Synthesis and Properties of Light-emitting Liquid Crystals
A special issue of Crystals (ISSN 2073-4352). This special issue belongs to the section "Liquid Crystals".
Deadline for manuscript submissions: closed (1 April 2019)
Special Issue Editor
Interests: organic synthesis; fluorine; liquid crystals; fluorescence; phosphorescence; stimulus-responsive materials
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
Light-emitting molecules are utilized in daily life, for example, in lighting and optoelectronic devices, as well as sensing materials. To date, most of the developed organic light-emitting molecules only show intense luminescence in dilute solutions. This feature is useful in applications such as fluorescent brightening agents, diagnostic fluorescent markers, and fluorescent indicators. In contrast, because of concentration quenching or aggregation-caused quenching effect, luminescence from organic luminophores is often quenched in the condensed phase, such as the solid state. Since the early 2000s, however, extensive efforts have been devoted to overcome this problem, and various solid-state organic light-emitting molecules that are suitable for use in optoelectronic devices, have been developed.
As one of the condensed phases, liquid-crystalline (LC) phases have attracted enormous attention because a mesophase exists between the crystalline and isotropic liquid phases, and the aggregated structures can be reversibly switched by external stimuli. Currently, applications utilising this switchable LC property are limited to LC display devices, which control the transmittance of the backlight by electric-field stimulation. Owing to the intriguing phase-switching properties of LCs, the discovery of novel liquid-crystalline functional molecules has attracted significant interest in various fields.
Light-emitting liquid crystals possessing both light-emitting and LC properties are promising functional molecules that can switch light-emitting properties by changing their molecular aggregated structures via phase transition, e.g., crystal ⇄ LC ⇄ liquid. This Special Issue, titled “Synthesis and Properties of Light-Emitting Liquid Crystals”, is intended to provide an innovative and broad perspective on light-emitting molecules with liquid-crystalline properties, particularly focusing on molecular design, synthesis, and the light-emitting, as well as liquid-crystalline, properties.
The potential topics include, but are not limited to:
- molecular design of molecules with both light-emitting and liquid-crystalline properties;
- development of efficient synthetic protocols for light-emitting liquid crystals;
- characterisation of the structure, photophysical properties excited by photons or electronic-fields, and liquid-crystalline behavior;
- photoluminescent or electroluminescent properties in liquid-crystalline phases; and
- applications using light-emitting liquid crystals.
Dr. Shigeyuki YAMADA
Guest Editor
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- light-emitting molecules
- liquid crystal
- photoluminescence
- electroluminescence
- phase transition
- switching property
- stimuli-responsive property
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.