Journal Description
Molecules
Molecules
is a leading international, peer-reviewed, open access journal of chemistry published semimonthly online by MDPI. The International Society of Nucleosides, Nucleotides & Nucleic Acids (IS3NA), Spanish Society of Medicinal Chemistry (SEQT) and International Society of Heterocyclic Chemistry (ISHC) are affiliated with Molecules and their members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Reaxys, CaPlus / SciFinder, MarinLit, AGRIS, and other databases.
- Journal Rank: JCR - Q2 (Biochemistry and Molecular Biology) / CiteScore - Q1 (Organic Chemistry)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 16.1 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Sections: published in 25 topical sections.
- Testimonials: See what our editors and authors say about Molecules.
- Companion journal: Foundations.
- Journal Cluster of Chemical Reactions and Catalysis: Catalysts, Chemistry, Electrochem, Inorganics, Molecules, Organics, Oxygen, Photochem, Reactions, Sustainable Chemistry.
Impact Factor:
4.6 (2024);
5-Year Impact Factor:
5.0 (2024)
Latest Articles
Integrative Evaluation of Kigelia africana Fruit Extract: Broad-Spectrum Anticancer Activity, Synergism with Cisplatin and Mechanistic Insights in Colorectal Carcinoma
Molecules 2026, 31(1), 107; https://doi.org/10.3390/molecules31010107 (registering DOI) - 26 Dec 2025
Abstract
Kigelia africana (“sausage tree”) is an established medicinal plant in African traditional medicine, now recognized for its diverse bioactive constituents and emerging anticancer potential. This study systematically evaluates Kigelia africana fruit extract (KAE) in an in vitro model of HT-29 colorectal carcinoma cells,
[...] Read more.
Kigelia africana (“sausage tree”) is an established medicinal plant in African traditional medicine, now recognized for its diverse bioactive constituents and emerging anticancer potential. This study systematically evaluates Kigelia africana fruit extract (KAE) in an in vitro model of HT-29 colorectal carcinoma cells, focusing on its cytotoxic effects, mechanistic impact on protein expression, and synergy with cisplatin chemotherapy. Across 42 oncology-related proteins, covering cell survival, apoptosis, adhesion, invasion, and signaling, KAE demonstrated extensive but typically moderate modulation, while cisplatin produced more pronounced responses in most markers. Protein changes linked to metastasis, therapy resistance, and survival were broadly suppressed, indicating significant antitumor activity. Notably, co-treatment with KAE and cisplatin in HT-29 cells resulted in marked synergistic cytotoxicity, permitting lower cisplatin doses while maintaining efficacy. LC-HRMS analyses revealed 14 metabolites in the extract, including phenolic acids naphthoquinones and iridoids, which may contribute to these effects.
Full article
(This article belongs to the Special Issue Advances and Opportunities of Natural Products in Drug Discovery)
Open AccessArticle
Electrochemical Removal of Cephalosporin Antibiotic—Cefuroxime Axetil from Aquatic Media Using Boron-Doped Diamond Electrodes: Process Optimization, Degradation Studies and Transformation Products Characterization
by
Michał Wroński, Jakub Trawiński and Robert Skibiński
Molecules 2026, 31(1), 106; https://doi.org/10.3390/molecules31010106 (registering DOI) - 26 Dec 2025
Abstract
Growing environmental concern over pharmaceutical contaminants in water, combined with the limited effectiveness of conventional treatment methods in removing persistent antibiotics, creates a need for advanced remediation technologies. This study investigates the degradation of the cephalosporin antibiotic cefuroxime axetil using an electrochemical advanced
[...] Read more.
Growing environmental concern over pharmaceutical contaminants in water, combined with the limited effectiveness of conventional treatment methods in removing persistent antibiotics, creates a need for advanced remediation technologies. This study investigates the degradation of the cephalosporin antibiotic cefuroxime axetil using an electrochemical advanced oxidation process with a boron-doped diamond (BDD) anode. Experiments were conducted under varying pH levels and in natural water matrices, specifically river and lake water, to evaluate the process efficiency under realistic conditions. Significant differences were observed between matrices, with the best result obtained in river water, enabling complete degradation of cefuroxime axetil within 30 min. To clarify the factors influencing process efficiency, additional experiments examined the effects of dissolved organic matter (DOM) and chlorides. Cefuroxime axetil proved highly susceptible to electrooxidation, generally following pseudo-first-order kinetics, and chloride significantly accelerated its degradation. Using high-resolution mass spectrometry, ten transformation products were identified, including six not previously reported in the literature, representing a key novelty of this work. Their potential aquatic toxicity was subsequently evaluated in silico using fish and algae models. Finally, energy consumption analysis was conducted to evaluate the impact of various factors on the process’s economic efficiency.
Full article
(This article belongs to the Special Issue Advances in Remediation Methods of Pharmaceutical Pollutants in Water)
►▼
Show Figures

Graphical abstract
Open AccessReview
Advances in Flow Chemistry for Organolithium-Based Synthesis: A Process Perspective
by
Feng Zhou, Yijun Zhou, Chuansong Duanmu, Yanxing Li, Jin Li, Haiqing Xu, Pan Wang and Kai Zhu
Molecules 2026, 31(1), 105; https://doi.org/10.3390/molecules31010105 (registering DOI) - 26 Dec 2025
Abstract
While organolithium reactions hold great promise in synthetic chemistry, their high reactivity, strong exothermicity, and the instability of intermediates often limit their application, making the effective control of reaction processes difficult in traditional batch reactors. This review systematically summarizes the latest advances in
[...] Read more.
While organolithium reactions hold great promise in synthetic chemistry, their high reactivity, strong exothermicity, and the instability of intermediates often limit their application, making the effective control of reaction processes difficult in traditional batch reactors. This review systematically summarizes the latest advances in utilizing flow chemistry technology to address process challenges related to organolithium reactions from 2014 to 2025. From a process perspective, we systematically discuss the literature cases regarding three key themes: the synthesis of organic compounds applied in the pharmaceutical field, the development of novel methods centered on effective process control (reaction temperature, residence time, phase state, multi-step reaction sequence, and safety), and fundamental process research on continuous flow organolithium reactions. Analysis shows that continuous flow systems provide a powerful platform for fully realizing the potential of organolithium chemistry by enhancing heat/mass transfer and precisely controlling reaction parameters. This review emphasizes how flow chemistry technology not only improves process safety and efficiency but also enables transformations and process scaling that are difficult or impossible in batch modes, thus providing a novel process intensification method for modern synthetic chemistry.
Full article
Open AccessArticle
Phase Change Mechanism and Safety Control During the Shutdown and Restart Process of Supercritical Carbon Dioxide Pipelines
by
Xinze Li, Dezhong Wang, Weijie Zou, Jianye Li and Xiaokai Xing
Molecules 2026, 31(1), 104; https://doi.org/10.3390/molecules31010104 (registering DOI) - 26 Dec 2025
Abstract
Supercritical CO2 pipeline transportation is a crucial link in Carbon Capture, Utilization, and Storage (CCUS). Compared with traditional oil and gas pipelines, if a supercritical CO2 pipeline is shut down for an excessively long time, the phase state of CO2
[...] Read more.
Supercritical CO2 pipeline transportation is a crucial link in Carbon Capture, Utilization, and Storage (CCUS). Compared with traditional oil and gas pipelines, if a supercritical CO2 pipeline is shut down for an excessively long time, the phase state of CO2 may transform into a gas–liquid two-phase state. It is urgently necessary to conduct research on the phase change mechanism and safety control during the restart process of gas–liquid two-phase CO2 pipelines. Based on a certain planned supercritical carbon dioxide pipeline demonstration project, this paper proposes a new pipeline safety restart scheme that actively seeks the liquefaction of gaseous CO2 inside the pipeline by injecting liquid-phase CO2 at the initial station. Through numerical simulation and experimental methods, the co-variation laws of parameters such as temperature, pressure, density, and phase state during the pipeline restart process were revealed. It was found that the pipeline shutdown and restart process could be subdivided into four stages: shutdown stage, liquefaction stage, pressurization stage, and displacement stage. The phase transition line would form a closed curve that is approximately trapezoidal. It is suggested to optimize the restart scheme from aspects such as reducing the restart time, controlling the pressure rise rate, and saving CO2 consumption. It is proposed that the liquid holdup of CO2 fluid in the pipe at the initial moment of restart and the mass flow rate of CO2 injected at the initial station during the restart process are the main controlling factors affecting the evolution of the phase path of pipeline restart. For the demonstration project, the specific critical threshold values are given. The research results can provide a certain theoretical guidance and reference basis for the safe restart method of supercritical CO2 pipelines.
Full article
(This article belongs to the Section Materials Chemistry)
Open AccessReview
From Broad-Spectrum Health to Targeted Prevention: A Review of Functional Foods in Chronic Disease Management
by
Xinyun Zhang, Qinghua Zeng and Wanchong He
Molecules 2026, 31(1), 103; https://doi.org/10.3390/molecules31010103 (registering DOI) - 26 Dec 2025
Abstract
Chronic diseases, characterized by their high prevalence and protracted course, represent a paramount challenge to global public health, necessitating effective, evidence-based preventive strategies. While functional foods are widely recognized for their potential, a comprehensive synthesis elucidating their multitargeted mechanisms within a “food-medicine homology”
[...] Read more.
Chronic diseases, characterized by their high prevalence and protracted course, represent a paramount challenge to global public health, necessitating effective, evidence-based preventive strategies. While functional foods are widely recognized for their potential, a comprehensive synthesis elucidating their multitargeted mechanisms within a “food-medicine homology” framework and a clear trajectory from broad-spectrum health promotion to targeted intervention remains lacking. This review bridges this critical gap by systematically evaluating the scientific evidence and application potential of functional foods, with a specific focus on key bioactive compounds—β-glucan, omega-3 polyunsaturated fatty acids (PUFAs), dietary fiber, and catechins. We provide a critical analysis of how these components orchestrate synergistic effects at molecular, cellular, and systemic levels to counteract core pathological processes, including oxidative stress, chronic inflammation, metabolic dysregulation, and gut microbiota imbalance. Our unique contribution lies in integrating the ancient wisdom of food-medicine homology with modern multi-omics and evidence-based research, thereby proposing a refined nutritional intervention paradigm. The review offers critical insights into the convergent actions of these bioactives, their dose-response relationships substantiated by clinical meta-analyses, and the emerging role of gut microbiota-derived metabolites. Furthermore, this review also explores the emerging evidence for synergistic interactions among these key bioactives, proposing that their combined use may yield amplified and more network-based protective effects against chronic diseases through complementary mechanisms, aims to develop integrated prevention strategies targeting both cardiometabolic and neurodegenerative diseases. The integrated prevention strategies systematically connect mechanistic insights into bioactive compounds, evaluates the strength of clinical evidence, and examines the implications for regulatory standards and societal acceptance, thereby bridging the gap between basic science, clinical application, and public health policy. The “mechanism-to-evidence-to-regulation” framework in this review links molecular insights with clinical validation and regulatory implications, offering a holistic perspective rarely addressed in existing literature.
Full article
(This article belongs to the Special Issue Exploring the Antioxidant Activity of Natural Extracts: New Findings and Potential Food- and Non-Food-Related Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Thermodynamic, Kinetic, and UV–Vis/CD Spectroelectrochemical Studies on Interaction and Electron Transfer Between Glucose Oxidase and Ferrocene Carboxylic Acid
by
Luis Gabriel Talavera-Contreras, Marisela Cruz-Ramírez, Juan Pablo F. Rebolledo-Chávez, Janet Ocampo-Hernández, Gilberto Rocha-Ortiz and Luis Ortiz-Frade
Molecules 2026, 31(1), 102; https://doi.org/10.3390/molecules31010102 (registering DOI) - 26 Dec 2025
Abstract
In this research, we investigate the interaction between the redox mediator ferrocene carboxylic acid (Fc-COOH) and glucose oxidase (GOD) in order to determine the thermodynamics parameters Kint, ΔGint, ΔHint, and ΔSint using simple UV–visible experiments at different
[...] Read more.
In this research, we investigate the interaction between the redox mediator ferrocene carboxylic acid (Fc-COOH) and glucose oxidase (GOD) in order to determine the thermodynamics parameters Kint, ΔGint, ΔHint, and ΔSint using simple UV–visible experiments at different temperatures. Positive values of ΔHint, ΔSint, together with a negative value of ΔGint indicate an entropy-driven hydrophobic interaction typical of spontaneous association processes. The homogeneous electron transfer rate constants between the oxidized organometallic mediator and the reduced enzyme (ks), along with their activation parameters (ΔGET≠, ΔHET≠ and ΔSET≠), were calculated using data obtained from foot of the wave analysis (FOWA) of cyclic voltammetry experiments performed at variable temperature. According to transition state theory, the obtained parameters indicate a low activation enthalpy that reflects minimal energetic requirements for electron transfer, while the large negative activation entropy suggests the formation of an ordered transition state. The positive activation free energy falls within the expected range for biological electron transfer processes. Variable temperature cyclic voltammetry experiments of ferrocene carboxylic acid (Fc-COOH) were also performed. The obtained ΔG°, ΔH°, and ΔS° parameters indicate strong stabilization of the redox pair, consistent with a small difference in solvation energy. Circular dichroism, UV–vis spectroscopy, and combined CD and UV–Vis Spectroelectrochemistry measurements performed during redox mediation demonstrate that no significant structural alterations occur in either the enzyme or the redox mediator before or during the electron transfer processes.
Full article
(This article belongs to the Special Issue Recent Advances in Electrochemistry: Analysis and Application)
►▼
Show Figures

Figure 1
Open AccessArticle
White Organic Light-Emitting Diodes from Single-Component Nonconjugated Polymers by Combining Monomer Emission with Electromer Emission
by
Chao Zheng, Mingze Li, Zhiwen Xu, Yaxuan Pan, Qi Zhou, Yujie Fu, Dongyue Cui, Huanhuan Li, Ye Tao and Runfeng Chen
Molecules 2026, 31(1), 101; https://doi.org/10.3390/molecules31010101 (registering DOI) - 26 Dec 2025
Abstract
White organic light-emitting diodes (OLEDs) offer a promising solution for next-generation lighting technologies and their ability to emit white light through various mechanisms make them an attractive option for illumination and display applications. Here, we design and prepare a series of N,
[...] Read more.
White organic light-emitting diodes (OLEDs) offer a promising solution for next-generation lighting technologies and their ability to emit white light through various mechanisms make them an attractive option for illumination and display applications. Here, we design and prepare a series of N,N-difluorenevinylaniline-based small molecules and polymer, and realize white OLEDs based on these luminescent materials with combined blue monomer emission and orange electromer emission upon electronic excitation in the solution-processed devices. Impressively, the single-component nonconjugated polymer exhibits the best device performance, because the nonconjugated structure favors good solubility of the polymers, while the conjugated starburst unit functions as highly luminescent fluorophore in both single molecular and aggregated structures for the blue and orange emissions, respectively. Specifically, the non-doped solution-processed OLEDs achieve warm white electroluminescence with a maximum luminance of 1806 cd/m2 and a maximum external quantum efficiency of 2.63%. And, the OLEDs based on the monomer also exhibit white electroluminescence with Commission Internationale de L’Eclairage coordinates of (0.30, 0.32). These results highlight a promising strategy for the material design and preparation of single-component nonconjugated polymers with rich emissive behaviors in solid states towards efficient and solution-processable white OLEDs.
Full article
(This article belongs to the Special Issue Insight into Organic Semiconductor Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
Methods in PES-Learn: Direct-Fit Machine Learning of Born–Oppenheimer Potential Energy Surfaces
by
Ian T. Beck, Justin M. Turney and Henry F. Schaefer III
Molecules 2026, 31(1), 100; https://doi.org/10.3390/molecules31010100 - 25 Dec 2025
Abstract
The release of PES-Learn version 1.0 as an open-source software package for the automatic construction of machine learning models of semi-global molecular potential energy surfaces (PESs) is presented. Improvements to PES-Learn’s interoperability are stressed with new Python API that simplifies workflows for
[...] Read more.
The release of PES-Learn version 1.0 as an open-source software package for the automatic construction of machine learning models of semi-global molecular potential energy surfaces (PESs) is presented. Improvements to PES-Learn’s interoperability are stressed with new Python API that simplifies workflows for PES construction via interaction with QCSchema input and output infrastructure. In addition, a new machine learning method is introduced to PES-Learn: kernel ridge regression (KRR). The capabilities of KRR are emphasized with examination of select semi-global PESs. All machine learning methods available in PES-Learn are benchmarked with benzene and ethanol datasets from the rMD17 database to illustrate PES-Learn’s performance ability. Fitting performance and timings are assessed for both systems. Finally, the ability to predict gradients with neural network models is presented and benchmarked with ethanol and benzene. PES-Learn is an active project and welcomes community suggestions and contributions.
Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Computational and Theoretical Chemistry)
►▼
Show Figures

Graphical abstract
Open AccessReview
A Comprehensive Review on Hydrogen Production from Biomass Gasification
by
Mattia Bartoli, Candido Fabrizio Pirri and Sergio Bocchini
Molecules 2026, 31(1), 99; https://doi.org/10.3390/molecules31010099 - 25 Dec 2025
Abstract
Hydrogen production from biomass gasification has emerged as a strategic pathway for achieving carbon-neutral energy systems, circular resource utilization, and sustainable fuel generation. As global energy systems transition toward renewable sources, biomass-derived hydrogen represents a cornerstone of waste valorization, negative-emission bioenergy, and green
[...] Read more.
Hydrogen production from biomass gasification has emerged as a strategic pathway for achieving carbon-neutral energy systems, circular resource utilization, and sustainable fuel generation. As global energy systems transition toward renewable sources, biomass-derived hydrogen represents a cornerstone of waste valorization, negative-emission bioenergy, and green hydrogen economies. Among all technologies, hydrogen production through gasification is one of the most consolidated routes with plenty of operative industrial-scale plants. The field of gasification is quite complex, and this comprehensive review describes the current scientific and technological achievements of biomass gasification for hydrogen production, describing the effect of feedstock, reactivity phenomena, reactor design, and catalyst systems. Furthermore, we report on a quantitative analysis regarding the operative cost of gasification of biomass compared with green hydrogen production and methane reforming. We provide a complete and synthetic picture for one of the most critical fields in the hydrogen economy that can actively promote a transition towards a more sustainable society.
Full article
(This article belongs to the Collection Recycling of Biomass Resources: Biofuels and Biochemicals)
►▼
Show Figures

Graphical abstract
Open AccessReview
Recent Advances in Ent-Abietane Diterpenes: Natural Sources, Biological Activities and Total Synthesis
by
Lu Li, Yongjie Zhu, Haixia Deng, Liqiong Xie, Chang-Bo Zheng, Jian-Neng Yao and Ji Li
Molecules 2026, 31(1), 98; https://doi.org/10.3390/molecules31010098 - 25 Dec 2025
Abstract
Ent-abietane diterpenoids constitute a class of terpenes with a C20 carbon skeleton that underlie a wide range of biological activities. Ent-abietane diterpenoids, enantiomeric to the abietane counterparts, represent a family of diterpenoid natural products characterized by their distinct
[...] Read more.
Ent-abietane diterpenoids constitute a class of terpenes with a C20 carbon skeleton that underlie a wide range of biological activities. Ent-abietane diterpenoids, enantiomeric to the abietane counterparts, represent a family of diterpenoid natural products characterized by their distinct 6/6/6 tricyclic carbocyclic skeletons with exceptional structural complexity. An increasing number of these ent-abietane diterpenoids have recently been identified, constituting a well-defined group of naturally occurring compounds. This review provides a comprehensive summary of the natural sources, chemical structures, biological profiles and total synthesis of these ent-abietane diterpenoids from 2016 to early 2025.
Full article
(This article belongs to the Special Issue Trends of Drug Synthesis in Medicinal Chemistry)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Multifunctional NADES-Based Extracts from Paeonia lactiflora Pall. Flowers for Potential Cosmetic and Pharmaceutical Applications
by
Carla Villa, Eleonora Russo, Anna Maria Schito, Francesco Saverio Robustelli della Cuna, Cristina Sottani, Marta Barabino and Debora Caviglia
Molecules 2026, 31(1), 97; https://doi.org/10.3390/molecules31010097 - 25 Dec 2025
Abstract
Paeonia lactiflora Pall. is a perennial herbaceous plant widely renowned for its floral ornamental appeal, distinctive pleasant scent, and utilization in folk remedies. Roots and barks are traditionally used in Chinese medicine for various properties, including anti-inflammatory, antioxidant, antibacterial, anticancer, cardiovascular, and neuroprotective
[...] Read more.
Paeonia lactiflora Pall. is a perennial herbaceous plant widely renowned for its floral ornamental appeal, distinctive pleasant scent, and utilization in folk remedies. Roots and barks are traditionally used in Chinese medicine for various properties, including anti-inflammatory, antioxidant, antibacterial, anticancer, cardiovascular, and neuroprotective effects. Considering the growing interest and demand in the pharmaceutical and cosmetic fields for sustainable and bioactive botanical derivatives, this study aimed to apply NADES (natural deep eutectic solvents) extraction on fresh flowers of Paeonia lactiflora Pall. The purpose was to obtain a natural, multifunctional, and ready-to-use cosmetic ingredient with concurrent antioxidant activity, antimicrobial functionalities, and olfactive properties. The eutectic systems selected in this study were composed of betaine as the hydrogen bond acceptor and glycerol and/or sorbitol as the hydrogen bond donors. These eutectic systems under microwave activation led to a rapid extraction, from peony fresh flowers, of considerable phenolic amounts (from 33.0 to 34.4 mg of gallic acid equivalents per gram of fresh flowers), which confer to the whole NADES-based extract an excellent radical scavenging activity (around 87.5%, compared to Trolox) and a pleasant fragrance, due to the extraction of some characteristic volatile compounds, as confirmed by GC-MS analysis. Antimicrobial assays against different Gram-positive and Gram-negative strains demonstrated good inhibitory activity of the sample against multidrug-resistant Staphylococcus species (MIC ranging from 0.9 to 14.5 mg/mL) and against Enterococcus species (from 28.8 to 57.8 mg/mL). Furthermore, results on different Staphylococcus aureus strains disclosed additional interesting anti-biofilm properties. Preliminary long-term studies (up to 9 months) on these combined properties highlighted the stabilizing effect of NADESs on the active metabolites, confirming their potential as natural and functional ingredients that could be directly incorporated into pharmaceutical and cosmetic formulations, offering enhanced efficacy and improved stability.
Full article
(This article belongs to the Special Issue Deep Eutectic Solvents for the Extraction of Bioactive Compounds from Natural Sources)
►▼
Show Figures

Figure 1
Open AccessArticle
Oxygen Bridge Governs OER via Deep Self-Reconstruction in Fe–Co Oxyhydroxides
by
Mingyu Liu, Bowen Pei, Hongyu Ba, Wei Ni, Huaheng Zhao, Shuang Chen, Jiamin Zhao and Jinsheng Zhao
Molecules 2026, 31(1), 96; https://doi.org/10.3390/molecules31010096 - 25 Dec 2025
Abstract
The oxygen evolution reaction (OER) in water splitting involves complex multi-electron–proton transfer processes and represents the rate-determining step limiting overall electrolysis efficiency. Developing non-noble-metal catalysts with high activity and stability is therefore essential. Herein, a heterogeneous synthesis strategy was employed to in situ
[...] Read more.
The oxygen evolution reaction (OER) in water splitting involves complex multi-electron–proton transfer processes and represents the rate-determining step limiting overall electrolysis efficiency. Developing non-noble-metal catalysts with high activity and stability is therefore essential. Herein, a heterogeneous synthesis strategy was employed to in situ construct an iron-rich layered sulfate precursor (Fe0.42Co0.58-SO4/NF) on nickel foam, which underwent deep self-reconstruction in alkaline electrolyte to form nanoflower-like Fe0.42Co0.58OOH/NF. The optimized catalyst maintained its iron-rich composition and hierarchical structure, delivering outstanding OER performance with an overpotential of 220 mV at 10 mA·cm−2, a Tafel slope of 31.9 mV·dec−1, and stability exceeding 12 h at 600 mA·cm−2. Synchrotron analyses revealed dynamic transitions between mono-μ-O and di-μ-O Fe–M (M = Fe, Co) oxygen bridges during reconstruction, which enhanced both structural robustness and active-site density. The Fe-rich environment promoted the formation of Fe3+–O–Fe3+ units that synergized with Co4+ species to activate the lattice oxygen mechanism (LOM), thereby accelerating OER kinetics. This work elucidates the key role of oxygen-bridge geometry in optimizing catalytic activity and durability, providing valuable insights into the rational design of Fe–Co-based non-noble-metal catalysts with high iron content for efficient water oxidation.
Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Electrocatalysis)
►▼
Show Figures

Graphical abstract
Open AccessReview
Cork By-Products as Bioactive Ingredients: From Waste Valorization to Pharmaceutical Prototypes
by
Nuno Miguel Silva, Ana Colette Maurício, Ruben Fernandes and Ana Novo Barros
Molecules 2026, 31(1), 95; https://doi.org/10.3390/molecules31010095 - 25 Dec 2025
Abstract
The pharmaceutical sector has evolved toward innovation-driven and sustainability-oriented development, driven by increasing regulatory pressure and global health challenges. In this context, cork (Quercus suber L.) has emerged as a promising bio-based resource due to its renewable nature, near-zero-waste processing chain, and
[...] Read more.
The pharmaceutical sector has evolved toward innovation-driven and sustainability-oriented development, driven by increasing regulatory pressure and global health challenges. In this context, cork (Quercus suber L.) has emerged as a promising bio-based resource due to its renewable nature, near-zero-waste processing chain, and growing evidence of biological activity. Cork by-products are rich in phenolic compounds, triterpenes, lignin derivatives, and other secondary metabolites exhibiting antioxidant, anti-inflammatory, and anti-aging properties, with relevance for pharmaceutical and dermocosmetic applications. These bioactivities are associated with the modulation of oxidative stress, inhibition of pro-inflammatory signaling pathways, and support of skin barrier function. This review provides an updated and focused overview of the chemical composition, bioactive potential, and valorization pathways of cork by-products, with particular emphasis on their translation into pharmaceutical and dermocosmetic formulations. Key challenges related to extraction standardization, bioavailability, safety, and clinical validation are critically discussed, highlighting future directions for the sustainable development of cork-derived bioactive ingredients within circular bioeconomy frameworks.
Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Food Chemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
The Influence of the Capping Step During Solid-Phase Phosphoramidite Synthesis of Oligonucleotides on Synthetic Errors in Oligonucleotides
by
Kristina I. Yakovleva, Ivan M. Pereverzev, Andrey A. Kechin, Ulyana A. Boyarskikh, Maxim L. Filipenko, Georgiy Y. Shevelev, Yuliya V. Sherstyuk and Ilya S. Dovydenko
Molecules 2026, 31(1), 94; https://doi.org/10.3390/molecules31010094 - 25 Dec 2025
Abstract
Errors in de novo synthesized DNA can originate from the oligonucleotides used during assembly. Oligonucleotides may contain substitutions, deletions, and insertions resulting from either incomplete reactions at individual steps of the phosphoramidite synthetic cycle or various side reactions. In this study, we quantitatively
[...] Read more.
Errors in de novo synthesized DNA can originate from the oligonucleotides used during assembly. Oligonucleotides may contain substitutions, deletions, and insertions resulting from either incomplete reactions at individual steps of the phosphoramidite synthetic cycle or various side reactions. In this study, we quantitatively assessed errors in both gene constructs assembled from synthetic oligonucleotides by Sanger sequencing and in synthetic oligonucleotides by NGS. Our data demonstrate that side reactions involving carboxylic acid anhydrides during the capping step of oligonucleotide synthesis lead to the modification of guanine residues. This guanine modification subsequently results in the accumulation of G to A substitutions in the final gene constructs. We show that the error rate can be reduced by replacing the standard acetic anhydride-based capping mixture with anhydrides of carboxylic acids weaker than acetic acid. Furthermore, a more significant reduction in errors is achievable by using capping reagents based on phosphoramidite chemistry.
Full article
(This article belongs to the Special Issue 10th Anniversary of the Bioorganic Chemistry Section of Molecules)
►▼
Show Figures

Figure 1
Open AccessReview
Molecular Imaging Advances in Endometriosis: The Promise of Radiopharmaceuticals
by
Rebecca Napolitano, Giorgia Speltri, Petra Martini, Francesca Porto, Lorenza Marvelli, Alessandro Niorettini, Licia Uccelli, Luca Urso, Luca Filippi, Hatice Uslu, Burak Canitez, Hamza Alperen Kösem and Alessandra Boschi
Molecules 2026, 31(1), 93; https://doi.org/10.3390/molecules31010093 - 25 Dec 2025
Abstract
►▼
Show Figures
Endometriosis is a highly prevalent, chronic gynecological disorder characterized by the ectopic presence of endometrial-like tissue, driving significant morbidity and chronic pelvic pain. Pathologically, it is increasingly recognized as a fibro-inflammatory condition involving extensive tissue remodeling and fibrosis. Current conventional imaging modalities, including
[...] Read more.
Endometriosis is a highly prevalent, chronic gynecological disorder characterized by the ectopic presence of endometrial-like tissue, driving significant morbidity and chronic pelvic pain. Pathologically, it is increasingly recognized as a fibro-inflammatory condition involving extensive tissue remodeling and fibrosis. Current conventional imaging modalities, including ultrasound and MRI, are primarily morphological, while standard molecular imaging using Positron Emission Tomography (PET) tracers has shown limited diagnostic utility. [18F]Fluorodeoxyglucose (FDG) suffers from high physiological uptake in pelvic organs and inconsistent detection of lesions. Receptor-based tracers like [68Ga]Ga-DOTATATE have demonstrated uncertain efficacy. In contrast, radiopharmaceuticals targeting the Fibroblast Activation Protein (FAP) offer a promising molecular approach. FAP is specifically overexpressed by activated fibroblasts present in the stroma of endometriotic lesions, correlating significantly with tissue fibrosis (collagen content) and local immune infiltration (e.g., CD68 macrophages). This comprehensive review analyzes the landscape of radiopharmaceuticals for endometriosis imaging, contrasting the specific limitations of traditional metabolic and receptor agents with the molecular rationale and emerging evidence supporting the use of FAP Inhibitors (FAPI), positioning them as crucial, non-invasive tools for the future diagnosis and management of this challenging disease.
Full article

Figure 1
Open AccessArticle
Atomistic Insights into the Molecular Interactions of Rod and Cluster Shaped CdS for Photocatalytic Water Splitting
by
Aliya Assilbekova, Irina Irgibaeva, Mirat Karibayev, Ayaulym Amankeldiyeva, Sergei Piskunov, Nurlan Almas, Galiya Baisalova and Anuar Aldongarov
Molecules 2026, 31(1), 92; https://doi.org/10.3390/molecules31010092 - 25 Dec 2025
Abstract
►▼
Show Figures
Understanding the atomic-level behavior of photocatalysts under hydrated conditions is essential for improving hydrogen production efficiency. In this work, density functional theory calculations and classical all-atom molecular dynamics simulations were performed to investigate the intra- and intermolecular interactions of rod- and cluster-shaped cadmium
[...] Read more.
Understanding the atomic-level behavior of photocatalysts under hydrated conditions is essential for improving hydrogen production efficiency. In this work, density functional theory calculations and classical all-atom molecular dynamics simulations were performed to investigate the intra- and intermolecular interactions of rod- and cluster-shaped cadmium sulfide in the presence of implicit and explicit water, respectively. The density functional theory optimized geometries, reduced density gradient, noncovalent interaction, critical point, and molecular electrostatic potential maps were examined using the LC-ωPBE functional with the LANL2DZ basis set and the IEFPCM implicit solvation model, while explicit hydration was modeled via classical all-atom molecular dynamics simulations by obtaining molecular snapshots and radial distribution functions. Density functional theory results revealed that rod-shaped cadmium sulfide exhibits stronger directional bonding and higher electronic localization compared to cluster-shaped cadmium sulfide, while classical all-atom molecular dynamics simulations showed that water molecules preferentially interact with surface S atoms of cadmium sulfide sites. This atomistic insight clarifies how morphology and hydration jointly modulate cadmium sulfide electronic structure and reactivity, providing guidance for the rational design of efficient cadmium sulfide-based photocatalysts for solar-driven water splitting.
Full article

Graphical abstract
Open AccessArticle
Molecular Dynamics Simulation of Texture Contact Friction Between Crystalline Silicon Layers for Application in Micro-Nano System Devices
by
Jinping Zhang, Minghui Tan, Shan Yuan, Fei Wang, Yu Jia and Xiaolei Wang
Molecules 2026, 31(1), 91; https://doi.org/10.3390/molecules31010091 - 25 Dec 2025
Abstract
►▼
Show Figures
Silicon is commonly used in micro/nano-electromechanical system (MEMS/NEMS) devices. Because detailed information about the friction interface in these systems is lacking, the relationship between texture shape and friction remains unclear. In this study, molecular dynamics simulations were performed to investigate the dry-friction tribological
[...] Read more.
Silicon is commonly used in micro/nano-electromechanical system (MEMS/NEMS) devices. Because detailed information about the friction interface in these systems is lacking, the relationship between texture shape and friction remains unclear. In this study, molecular dynamics simulations were performed to investigate the dry-friction tribological behavior of crystalline silicon, focusing on the effects of surface roughness, normal load, and sliding speed. The results show that between normal loads of 4 GPa and 8 GPa, the average frictional force exhibits significant nonlinear behavior under a sliding speed of 0.2 Å/ps. The approximate steady value of the friction coefficient is 0.39, which is in good agreement with the experimental result of 0.37. Under a normal load of 5 GPa, the friction force increases linearly from 110 nN at 0.05 Å/ps to 311 nN at 2 Å/ps. In addition, in systems with sinusoidal surface roughness, the amplitude has a greater effect on the frictional properties than the period. Among the four rough surfaces studied, A10T32 exhibits the lowest friction force and friction coefficient. This provides theoretical support for the further design of MEMS/NEMS devices with long operational lifetimes.
Full article

Graphical abstract
Open AccessArticle
Targeted Determination of Residual Sex Hormones in Cosmetics Using Magnetic Solid-Phase Extraction with Isotope-Labeled Internal Standards by UHPLC-MS/MS
by
Yalei Dong, Shuyan Sun, Yasen Qiao, Chunhui Yu, Haiyan Wang and Lei Sun
Molecules 2026, 31(1), 90; https://doi.org/10.3390/molecules31010090 - 25 Dec 2025
Abstract
As rapidly developing consumer products, cosmetics confront challenges regarding safety, especially hazardous ingredients, like sex hormones. Prolonged exposure to trace sex hormones in cosmetics can inflict immeasurable damage to human health. To accurately detect the trace amounts of sex hormones in cosmetics, a
[...] Read more.
As rapidly developing consumer products, cosmetics confront challenges regarding safety, especially hazardous ingredients, like sex hormones. Prolonged exposure to trace sex hormones in cosmetics can inflict immeasurable damage to human health. To accurately detect the trace amounts of sex hormones in cosmetics, a reliable method was developed and validated using ultra-high performance liquid chromatography–mass spectrometry (UHPLC-MS/MS) with magnetic solid-phase extraction (MSPE) and isotope-labeled internal standards (IL-ISs). The conditions of sample pretreatment, chromatography, and mass parameters were systemically investigated. In the MSPE procedure, the commercial Fe3O4@HLB magnetic material was employed for sample pretreatment, which was beneficial for operation, as well as sample purification and analyte enrichment. The utilization of IL-ISs compensated for potential matrix effects and losses during sample preparation, thereby improving precision and accuracy. Based on the proposed MSPE technology, UHPLC-MS/MS can address the qualitative and quantitative analysis needs for target analytes in complex cosmetic matrices. At three fortification levels, recoveries were in the range of 71.7–116.2%, with a relative standard deviation (RSD) ranging from 1.6% to 8.3%. Furthermore, based on the method proposed here, a total of 116 batches of cosmetics were analyzed, and trace progestins and estrogens were discovered in 10 samples. The MSPE method, coupled with UHPLC-MS/MS using IL-ISs, was convenient, efficient, and feasible for detecting trace amounts of sex hormones in cosmetics. The method scored 0.66 (out of 1) on the AGREE metric, confirming its green profile. Based on the detected concentrations, a preliminary safety evaluation was performed to assess the potential health risks of residual progesterone in hair loss prevention cosmetics by calculating the margin of safety (MoS).
Full article
(This article belongs to the Section Analytical Chemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
Synthesis and Magnetic and Optical Properties of Novel Fe@ZSM-5 Composites
by
Irina A. Zvereva, Denis A. Pankratov, Elena G. Zemstova, Vladimir K. Kudymov, Azamat Samadov, Sergey A. Kurnosenko, Sergey O. Kirichenko, Marina G. Shelyapina and Vitalii Petranovskii
Molecules 2026, 31(1), 89; https://doi.org/10.3390/molecules31010089 - 25 Dec 2025
Abstract
Alkaline treatment in 0.2 and 0.4 M NaOH solutions successfully generated controlled mesoporosity into ZSM-5 (Zeolite Socony Mobil-5) zeolite, resulting in average mesopore diameters of approximately 15 and 25 nm, respectively, while preserving the crystalline structure of the zeolite framework. Parent ZSM-5 and
[...] Read more.
Alkaline treatment in 0.2 and 0.4 M NaOH solutions successfully generated controlled mesoporosity into ZSM-5 (Zeolite Socony Mobil-5) zeolite, resulting in average mesopore diameters of approximately 15 and 25 nm, respectively, while preserving the crystalline structure of the zeolite framework. Parent ZSM-5 and its mesoporous derivatives obtained by desilication were used to prepare (Fe species)@(zeolite matrix) composites. The synthesis was carried out by co-precipitating Fe2+/Fe3+ ions onto both parent and desilicated ZSM-5 matrices under oxygen-free conditions. Comprehensive characterization by X-ray diffraction, scanning electron microscopy, N2 adsorption, vibrating-sample magnetometry, 57Fe Mössbauer spectroscopy, and diffuse reflectance UV–Vis spectroscopy revealed that the degree of introduced mesoporosity dramatically influences the size, dispersion, phase composition, and oxidation state of the iron-containing nanospecies. On purely microporous ZSM-5, relatively large (~15 nm) partially oxidized magnetite nanoparticles are formed predominantly on the external surface, exhibiting superparamagnetism at room temperature (Mₛ = 11 emu/g) and a band gap of 2.12 eV. Increasing mesoporosity leads to progressively smaller and more highly dispersed iron(III) oxo/hydroxo clusters with significantly lower blocking temperatures and reduced magnetization (down to 0.7 emu/g for Fe@ZSM-5_0.4). All composites display strong visible-light absorption confirming their potential as magnetically separable visible-light-driven photocatalysts for environmental remediation.
Full article
(This article belongs to the Special Issue Synthesis and Application of Multifunctional Nanocomposites)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Energy-Dependent Effects of Pulsed Electric Field (PEF) Treatment on the Quality Attributes, Bioactive Compounds, and Microstructure of Red Bell Pepper
by
Katarzyna Rybak, Aleksandra Skarżyńska, Szymon Ossowski, Magdalena Dadan, Katarzyna Pobiega and Małgorzata Nowacka
Molecules 2026, 31(1), 88; https://doi.org/10.3390/molecules31010088 - 25 Dec 2025
Abstract
This study evaluated the energy-dependent effects of pulsed electric field (PEF) treatment on the physicochemical properties, bioactive compounds, antioxidant activity, and microstructure of red bell pepper (Capsicum annuum L.). Red bell pepper tissue was treated at specific energy inputs ranging from 1
[...] Read more.
This study evaluated the energy-dependent effects of pulsed electric field (PEF) treatment on the physicochemical properties, bioactive compounds, antioxidant activity, and microstructure of red bell pepper (Capsicum annuum L.). Red bell pepper tissue was treated at specific energy inputs ranging from 1 to 10 kJ/kg and compared with a fresh (untreated sample). The cell disintegration index (CDI) increased progressively with PEF energy, confirming enhanced membrane permeabilization and structural disruption. Structural analyses (SEM and micro-CT) confirmed the formation of pores and interconnected channels, particularly at moderate and high energies. PEF treatment caused a decrease in total polyphenols and flavonoids, whereas vitamin C and total carotenoid contents increased at intermediate energies. Antioxidant activity (ABTS, DPPH, FRAP) declined overall but remained at comparable levels for mild PEF exposure. A significant reduction in firmness was observed (from 17% to 27% compared with the untreated control), and color changes were dependent on the energy input, while microstructural degradation intensified as the energy level approached 10 kJ/kg. PEF treatment improved microbial stability, resulting in a measurable reduction in total viable counts and yeast and mold counts, particularly at higher energy inputs. FTIR, TGA, and NMR data confirmed molecular alterations without degradation of major components. Multivariate analysis (dendrogram, PCA) distinguished four characteristic response groups: fresh, low-energy (1–2 kJ/kg), moderate-energy (4–5 kJ/kg), and high-energy (10 kJ/kg). PEF treatment selectively modified red bell pepper tissue, enhancing permeabilization and carotenoid/vitamin C release while preserving visual quality at mild–moderate energies. These results demonstrate the potential of PEF as a nonthermal technique for tailoring the structural and functional properties of plant-based products.
Full article
(This article belongs to the Special Issue Anti-inflammatory and Antioxidant Activities of Bioactive Compounds in Plants)
►▼
Show Figures

Graphical abstract
Journal Menu
► ▼ Journal Menu-
- Molecules Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal Browser-
arrow_forward_ios
Forthcoming issue
arrow_forward_ios Current issue - Vol. 31 (2026)
- Vol. 30 (2025)
- Vol. 29 (2024)
- Vol. 28 (2023)
- Vol. 27 (2022)
- Vol. 26 (2021)
- Vol. 25 (2020)
- Vol. 24 (2019)
- Vol. 23 (2018)
- Vol. 22 (2017)
- Vol. 21 (2016)
- Vol. 20 (2015)
- Vol. 19 (2014)
- Vol. 18 (2013)
- Vol. 17 (2012)
- Vol. 16 (2011)
- Vol. 15 (2010)
- Vol. 14 (2009)
- Vol. 13 (2008)
- Vol. 12 (2007)
- Vol. 11 (2006)
- Vol. 10 (2005)
- Vol. 9 (2004)
- Vol. 8 (2003)
- Vol. 7 (2002)
- Vol. 6 (2001)
- Vol. 5 (2000)
- Vol. 4 (1999)
- Vol. 3 (1998)
- Vol. 2 (1997)
- Volumes not published by MDPI
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomass, Energies, Materials, Molecules, Nanomaterials, Polymers
Biomass for Energy, Chemicals and Materials
Topic Editors: Shaohua Jiang, Changlei Xia, Shifeng Zhang, Xiaoshuai HanDeadline: 31 December 2025
Topic in
J. Compos. Sci., Materials, Molecules, Nanomaterials, Polymers, Processes, Recycling
Science and Technology of Polymeric Blends, Composites, and Nanocomposites
Topic Editors: Roberto Scaffaro, Emmanuel Fortunato GulinoDeadline: 28 February 2026
Topic in
Cancers, IJMS, Pharmaceuticals, Pharmaceutics, Sci. Pharm., Current Oncology, Molecules
Recent Advances in Anticancer Strategies, 2nd Edition
Topic Editors: Hassan Bousbaa, Zhiwei HuDeadline: 31 March 2026
Topic in
Applied Nano, Catalysts, Materials, Nanomaterials, Polymers, Molecules
Application of Nanomaterials in Environmental Analysis
Topic Editors: Yonggang Zhao, Yun ZhangDeadline: 13 April 2026
Conferences
Special Issues
Special Issue in
Molecules
Bioactive Compounds in Foods, Beverages, and By-Products and Their Functional Potential
Guest Editors: Maria Beatriz Prior Pinto Oliveira, Carolina De Souza, Ederlan S. Ferreira, Alessio ScarafoniDeadline: 28 December 2025
Special Issue in
Molecules
Nanomaterials for Catalytic Upcycling/Conversion of Plastics/Biomass
Guest Editors: Lei Huang, Xiang Wang, Zhili LiDeadline: 30 December 2025
Special Issue in
Molecules
Opportunities and Challenges in Organic Optoelectronic Materials
Guest Editors: Chien-Jung Huang, Mu-Chun WangDeadline: 30 December 2025
Special Issue in
Molecules
Essential Oils and Their Multifaceted Studies: From Extraction to Applications
Guest Editor: Mozaniel Santana de OliveiraDeadline: 30 December 2025
Topical Collections
Topical Collection in
Molecules
Recent Advances in Flavors and Fragrances
Collection Editor: Luca Forti
Topical Collection in
Molecules
Natural Products as Leads or Drugs against Neglected Tropical Diseases
Collection Editors: Thomas J. Schmidt, Valeria Sülsen, Josphat Matasyoh
Topical Collection in
Molecules
Featured Reviews in Natural Products Chemistry
Collection Editors: Enrique Barrajón-Catalán, Vicente Micol, María Herranz-López
Topical Collection in
Molecules
Preanalytical Methods for Natural Products Production
Collection Editors: Young Hae Choi, Farid Chemat, Giancarlo Cravotto, Erica G. Wilson




