manolescu, A.; Ingvarsson, S.; Svavarsson, H.G. Piezoresistance Characterization of Silicon Nanowires in Uniaxial and Isostatic Pressure Variation. Sensors 2022, 22, 6340. https://doi.org/10.3390/s22176340
Fakhri E, Plugaru R, Sultan MT, Hanning Kristinsson T, Örn Árnason H, Plugaru N, Manolescu A, Ingvarsson S, Svavarsson HG. Piezoresistance Characterization of Silicon Nanowires in Uniaxial and Isostatic Pressure Variation. Sensors. 2022; 22(17):6340. https://doi.org/10.3390/s22176340
Chicago/Turabian StyleFakhri, Elham, Rodica Plugaru, Muhammad Taha Sultan, Thorsteinn Hanning Kristinsson, Hákon Örn Árnason, Neculai Plugaru, Andrei Manolescu, Snorri Ingvarsson, and Halldor Gudfinnur Svavarsson. 2022. "Piezoresistance Characterization of Silicon Nanowires in Uniaxial and Isostatic Pressure Variation" Sensors 22, no. 17: 6340. https://doi.org/10.3390/s22176340
APA StyleFakhri, E., Plugaru, R., Sultan, M. T., Hanning Kristinsson, T., Örn Árnason, H., Plugaru, N., Manolescu, A., Ingvarsson, S., & Svavarsson, H. G. (2022). Piezoresistance Characterization of Silicon Nanowires in Uniaxial and Isostatic Pressure Variation. Sensors, 22(17), 6340. https://doi.org/10.3390/s22176340