Journal Description
Journal of Experimental and Theoretical Analyses
Journal of Experimental and Theoretical Analyses
is an international, peer-reviewed, open access journal on the methods and applications of the analysis science in both the experimental and theoretical aspects of the engineering area, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- Rapid Publication: first decisions in 18 days; acceptance to publication in 4 days (median values for MDPI journals in the second half of 2024).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- JETA is a companion journal of Applied Sciences.
Latest Articles
Metallic Bipolar Plate Production Through Additive Manufacturing: Contrasting MEX/M and PBF-LB/M Approaches
J. Exp. Theor. Anal. 2025, 3(2), 12; https://doi.org/10.3390/jeta3020012 - 14 Apr 2025
Abstract
Additive manufacturing (AM) technologies have witnessed remarkable advancements, offering opportunities to produce complex components across various industries. This paper explores the potential of AM for fabricating bipolar plates (BPPs) in fuel cell or electrolysis cell applications. BPPs play a critical role in the
[...] Read more.
Additive manufacturing (AM) technologies have witnessed remarkable advancements, offering opportunities to produce complex components across various industries. This paper explores the potential of AM for fabricating bipolar plates (BPPs) in fuel cell or electrolysis cell applications. BPPs play a critical role in the performance and efficiency of such cells, and conventional manufacturing methods often face limitations, particularly concerning the complexity and customization of geometries. The focus here lies in two specific AM methods: the laser powder bed fusion of metals (PBF-LB/M) and material extrusion of metals (MEX/M). PBF-LB/M, tailored for high-performance applications, enables the creation of highly complex geometries, albeit at increased costs. On the other hand, MEX/M excels in rapid prototyping, facilitating the swift production of diverse geometries for real-world testing. This approach can facilitate the evaluation of geometries suitable for mass production via sinter-based manufacturing processes. The geometric deviations of different BPPs were identified by evaluating 3D scans. The PBF-LB/M method is more suitable for small features, while the MEX/M method has lower deviations for geometrically less complex BPPs. Through this investigation, the limits of the capabilities of these AM methods became clear, knowledge that can potentially enhance the design and production of BPPs, revolutionizing the energy conversion and storage landscape and contributing to the design of additive manufacturing technologies.
Full article
(This article belongs to the Special Issue Featured Papers for Journal of Experimental and Theoretical Analyses (JETA))
►
Show Figures
Open AccessArticle
A Modelica-Based Model for Pneumatic Circuits with a Focus on Energy Efficiency
by
Gustavo Koury Costa
J. Exp. Theor. Anal. 2025, 3(2), 11; https://doi.org/10.3390/jeta3020011 - 8 Apr 2025
Abstract
►▼
Show Figures
This paper presents a new computational library for pneumatic circuits, written in the specialized circuit-oriented language “Modelica”, and executed within an open-source IDE, “OpenModelica”, freely available for downloading on the Internet. The library focuses on the problem of energy efficiency and energy savings
[...] Read more.
This paper presents a new computational library for pneumatic circuits, written in the specialized circuit-oriented language “Modelica”, and executed within an open-source IDE, “OpenModelica”, freely available for downloading on the Internet. The library focuses on the problem of energy efficiency and energy savings (two different concepts, that we intend to clarify in the text). The idea is to use the Modelica scripts to simulate typical circuits, known by their energy-efficient designs. We reason that air throttling within valves is one of the great challenges when it comes to energy losses. Also, we argue that compressed air reuse can be seen as a means of increasing efficiency, basically through replacing air throttling with counter-pressure velocity control. A simplified version of the developed Modelica library is made available to the reader in the Appendix A, to be used with new scripts and adapted to different realities. In our view, in many situations, open-code Modelica programs may constitute an alternative to proprietary software, where the mathematical models of components are mostly hidden from the end user. Theoretical experiments are carried out, focusing on energy management. The results show that the Modelica library hereby presented is solid, with great prospects of future development. They also show that energy efficiency in pneumatic circuits, at times, comes with the cost of poorly controlled velocity and pressure at the actuator, which requires a careful analysis by the designer, before an actual implementation.
Full article

Figure 1
Open AccessArticle
Experimental Evaluation of Dry and Contactless Cleaning Methods for the Production of Digital Vehicle Dashboards
by
Patrick Brag, Yvonne Holzapfel, Marcel Daumüller, Ralf Grimme, Uwe Mai and Tobias Iseringhausen
J. Exp. Theor. Anal. 2025, 3(1), 10; https://doi.org/10.3390/jeta3010010 - 14 Mar 2025
Abstract
►▼
Show Figures
Pillar-to-pillar dashboards have become common in modern electric vehicles. These dashboards are made of liquid crystal displays (LCDs), of which backlight units (BLUs) are an integral part. Particulate contamination inside BLUs can lead to either an aesthetic or functional failure and is in
[...] Read more.
Pillar-to-pillar dashboards have become common in modern electric vehicles. These dashboards are made of liquid crystal displays (LCDs), of which backlight units (BLUs) are an integral part. Particulate contamination inside BLUs can lead to either an aesthetic or functional failure and is in consequence a part of quality control. Automatic optical inspection (AOI) was used to detect particulate matter to enable a process chain analysis to be carried out. The investigation showed that a high percentage of all contaminants originated from the assembly of the edge/side lightguide. The implementation of an additional cleaning process was the favored countermeasure to reduce the contaminants. The objective (cleanliness requirement) was to remove all contaminants larger than 100 µm from the lightguide with contactless (non-destructive) cleaning methods. The preferred cleaning methods of choice were compressed air and CO2 snow jet cleaning. This work investigates the cleaning efficacy of both cleaning methods under consideration of the following impact factors: distance, orientation (inclination) and speed. The central question of this paper was as follows: would cleaning with compressed air be sufficient to meet the cleanliness requirements? In order to answer this question, a cleaning validation was carried out, based on a Box–Behnken design of experiments (DoE). To do so, representative test contaminants had to be selected in step one, followed by the selection of an appropriate measurement technology to be able to count the contaminants on the lightguide. In the third step, a test rig had to be designed and built to finally carry out the experiments. The data revealed that CO2 was able to achieve a cleaning efficacy of 100% in five of the experiments, while the best cleaning efficacy of compressed air was 89.87%. The cleaning efficacy of compressed air could be improved by a parameter optimization to 94.19%. In contrast, a 100% cleaning efficacy is achievable with CO2 after parameter optimization, which is what is needed to meet the cleanliness requirements.
Full article

Figure 1
Open AccessArticle
Proof of Concept for Determination of Static–Dynamic Material Loss Factor Damping via Simulation and Numerical Methods
by
Amir Javidinejad
J. Exp. Theor. Anal. 2025, 3(1), 9; https://doi.org/10.3390/jeta3010009 - 6 Mar 2025
Abstract
►▼
Show Figures
The vibration response of a component, particularly the frequency response of the component, can be used in the determination of the loss factor damping, η, due to energy dissipation and the elastic modulus (E). The ASTM E756-04 standard provides the methodology
[...] Read more.
The vibration response of a component, particularly the frequency response of the component, can be used in the determination of the loss factor damping, η, due to energy dissipation and the elastic modulus (E). The ASTM E756-04 standard provides the methodology and the guidance for the determination of the loss factor damping and elastic modulus experimentally. This standard specifically calls for the use of a beam with a rectangular cross-section. Also, the theoretical formulation developed there is based on such a beam cross-section. Here, in this paper, the theoretical formulation and numerical simulation for determining the loss factor damping and elastic modulus are a derivation of the methodology used in the ASTM standard and other R&D work, but for a circular plate configuration. The delta change derivation, both theoretically and numerically, is proven to be accurate and validated here. This method is useful in the characterization of materials that have applications in structural vibration, aerospace subcomponents, micro and mini sensory devices, medical devices, and many other areas. Similar to the ASTM standard, the materials could include metals, ceramics, rubbers, plastics, reinforced epoxy matrices, composites, and woods. This paper mainly formulates the technique via numerical and computational methods. It is the intention of the author to also, as a future research agenda, experimentally produce data that can be correlated with this theoretical and numerical methodology.
Full article

Figure 1
Open AccessArticle
Advancing Pressure-Based Flow Rate Soft Sensors: Signal Filtering Effects and Non-Laminar Flow Rate Determination
by
Faras Brumand-Poor, Tim Kotte, Abdulaziz Hanifa, Christian Reese, Marius Hofmeister and Katharina Schmitz
J. Exp. Theor. Anal. 2025, 3(1), 8; https://doi.org/10.3390/jeta3010008 - 4 Mar 2025
Abstract
►▼
Show Figures
Precise flow measurement is crucial in fluid power systems. Especially in combination with pressure, hydraulic power can be particularly beneficial for predictive maintenance and control applications. However, conventional flow sensors in fluid power systems are often invasive, thus disrupting the flow and yielding
[...] Read more.
Precise flow measurement is crucial in fluid power systems. Especially in combination with pressure, hydraulic power can be particularly beneficial for predictive maintenance and control applications. However, conventional flow sensors in fluid power systems are often invasive, thus disrupting the flow and yielding unreliable measurements, especially under transient conditions. A common alternative is to estimate the flow rate using pressure differentials along a pipe and the Hagen–Poiseuille law, which is limited to steady, laminar, and incompressible flows. This study advances a previously introduced analytical soft sensor, demonstrating its ability to accurately determine the transient pipe flow beyond laminar conditions, without requiring a dedicated flow rate sensor. This method provides a robust and computationally efficient solution for real-world hydraulic systems by applying two pressure transducers. A key contribution of this work is the investigation of signal filtering, revealing that even a simple first-order low-pass filter with a 100 Hz cutoff frequency significantly improves accuracy, which is demonstrated for pulsation frequencies of 5, 10, and 15 Hz, where the filtered results closely match experimental data from a test rig. These findings underscore the soft sensor’s potential as a reliable alternative to traditional flow sensors, offering high accuracy with minimal computational overhead for a wide range of flow conditions.
Full article

Figure 1
Open AccessEditorial
Expanding JETA’s Scope: Integrating AI-Driven Analytical Approaches
by
Marco Rossi
J. Exp. Theor. Anal. 2025, 3(1), 7; https://doi.org/10.3390/jeta3010007 - 27 Feb 2025
Abstract
The landscape of experimental and theoretical analysis is evolving rapidly, driven by advancements in computational methods, data analytics, and artificial intelligence (AI) [...]
Full article
Open AccessArticle
Intelligent Stress Detection Using ECG Signals: Power Spectrum Imaging with Continuous Wavelet Transform and CNN
by
Rodrigo Mateo-Reyes, Irving A. Cruz-Albarran and Luis A. Morales-Hernandez
J. Exp. Theor. Anal. 2025, 3(1), 6; https://doi.org/10.3390/jeta3010006 - 26 Feb 2025
Abstract
►▼
Show Figures
Stress is a natural response of the organism to challenging situations, but its accurate detection is challenging due to its subjective nature. This study proposes a model based on depth-separable convolutional neural networks (DSCNN) to analyze heart rate variability (HRV) and detect stress.
[...] Read more.
Stress is a natural response of the organism to challenging situations, but its accurate detection is challenging due to its subjective nature. This study proposes a model based on depth-separable convolutional neural networks (DSCNN) to analyze heart rate variability (HRV) and detect stress. Electrocardiogram (ECG) signals are pre-processed to remove noise and ensure data quality. The signals are then transformed into two-dimensional images using the continuous wavelet transform (CWT) to identify pattern recognition in the time–frequency domain. These representations are classified using the DSCNN model to determine the presence of stress. The methodology has been validated using the SWELL-KW dataset, achieving an accuracy of 99.9% by analyzing the variability in three states (neutral, time pressure, and interruptions) of the 25 samples in the experiment, scanning the acquired signal every 5 s for 45 min per state. The proposed approach is characterized by its ability to transform ECG signals into time–frequency representations by means of short duration sampling, achieving an accurate classification of stress states without the need for complex feature extraction processes. This model is an efficient and accurate tool for stress analysis from biomedical signals.
Full article

Figure 1
Open AccessArticle
High-Frequency Flow Rate Determination—A Pressure-Based Measurement Approach
by
Faras Brumand-Poor, Tim Kotte, Marwin Schüpfer, Felix Figge and Katharina Schmitz
J. Exp. Theor. Anal. 2025, 3(1), 5; https://doi.org/10.3390/jeta3010005 - 12 Feb 2025
Abstract
►▼
Show Figures
Accurate flow measurement is critical for hydraulic systems because it represents a crucial parameter in the control of fluid power systems and enables the calculation of hydraulic power when combined with pressure data, which is valuable for applications such as predictive maintenance. Existing
[...] Read more.
Accurate flow measurement is critical for hydraulic systems because it represents a crucial parameter in the control of fluid power systems and enables the calculation of hydraulic power when combined with pressure data, which is valuable for applications such as predictive maintenance. Existing flow sensors in fluid power systems typically operate invasively, disturbing the flow and providing inaccurate results, especially under transient conditions. A conventional method involves calculating the flow rate using the pressure difference along a pipe via the Hagen–Poiseuille law, which is limited to steady, laminar, incompressible flow. This paper presents a novel soft sensor with an analytical model for transient pipe flow based on two pressure signals, thus eliminating the need for an actual volumetric flow sensor. The soft sensor was derived in previous research and validated with a distributed parameter simulation. This work uses a constructed test rig to validate the soft sensor with real-world experiments. The results highlight the potential of the soft sensor to accurately and computationally efficiently measure transient pipe volumetric flow based on two pressure signals.
Full article

Figure 1
Open AccessArticle
A Data-Driven Approach for Automatic Aircraft Engine Borescope Inspection Defect Detection Using Computer Vision and Deep Learning
by
Thibaud Schaller, Jun Li and Karl W. Jenkins
J. Exp. Theor. Anal. 2025, 3(1), 4; https://doi.org/10.3390/jeta3010004 - 5 Feb 2025
Abstract
►▼
Show Figures
Regular aircraft engine inspections play a crucial role in aviation safety. However, traditional inspections are often performed manually, relying heavily on the judgment and experience of operators. This paper presents a data-driven deep learning framework capable of automatically detecting defects on reactor blades.
[...] Read more.
Regular aircraft engine inspections play a crucial role in aviation safety. However, traditional inspections are often performed manually, relying heavily on the judgment and experience of operators. This paper presents a data-driven deep learning framework capable of automatically detecting defects on reactor blades. Specifically, this study develops Deep Neural Network models to detect defects in borescope images using various datasets, based on Computer Vision and YOLOv8n object detection techniques. Firstly, reactor blade images are collected from public resources and then annotated and preprocessed into different groups based on Computer Vision techniques. In addition, synthetic images are generated using Deep Convolutional Generative Adversarial Networks and a manual data augmentation approach by randomly pasting defects onto reactor blade images. YOLOv8n-based deep learning models are subsequently fine-tuned and trained on these dataset groups. The results indicate that the model trained on wide-shot blade images performs better overall at detecting defects on blades compared to the model trained on zoomed-in images. The comparison of multiple models’ results reveals inherent uncertainties in model performance that while some models trained on data enhanced by Computer Vision techniques may appear more reliable in some types of defect detection, the relationship between these techniques and subsequent results cannot be generalized. The impact of epochs and optimizers on the model’s performance indicates that incorporating rotated images and selecting an appropriate optimizer are key factors for effective model training. Furthermore, models trained solely on artificially generated images from collages perform poorly at detecting defects in real images. A potential solution is to train the model on both synthetic and real images. Future work will focus on improving the framework’s performance and conducting a more comprehensive uncertainty analysis by utilizing larger and more diverse datasets, supported by enhanced computational power.
Full article

Figure 1
Open AccessArticle
Numerical Study of Inclined Geometric Configurations of a Submerged Plate-Type Device as Breakwater and Wave Energy Converter in a Full-Scale Wave Channel
by
Vitor Eduardo Motta, Gabrielle Ücker Thum, Rafael Adriano Alves Camargo Gonçalves, Luiz Alberto Oliveira Rocha, Elizaldo Domingues dos Santos, Bianca Neves Machado and Liércio André Isoldi
J. Exp. Theor. Anal. 2025, 3(1), 3; https://doi.org/10.3390/jeta3010003 - 20 Jan 2025
Abstract
►▼
Show Figures
The climate crisis represents one of the greatest contemporary global challenges, requiring actions to mitigate its impacts and sustainable solutions to meet the growing demands for clean energy and coastal protection. Therefore, the study of devices such as the submerged plate (SP), which
[...] Read more.
The climate crisis represents one of the greatest contemporary global challenges, requiring actions to mitigate its impacts and sustainable solutions to meet the growing demands for clean energy and coastal protection. Therefore, the study of devices such as the submerged plate (SP), which simultaneously acts as a breakwater (BW) and wave energy converter (WEC), is especially relevant. In this context, the present numerical study compares the efficiency of an SP device under regular waves across different geometric configurations considering inclination angles. To achieve this, a horizontal SP was adopted as a reference. Its thickness and total material volume were kept constant while ten alternative geometries, each with a different inclination for the SP, were proposed and investigated. The computational domain was modeled as a full-scale regular wave channel with each SP positioned below the free surface. The volume of fluid (VOF) multiphase model was employed to represent the interaction between water and air. The finite volume method (FVM) was applied to solve the transport equations for volume fraction, momentum, and mass. The SP’s efficiency as a BW was evaluated by assessing the free surface elevation upstream and downstream of the SP, while its efficiency as a WEC was measured by evaluating the axial velocity below the SP. Results indicated that the efficiency of the SP can vary significantly depending on its inclination, with the optimal case at θ = 15° showing improvements of 11.95% and 16.59%, respectively, as BW and WEC.
Full article

Figure 1
Open AccessArticle
Evaluating Minimum Support Pressure for Tunnel Face Stability: Analytical, Numerical, and Empirical Approaches
by
Majid Gholipour, Samad Narimani, Seyed Morteza Davarpanah and Balázs Vásárhelyi
J. Exp. Theor. Anal. 2025, 3(1), 2; https://doi.org/10.3390/jeta3010002 - 7 Jan 2025
Abstract
►▼
Show Figures
Tunneling in loose soil and urban areas presents numerous challenges. One effective solution is the use of Earth Pressure Balance Shields (EPBSs). Maintaining the correct balance of pressure at the tunnel face is critical, as applying too little pressure can cause a collapse,
[...] Read more.
Tunneling in loose soil and urban areas presents numerous challenges. One effective solution is the use of Earth Pressure Balance Shields (EPBSs). Maintaining the correct balance of pressure at the tunnel face is critical, as applying too little pressure can cause a collapse, while excessive pressure may result in a blow-out. Therefore, a key aspect of using EPBSs in urban environments is determining the optimal pressure required to stabilize the tunnel face, taking into account the existing soil in the excavation chamber and controlling the screw conveyor’s rotation rate. This study focuses on a section of the second line of the Tabriz subway to evaluate the minimum pressure needed for tunnel face stability using empirical, analytical, and numerical approaches. The analytical methods involve evaluating the limit equilibrium of forces and considering soil buckling due to overburden, while the numerical methods employ 3D finite element analysis. Additionally, a sensitivity analysis of the parameters affecting the required pressure was conducted and compared across the three approaches. The results revealed that the formation of a pressure arch mitigates the full impact of overburden pressure on the tunnel face. For soil cohesion values below 20 kPa, the numerical results aligned well with the empirical and analytical findings. For a tunnel depth of 22.5 m and a water table 2 m below the surface, the estimated minimum pressure ranged from 150 to 180 kPa. Moreover, the analytical methods were deemed more suitable for determining the required support pressure at the tunnel face. These methods considered wedge and semi-circular mechanisms as the most probable failure modes. Also, for cohesive ground, the pressure from the finite element analysis was found to be almost always equal to or greater than the values obtained with the analytical solutions.
Full article

Figure 1
Open AccessArticle
Examination of Harmful Substances Emitted to the Environment During an Electric Vehicle Fire with a Full-Scale Fire Experiment and Laboratory Investigations
by
Rajmund Kuti, Petr Tánczos, Zoltán Tánczos, Tamás Stadler and Csenge Papp
J. Exp. Theor. Anal. 2025, 3(1), 1; https://doi.org/10.3390/jeta3010001 - 5 Jan 2025
Abstract
►▼
Show Figures
Nowadays, electromobility has a significant role in transportation; different electrically driven vehicles are spreading continuously. Due to this form of drivetrain, fire safety hazards have also changed when compared to those of conventional vehicles. Lately, electric vehicle fires have become more common; thus,
[...] Read more.
Nowadays, electromobility has a significant role in transportation; different electrically driven vehicles are spreading continuously. Due to this form of drivetrain, fire safety hazards have also changed when compared to those of conventional vehicles. Lately, electric vehicle fires have become more common; thus, we have chosen to investigate the negative impacts of these fires on humans and the environment, in addition to the toxic properties of the resulting combustion products. In our research work, we conducted a full-scale fire experiment on an electric passenger car. Fire extinguishing was executed with fire-fighting foam, and its efficiency was examined. After extinguishing the fire, we took samples from the combustion gases and soil. Samples were subjected to laboratory investigations. Our results and experiences are presented in this article.
Full article

Figure 1
Open AccessArticle
A Minimal-Data Approach for Film Thickness Prediction in Tribological Contacts Using Venner’s Equation
by
Felix Müller, Patrick Wingertszahn, Oliver Koch and Bernd Sauer
J. Exp. Theor. Anal. 2024, 2(4), 152-163; https://doi.org/10.3390/jeta2040012 - 9 Dec 2024
Abstract
►▼
Show Figures
The accurate design of tribological contacts, such as those in bearings and gearboxes, makes them highly efficient and helps reduce emission in all driven systems. Traditionally, this process requires more lubricant data than data sheets typically provide, mainly kinematic viscosity at 40 °C
[...] Read more.
The accurate design of tribological contacts, such as those in bearings and gearboxes, makes them highly efficient and helps reduce emission in all driven systems. Traditionally, this process requires more lubricant data than data sheets typically provide, mainly kinematic viscosity at 40 °C and 100 °C and density, which limits the design process. This study introduces a simplified methodology for determining lubricant film thickness, one of the main design critical parameters, using minimal viscosity measurements obtained with a high-pressure viscometer. The researchers demonstrate that essential lubricant parameters can be derived effectively from a few measurements. By combining state-of-the-art models for film thickness with practical measurements from an EHL tribometer, this study confirms that reliable film thickness predictions can be made from basic viscosity data. This approach streamlines the design process, making tribological simulations more accessible and cost-effective, and enhances the design of tribological contacts under extreme conditions.
Full article

Figure 1
Open AccessArticle
Prediction of Heat Transfer During Condensation in Annuli
by
Mirza M. Shah
J. Exp. Theor. Anal. 2024, 2(4), 134-151; https://doi.org/10.3390/jeta2040011 - 3 Dec 2024
Abstract
►▼
Show Figures
Many applications involve condensation in annuli; therefore, accurate prediction of heat transfer is important. While there have been a large number of experimental studies on condensation in tubes and several well-verified correlations are available for them, there have been very few experimental studies
[...] Read more.
Many applications involve condensation in annuli; therefore, accurate prediction of heat transfer is important. While there have been a large number of experimental studies on condensation in tubes and several well-verified correlations are available for them, there have been very few experimental studies on annuli, and no well-verified correlation is available for prediction of heat transfer during condensation in annuli. This research was done to identify reliable correlations for this purpose and to develop a new one if needed. Literature was surveyed to identify experimental studies, test data, and predictive methods. Test data was compared to general correlations which have had considerable verification with data for condensation in channels. None of them was found fully satisfactory. A new correlation was developed by modifying the present author’s published correlation for condensation in tubes. It gives a MAD of 19.2% with available data from eight sources. Deviations of other correlations were much higher. The occurrence of surface tension effects and mini/macro channel boundary are investigated. The results of this research are presented and discussed.
Full article

Figure 1
Open AccessArticle
On the Origin of Görtler Vortices in Flow over a Multi-Element Airfoil
by
Hussein Kokash, Catherine Mavriplis and Gbemeho Gilou Agbaglah
J. Exp. Theor. Anal. 2024, 2(4), 121-133; https://doi.org/10.3390/jeta2040010 - 1 Nov 2024
Cited by 1
Abstract
►▼
Show Figures
The flow characteristics of a 30P30N three-element high-lift airfoil at low Reynolds numbers are examined through three-dimensional simulations using a high-order spectral element method. This study primarily investigates the flow structures of the slat cove and Görtler vortices formed on
[...] Read more.
The flow characteristics of a 30P30N three-element high-lift airfoil at low Reynolds numbers are examined through three-dimensional simulations using a high-order spectral element method. This study primarily investigates the flow structures of the slat cove and Görtler vortices formed on the upper surface of the main airfoil. Spanwise instability grows exponentially in the slat cove with a constant wavelength, corresponding to that of the subsequently formed Görtler vortices. Görtler number calculations show that curvature-induced centrifugal instability at the slat cusp leads to the subsequent formation of Görtler vortices. Proper orthogonal decomposition (POD) is used to analyze the development of flow structures in the slat cove in different time ranges. At early time, the flow in the slat cove is dominated by shear layers that evolve into spanwise perturbations. These perturbations further evolve into distinct bell-shaped structures close to the slat cusp and are advected to the upper surface of the main airfoil, leading to the formation of Görtler vortices.
Full article

Figure 1
Open AccessArticle
Analytical and Experimental Study of the Start of the Chip Removal in Rotational Turning
by
István Sztankovics
J. Exp. Theor. Anal. 2024, 2(4), 103-120; https://doi.org/10.3390/jeta2040009 - 29 Oct 2024
Abstract
►▼
Show Figures
The present challenges in the automotive industry require the development and practical implication of novel machining procedures, which will provide appropriate solutions. These procedures should still meet the requirements of productivity, surface quality and energy efficiency. The further development of novel machining procedures
[...] Read more.
The present challenges in the automotive industry require the development and practical implication of novel machining procedures, which will provide appropriate solutions. These procedures should still meet the requirements of productivity, surface quality and energy efficiency. The further development of novel machining procedures introduces new problems that did not occur (or occurred to a lesser extent) with traditionally applied procedures. Rotational turning has come to the attention of production engineers in the previous decade since it can be used to machine ground-like surfaces in an ecologically friendly and highly productive manner. However, the chip removal characteristic is slightly different from traditional turning due to the applied special kinematic relation and complex tool edge geometry. The run-in phase will take longer, which is the time period between the first contact of the tool and the formation of a constant chip cross-sectional area. The clarification of the chip formation is important in any machining procedure. To achieve this goal, the geometric parameters of the chip must be determined. Since the start of the chip removal is a crucial stage in rotational turning due to its length, the chip height, chip width and the cross-sectional area of the chip should be separately defined in the initial stage. Therefore, in this paper, the initial phase of chip removal in rotational turning is studied. The increasing cross-sectional area of the chip is determined analytically by the application of the previously elaborated equation of the cut surface. Calculating formulas are defined for the different stages of the start of the chip removal, which could be used in the forthcoming studies to analyze the chip formation. The effects of different determining parameters are analyzed theoretically by the deduced formulas of the run-in phase and practical experiments are also carried out. The analytical and experimental analyses showed that increasing feed also increases the dynamic load on the cutting edge, while the depth of cut lowers the growth of the characteristic parameters of the chip, which results in a lower dynamic load on the tool.
Full article

Figure 1
Open AccessReview
The Technologies of Electrochemical Lithium Extraction Process from Lithium-Containing Solutions
by
Qingyuan Dong, Haiyin Gang, Jinxiao Xu, Zuxiang Li and Zhongxiang Wang
J. Exp. Theor. Anal. 2024, 2(4), 91-102; https://doi.org/10.3390/jeta2040008 - 14 Oct 2024
Cited by 2
Abstract
►▼
Show Figures
With the rapid development of new energy vehicles and the digital electronics industry, the demand for lithium has surged, necessitating advanced lithium extraction technologies. Electrochemical methods, noted for their high selectivity and efficiency in extracting target ions from liquid sources in an environmentally
[...] Read more.
With the rapid development of new energy vehicles and the digital electronics industry, the demand for lithium has surged, necessitating advanced lithium extraction technologies. Electrochemical methods, noted for their high selectivity and efficiency in extracting target ions from liquid sources in an environmentally friendly manner, have become increasingly vital. These methods are versatile, applicable in scenarios such as lithium extraction from saline lakes, mother liquor separation, and lithium enrichment. They include electrochemical deintercalation, electrochemical ion pumps, and electrodialysis, each offering unique benefits and challenges depending on the application context. This review provides a detailed exploration of the research progress in lithium extraction using electrochemical methods and discusses future prospects for these technologies, emphasizing their potential to meet the growing demand for lithium.
Full article

Figure 1
Open AccessArticle
FEM Investigation of the Roughness and Residual Stress of Diamond Burnished Surface
by
Viktoria Ferencsik
J. Exp. Theor. Anal. 2024, 2(4), 80-90; https://doi.org/10.3390/jeta2040007 - 11 Oct 2024
Abstract
►▼
Show Figures
Characterization of surface integrity is possible with three critical metrics: microstructure, surface roughness, and residual stress. The latter two are discussed in this paper for low-alloyed aluminum material quality. Ball burnishing is a regularly used finishing procedure to improve surface roughness, shape accuracy,
[...] Read more.
Characterization of surface integrity is possible with three critical metrics: microstructure, surface roughness, and residual stress. The latter two are discussed in this paper for low-alloyed aluminum material quality. Ball burnishing is a regularly used finishing procedure to improve surface roughness, shape accuracy, and fatigue life, taking advantage of the fact that it can favorably influence the variation in stress conditions in the material. The effect of burnishing is investigated using finite element simulation with DEFORM 2D software using the real surface roughness of the workpiece. The FEM model of the process is validated with experimental tests, the surface roughness is measured using an AltiSurf520 measuring device, and the residual stress is analyzed with a Stresstech Xstress 3000 G3R X-ray diffraction system (Stresstech, Vaajakoski, Finland). The results indicate that the burnishing process improves the surface roughness and stress conditions of AlCu6BiPb low-alloyed aluminum, and the study shows that there is good agreement between the FE and experimental results, further revealing the effect of the process parameters on the distribution of the compressive residual stress.
Full article

Figure 1
Open AccessArticle
Comparative Analysis of Water Hammer Performance in Different Pipe Parameters with FSI
by
Mostafa Kandil, Tamer A. El-Sayed and Ahmed M. Kamal
J. Exp. Theor. Anal. 2024, 2(3), 58-79; https://doi.org/10.3390/jeta2030006 - 20 Aug 2024
Abstract
►▼
Show Figures
Water hammer (WH) is a critical phenomenon in fluid-filled piping systems that can lead to severe pressure surges and structural damage. The characteristics of the pipe material, geometry, and support conditions play a crucial role in the fluid–structure interaction (FSI) during WH events.
[...] Read more.
Water hammer (WH) is a critical phenomenon in fluid-filled piping systems that can lead to severe pressure surges and structural damage. The characteristics of the pipe material, geometry, and support conditions play a crucial role in the fluid–structure interaction (FSI) during WH events. This study investigates the impact of various pipe parameters, including material, length, thickness, and diameter, on the WH behavior using an FSI-based numerical approach. A comprehensive computational model was developed based on the algorithm presented in Delft Hydraulics Benchmark Problem (A) to simulate the WH phenomenon in pipes made of different materials, such as steel, copper, ductile iron, PPR (polypropylene random copolymer), and GRP (glass-reinforced plastic). This study examines the influence of pipe parameters on WH performance in pipelines, utilizing FSI to analyze the phenomenon. The results show that the pipe material has a significant influence on the pressure wave speed, stress wave propagation, and the overall system response during WH. Pipes with lower modulus of elasticity, such as PPR and GRP, exhibit lower pressure wave speeds but higher stress wave speeds compared with steel pipes. Increasing the elastic modulus, pipe wall thickness, length, and diameter enhances the pipe’s stiffness and impacts the timing, magnitude of pressure surges, and the likelihood of cavitation. The findings of this study provide valuable insights into the design and mitigation of WH in piping systems.
Full article

Figure 1
Open AccessEditorial
Transductive and Transfer Learning
by
Barry K. Lavine, Karl S. Booksh and Sharon L. Neal
J. Exp. Theor. Anal. 2024, 2(2), 56-57; https://doi.org/10.3390/jeta2020005 - 14 Jun 2024
Abstract
For most of the twentieth century, chemistry has been a data-poor discipline relying on well-thought-out hypotheses and carefully planned experiments to develop solutions to real-world problems [...]
Full article
Highly Accessed Articles
Latest Books
E-Mail Alert
News
7 April 2025
Meet Us at the 4th National Conference on Electronic Information Materials and Devices, 18–20 April 2025, Nanjing, China
Meet Us at the 4th National Conference on Electronic Information Materials and Devices, 18–20 April 2025, Nanjing, China

2 April 2025
MDPI INSIGHTS: The CEO's Letter #21 - Annual Report, Swiss Consortium, IWD, ICARS, Serbia
MDPI INSIGHTS: The CEO's Letter #21 - Annual Report, Swiss Consortium, IWD, ICARS, Serbia
Topics

Conferences
Special Issues
Special Issue in
JETA
Correlative Microscopy: Workflows and Applications in Materials Science
Guest Editors: Francesco Mura, Marco Rossi, Daniele PasseriDeadline: 30 April 2025
Special Issue in
JETA
Analysis of Electrical and Electronic Circuits
Guest Editor: Reza HashemianDeadline: 30 June 2025
Special Issue in
JETA
Optical Properties of Semiconductor Nanostructures: Latest Advances and Prospects
Guest Editor: Ricardo León RestrepoDeadline: 20 September 2025
Special Issue in
JETA
Advances in Nanotechnology for Sustainable Innovation
Guest Editors: Marco Rossi, Elena StellinoDeadline: 31 December 2025