Biochemical Sensors Using Nanotechnology

A special issue of Chemosensors (ISSN 2227-9040). This special issue belongs to the section "(Bio)chemical Sensing".

Deadline for manuscript submissions: 20 November 2024 | Viewed by 488

Special Issue Editor

State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Interests: MEMS/NEMS; gas sensors; biosensors

Special Issue Information

Dear Colleagues,

This Special Issue aims to collect research articles and critical reviews on advances in micro/nanofabrication, nanomaterials, nanostructure and interface engineering, nano-characterization techniques, etc., that enable novel biochemical sensing methods and devices with outstanding performance. This Special Issue will also focus on advances in engineering biochemical sensors and integrated systems towards interdisciplinary applications, such as diagnosis, public health, biomedical research, environment, food, energy, security, etc.

The proposed theme falls within the scope of Chemosensors as described on the webpage. The contributions will mainly deal with biochemical sensors for diverse applications, nanomaterials for biochemical sensing, nanofabrication, and nanostructures for biochemical sensors, which are welcomed by the journal.

Dr. Hao Jia
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Chemosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biosensors
  • chemical sensors
  • nanofabrication
  • nanomaterials
  • nanostructures
  • interfacial engineering
  • micro/nanodevices and integrated systems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 4109 KiB  
Article
The Influence of Temperature on the Spatial Distribution of AuNPs on a Ceramic Substrate for Biosensing Applications
by Yazmín Mariela Hernández-Rodríguez, Esperanza Baños-López, Pablo Damián-Matsumura, Claudia Haydée González de la Rosa and Oscar Eduardo Cigarroa-Mayorga
Chemosensors 2024, 12(10), 212; https://doi.org/10.3390/chemosensors12100212 (registering DOI) - 15 Oct 2024
Viewed by 303
Abstract
In this study, we investigated the spatial distribution and homogeneity of gold nanoparticles (AuNPs) on an alumina (Al2O3; AAO) substrate for potential application as surface-enhanced Raman scattering (SERS) sensors. The AuNPs were synthesized through thermal treatment at 450 °C [...] Read more.
In this study, we investigated the spatial distribution and homogeneity of gold nanoparticles (AuNPs) on an alumina (Al2O3; AAO) substrate for potential application as surface-enhanced Raman scattering (SERS) sensors. The AuNPs were synthesized through thermal treatment at 450 °C at varying times (5, 15, 30, and 60 min), and their distribution was characterized using field-emission scanning electron microscopy (FE-SEM) and scanning transmission electron microscopy (STEM). The FE-SEM and STEM analyses revealed that the size and interparticle distance of the AuNPs were significantly influenced by the duration of thermal treatment, with shorter times promoting smaller and more closely spaced nanoparticles, and longer times resulting in larger and more dispersed particles. Raman spectroscopy, using Rhodamine 6G (R6G) as a probe molecule, was employed to evaluate the SERS enhancement provided by the AuNPs on the AAO substrate. Raman mapping (5 µm × 5 µm) was conducted on five sections of each sample, demonstrating improved homogeneity in the SERS effect across the substrate. The topological features of the AuNPs before and after R6G incubation were analyzed using atomic force microscopy (AFM), confirming the correlation between a decrease in surface roughness and an increase in R6G adsorption. The reproducibility of the SERS effect was quantified using the maximum intensity deviation (D), which was found to be below 20% for all samples, indicating good reproducibility. Among the tested conditions, the sample synthesized for 15 min exhibited the most favorable characteristics, with the smallest average nanoparticle size and interparticle distance, as well as the most consistent SERS enhancement. These findings suggest that AuNPs on AAO substrates, particularly those synthesized under the optimized condition of 15 min at 450 °C, are promising candidates for use in SERS-based sensors for detecting cancer biomarkers. This could be attributed to temperature propagation promoted at the time of synthesis. The results also provide insights into the influence of thermal treatment on the spatial distribution of AuNPs and their subsequent impact on SERS performance. Full article
(This article belongs to the Special Issue Biochemical Sensors Using Nanotechnology)
Show Figures

Figure 1

Back to TopTop