10th International Conference on Maritime Transport (MT’24)

A special issue of Journal of Marine Science and Engineering (ISSN 2077-1312).

Deadline for manuscript submissions: closed (30 July 2024) | Viewed by 4286

Special Issue Editor


E-Mail Website
Guest Editor
AIEM-Architecture, Energy and Environment, Department of Physics, Barcelona School of Architecture (ETSAB), Barcelona School of Nautical Studies (FNB), Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
Interests: microstructure; materials; thin films and nanotechnology; materials processing; material characterization nanomaterials; mechanical properties; mechanical behavior of materials; construction
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The Maritime Transport Conference started 20 years ago as a forum to share knowledge and experience among the different stakeholders in the maritime sector. Since 2004, the conference has been held biannually in emblematic places of the city of Barcelona such as the Maritime Museum and the Barcelona School of Nautical Studies.

The MT Conference is specifically open to researchers and academicians with a deep and solid link to maritime industries, not only from the nautical and naval engineering topics but also in maritime medicine, port and intermodal logistics or marine environment. New technologies and computer-based operational procedures are also welcome and will have a special session in the congress.

The 10th International Conference on Maritime Transport (MT’24), which will be held in Barcelona from June, 5 to 7 of 2024 at Barcelona School of Nautical Studies (https://revistes.upc.edu/index.php/MT)

This Conference Special Issue is set up for relevant research papers on the topics mentioned above. Article and review papers outside of the conference in the area of maritime transport are also welcome to submit.

Prof. Dr. Antonio Isalgue
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Marine Science and Engineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • maritime transport
  • nautical and naval engineering
  • maritime medicine
  • port and intermodal logistics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 8345 KiB  
Article
Fault Diagnosis of Maritime Equipment Using an Intelligent Fuzzy Framework
by L. F. Mendonça, J. M. C. Sousa and S. M. Vieira
J. Mar. Sci. Eng. 2024, 12(10), 1737; https://doi.org/10.3390/jmse12101737 - 2 Oct 2024
Viewed by 837
Abstract
The task of automatically and intelligently diagnosing faults in marine equipment is of great significance due to the numerous duties that shipboard professionals must handle. Incorporating automated and intelligent systems on ships allows for more efficient equipment monitoring and better decision-making. This approach [...] Read more.
The task of automatically and intelligently diagnosing faults in marine equipment is of great significance due to the numerous duties that shipboard professionals must handle. Incorporating automated and intelligent systems on ships allows for more efficient equipment monitoring and better decision-making. This approach has attracted considerable interest in both academia and industry because of its potential for economic savings and improved safety. Several fault diagnosis methods are documented in the literature, often involving mathematical and control theory models. However, due to the inherent complexity of some processes, not all characteristics are precisely known, making mathematical modeling highly challenging. As a result, fault diagnosis often depends on data or heuristic information. Fuzzy logic theory is particularly well suited for processing this type of information. Therefore, this paper employs fuzzy models to diagnose faults in a marine pneumatic servo-actuated valve. The fuzzy models used in fault diagnosis are obtained from the data. These fuzzy models are identified for the normal operation of the marine pneumatic servo-actuated valve, and for each fault, predicting the system’s outputs from the inputs and outputs of the process. The proposed fault diagnosis framework analyzes the discrepancy signals between the outputs of the fuzzy models and the actual process outputs. These discrepancies, known as residuals, help in detecting and isolating equipment faults. The fault isolation process uses an intelligent decision-making approach to determine the specific fault in the system. This method is applied to diagnose abrupt faults in a marine pneumatic servo-actuated valve. The approach presented was used to detect and diagnose three very important faults in the operation of a marine pneumatic servo-actuated valve. The three faults were correctly detected and isolated, and no errors were detected in this detection and isolation process. Full article
(This article belongs to the Special Issue 10th International Conference on Maritime Transport (MT’24))
Show Figures

Figure 1

21 pages, 1355 KiB  
Article
Optimizing Multi-Quay Combined Berth and Quay Crane Allocation Using Computational Intelligence
by Sheraz Aslam, Michalis P. Michaelides and Herodotos Herodotou
J. Mar. Sci. Eng. 2024, 12(9), 1567; https://doi.org/10.3390/jmse12091567 - 6 Sep 2024
Viewed by 961
Abstract
The significant increase in international seaborne trade volumes over the last several years is pushing port operators to improve the efficiency of terminal processes and reduce vessel turnaround time. Toward this direction, this study investigates and solves the combined berth allocation problem (BAP) [...] Read more.
The significant increase in international seaborne trade volumes over the last several years is pushing port operators to improve the efficiency of terminal processes and reduce vessel turnaround time. Toward this direction, this study investigates and solves the combined berth allocation problem (BAP) and quay crane allocation problem (QCAP) in a multi-quay (MQ) setting using computational intelligence (CI) approaches. First, the study develops a mathematical model representing a real port environment and then adapts the cuckoo search algorithm (CSA) for the first time in this setup. The CSA is inspired by nature by following the basic rules of breeding parasitism of some cuckoo species that lay eggs in other birds’ nests. For comparison purposes, we implement two baseline approaches, first come first serve and exact MILP, and two CI approaches, particle swarm optimization (PSO) and genetic algorithm (GA), that are typically used to solve such complex or NP-hard problems. Performance assessment is carried out via a comprehensive series of experiments using real-world data. Experimental findings show that the MILP method can address the problems only when a small dataset is employed. In contrast, the newly adapted CSA can solve larger instances of MQ BAP and QCAP within significantly reduced computation times. Full article
(This article belongs to the Special Issue 10th International Conference on Maritime Transport (MT’24))
Show Figures

Figure 1

17 pages, 2694 KiB  
Article
A Ternary Diagram Approach to Investigate the Competition within the Bohai Sea Rim Multi-Port Group
by Qin Lin, Manel Grifoll, Peijun Zhuang and Hongxiang Feng
J. Mar. Sci. Eng. 2024, 12(7), 1225; https://doi.org/10.3390/jmse12071225 - 20 Jul 2024
Viewed by 1139
Abstract
The Bohai Rim region constitutes the third prominent “growth pole” in China’s economic landscape, wherein the Bohai Rim multi-port system, encompassing Tianjin Port, Dalian Port, and Qingdao Port, engages in intense competition to establish itself as the foremost shipping hub in northern China. [...] Read more.
The Bohai Rim region constitutes the third prominent “growth pole” in China’s economic landscape, wherein the Bohai Rim multi-port system, encompassing Tianjin Port, Dalian Port, and Qingdao Port, engages in intense competition to establish itself as the foremost shipping hub in northern China. This study compares the ternary diagram method and employs the comprehensive concentration index (CCI), Lerner index (LI), and spatial shift-share analysis (SSSA) methods to delve into the intricacies of concentration, inequality, and evolving competitive dynamics within the Bohai Rim multi-port system over the four decades spanning from 1981 to 2023. The aim is to analyze the evolutionary trajectory and underlying dynamic mechanisms of this multipartite port system. The analysis delineates the development trajectory of the system into three stages: the dominant stage of Tianjin Port from 1981 to 1990, the efficiency competition stage from 1991 to 1996, and the ascendancy of Qingdao Port from 1997 to 2023. The results indicate that: (i) the Bohai Rim multi-port system exhibits a relatively low level of concentration, ensuring balanced growth within a non-monopolistic competitive environment; (ii) the internal competitiveness of the Bohai Rim multi-port system has gradually shifted from Tianjin Port to Qingdao Port, with Dalian Port experiencing steady development in its container transport capabilities. (iii) Dalian Port has witnessed a decline in container throughput since 2015, indicating a weakening competitive posture. These revelations suggest that Qingdao Port is a viable candidate for development into the northern China shipping center, leveraging its increasing competitiveness and strategic location. The method applied in this study may also prove beneficial for similar multi-port systems elsewhere. Full article
(This article belongs to the Special Issue 10th International Conference on Maritime Transport (MT’24))
Show Figures

Figure 1

Back to TopTop