Aerogels 2021

A special issue of Gels (ISSN 2310-2861).

Deadline for manuscript submissions: closed (31 July 2021) | Viewed by 8312

Special Issue Editor


E-Mail Website
Guest Editor
Institut Charles Gerhardt-Montpellier, Matériaux Avancés pour la Catalyse et la Santé, UMR5253 CNRS-ENSCM-UM2-UM1, 8 rue de l'Ecole Normale, 34296 Montpellier, France
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As you know well, “aerogel” is a broad term used for a special class of ultralight porous materials. An aerogel is formed when a gel retains the structure of the parent gel upon drying, thus resulting in a highly porous material. These amazing materials provide advantages in terms of surface area, diffusion properties, thermal conductivity, refractive index, and dielectric constant. Thus, aerogels of inorganic or organic/bio-organic gels can find applications in a variety of domains, from super insulation and supercapacitors to trapping of molecules and biological entities, adsorbent, catalysts, sensors, and biomedical devices.

This Special Issue will provide an international forum for researchers to discuss the most recent studies concerning the preparation, characterization, and applications of such aerogels. Through this Special Issue, the present state and future will be discussed by a wide range of authors.

Dr. Nathalie Tanchoux
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 5627 KiB  
Article
Effective Removal of Calcium and Magnesium Ions from Water by a Novel Alginate–Citrate Composite Aerogel
by Zhuqing Wang, Zhongmin Feng, Leilei Yang and Min Wang
Gels 2021, 7(3), 125; https://doi.org/10.3390/gels7030125 - 25 Aug 2021
Cited by 15 | Viewed by 3541
Abstract
In this work, a novel alginate/citrate composite aerogel (CA–SC) was synthesized by chemical grafting technology combined with vacuum freeze-drying method, and CA–SC was used for removing calcium (Ca2+) and magnesium (Mg2+) ions from water. The experimental results indicate that [...] Read more.
In this work, a novel alginate/citrate composite aerogel (CA–SC) was synthesized by chemical grafting technology combined with vacuum freeze-drying method, and CA–SC was used for removing calcium (Ca2+) and magnesium (Mg2+) ions from water. The experimental results indicate that the as-prepared CA–SC has a high affinity for Ca2+ and Mg2+ and can remove 96.5% of Ca2+ (or 96.8% of Mg2+) from the corresponding solution. The maximum adsorption capacities of CA–SC for Ca2+ and Mg2+ are 62.38 and 36.23 mg/g, respectively. These values are higher than those of the most reported Ca2+-sorbents and Mg2+-sorbents. The CA–SC adsorbent can be regenerated through a simple pickling step, and its adsorption performance keeps stable after repeated use. Analysis of the adsorption mechanism shows that the CA–SC combines Ca2+ and Mg2+ in water mainly through coordination effect. Full article
(This article belongs to the Special Issue Aerogels 2021)
Show Figures

Graphical abstract

13 pages, 2996 KiB  
Article
Sustainable, Highly Efficient and Superhydrophobic Fluorinated Silica Functionalized Chitosan Aerogel for Gravity-Driven Oil/Water Separation
by Zhongjie Zhu, Lei Jiang, Jia Liu, Sirui He and Wei Shao
Gels 2021, 7(2), 66; https://doi.org/10.3390/gels7020066 - 2 Jun 2021
Cited by 16 | Viewed by 4078
Abstract
A superhydrophobic fluorinated silica functionalized chitosan (F-CS) aerogel is constructed and fabricated by a simple and sustainable method in this study in order to achieve highly efficient gravity-driven oil/water separation performance. The fluorinated silica functionalization invests the pristine hydrophilic chitosan (CS) aerogel with [...] Read more.
A superhydrophobic fluorinated silica functionalized chitosan (F-CS) aerogel is constructed and fabricated by a simple and sustainable method in this study in order to achieve highly efficient gravity-driven oil/water separation performance. The fluorinated silica functionalization invests the pristine hydrophilic chitosan (CS) aerogel with promising superhydrophobicity with a water contact angle of 151.9°. This novel F-CS aerogel possesses three-dimensional structure with high porosity as well as good chemical stability and mechanical compression property. Moreover, it also shows striking self-cleaning performance and great oil adsorption capacity. Most importantly, the as-prepared aerogels exhibits fast and efficient separation of oil/water mixture by the gravity driven process with high separation efficiency. These great performances render the prepared F-CS aerogel a good candidate for oil/water separation in practical industrial application. Full article
(This article belongs to the Special Issue Aerogels 2021)
Show Figures

Graphical abstract

Back to TopTop