Advanced Nanomaterials and Nanotechnology for Environmental Remediation

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Environmental Nanoscience and Nanotechnology".

Deadline for manuscript submissions: closed (20 December 2023) | Viewed by 13632

Special Issue Editor

Division of Chemistry and Bio-Environmental Sciences, Seoul Women's University, Seoul, Republic of Korea
Interests: materials chemistry; nanocomposites; inorganic-organic hybrid materials; environmental remdiation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Environmental pollution poses a threat to human beings and ecological systems, and the purification of toxic organic and inorganic pollutants is essential for a safe society and clean environment. Nanoscale materials often exhibit very different physical or chemical properties compared to their bulk-size materials. In particular, the large surface area and high surface-free energy of nanomaterials often result in a high density of active sites per unit mass, resulting in improved surface reactivity. Because of their abundance of active sites along with their thermal and mechanical stability, nanomaterials have been extensively studied in environmental remediation to purify water pollutants such as heavy metals, toxic organic dyes, oily waste, and various industrial and agricultural waste. This Special Issue aims to cover recent progress in the preparation, characterization, and application of advanced nanomaterials for the elimination of contaminants or pollutants from environmental media such as water (groundwater, seawater, wastewater, etc.), soil, and air. It is our pleasure to invite you to submit original research papers, short communications, and reviews within the scope of this Special Issue.

The following areas of particular interest for this Special Issue.

  • Adsorbents or catalysts based on nanostructured materials in the degradation/removal of pollutants such as toxic organic materials, heavy metal ions, microparticles, microplastics, etc.
  • Development of nanostructures applicable for oil/water separation, oily wastewater treatment, crude oil adsorption, etc.
  • Wastewater treatment and desalination.

We look forward to receiving your contributions.

Dr. Ha-Jin Lee
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomaterials
  • nanocomposites
  • wastewater treatment
  • adsorbents
  • heavy metal removal
  • oil/water separation
  • (photo)catalysts
  • desalination

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 4541 KiB  
Article
Sustainable Zeolite–Silver Nanocomposites via Green Methods for Water Contaminant Mitigation and Modeling Approaches
by Álvaro de Jesús Ruíz-Baltazar, Simón Yobanny Reyes-López, Néstor Méndez-Lozano, Nahum Andrés Medellín-Castillo and Ramiro Pérez
Nanomaterials 2024, 14(3), 258; https://doi.org/10.3390/nano14030258 - 25 Jan 2024
Cited by 2 | Viewed by 1209
Abstract
This study explores cutting-edge and sustainable green methodologies and technologies for the synthesis of functional nanomaterials, with a specific focus on the removal of water contaminants and the application of kinetic adsorption models. Our research adopts a conscientious approach to environmental stewardship by [...] Read more.
This study explores cutting-edge and sustainable green methodologies and technologies for the synthesis of functional nanomaterials, with a specific focus on the removal of water contaminants and the application of kinetic adsorption models. Our research adopts a conscientious approach to environmental stewardship by synergistically employing eco-friendly silver nanoparticles, synthesized using Justicia spicigera extract as a biogenic reducing agent, in conjunction with Mexican zeolite to enhance contaminant remediation, particularly targeting Cu2+ ions. Structural analysis, utilizing X-ray diffraction (XRD) and high-resolution scanning and transmission electron microscopy (TEM and SEM), yields crucial insights into nanocomposite structure and morphology. Rigorous linear and non-linear kinetic models, encompassing pseudo-first order, pseudo-second order, Freundlich, and Langmuir, are employed to elucidate the kinetics and equilibrium behaviors of adsorption. The results underscore the remarkable efficiency of the Zeolite–Ag composite in Cu2+ ion removal, surpassing traditional materials and achieving an impressive adsorption rate of 98% for Cu. Furthermore, the Zeolite–Ag composite exhibits maximum adsorption times of 480 min. In the computational analysis, an initial mechanism for Cu2+ adsorption on zeolites is identified. The process involves rapid adsorption onto the surface of the Zeolite–Ag NP composite, followed by a gradual diffusion of ions into the cavities within the zeolite structure. Upon reaching equilibrium, a substantial reduction in copper ion concentration in the solution signifies successful removal. This research represents a noteworthy stride in sustainable contaminant removal, aligning with eco-friendly practices and supporting the potential integration of this technology into environmental applications. Consequently, it presents a promising solution for eco-conscious contaminant remediation, emphasizing the utilization of green methodologies and sustainable technologies in the development of functional nanomaterials. Full article
Show Figures

Figure 1

24 pages, 15399 KiB  
Article
Synthesis of TiO2-Cu2+/CuI Nanocomposites and Evaluation of Antifungal and Cytotoxic Activity
by Rafael Hernandez, Arturo Jimenez-Chávez, Andrea De Vizcaya, Juan Antonio Lozano-Alvarez, Karen Esquivel and Iliana E. Medina-Ramírez
Nanomaterials 2023, 13(13), 1900; https://doi.org/10.3390/nano13131900 - 21 Jun 2023
Cited by 3 | Viewed by 1469
Abstract
Fungal infections have become a significant public health concern due to their increasing recurrence and harmful effects on plants, animals, and humans. Opportunistic pathogens (among others from the genera Candida and Aspergillus) can be present in indoor air, becoming a risk [...] Read more.
Fungal infections have become a significant public health concern due to their increasing recurrence and harmful effects on plants, animals, and humans. Opportunistic pathogens (among others from the genera Candida and Aspergillus) can be present in indoor air, becoming a risk for people with suppressed immune systems. Engineered nanomaterials are novel alternatives to traditional antifungal therapy. In this work, copper(I) iodide (CuI) and a copper-doped titanium dioxide—copper(I) iodide (TiO2-Cu2+/CuI) composite nanomaterials (NMs)—were synthesized and tested as antifungal agents. The materials were synthesized using sol-gel (TiO2-Cu2+) and co-precipitation (CuI) techniques. The resulting colloids were evaluated as antifungal agents against Candida parapsilosis and Aspergillus niger strains. The NMs were characterized by XRD, HRTEM, AFM, and DLS to evaluate their physicochemical properties. The NMs present a high size dispersion and different geometrical shapes of agglomerates. The antifungal capacity of the NMs by the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) was below 15 µg/mL against Candida parapsilosis and below 600 µg/mL against Aspergillus niger for both NMs. Holotomography microscopy showed that the NMs could penetrate cell membranes causing cell death through its rupture and reactive oxygen species (ROS) production. Cytotoxicity tests showed that NMs could be safe to use at low concentrations. The synthesized nanomaterials could be potential antifungal agents for biomedical or environmental applications. Full article
Show Figures

Figure 1

22 pages, 4297 KiB  
Article
Production and Incorporation of Calcium-Hydrolyzed Nanoparticles in Alkali-Activated Mine Tailings
by Yibran Perera-Mercado, Nan Zhang, Ahmadreza Hedayat, Linda Figueroa, Esmeralda Saucedo-Salazar, Cara Clements, Héctor Gelber Bolaños Sosa, Néstor Tupa, Isaac Yanqui Morales and Reynaldo Sabino Canahua Loza
Nanomaterials 2023, 13(12), 1875; https://doi.org/10.3390/nano13121875 - 17 Jun 2023
Cited by 4 | Viewed by 1760
Abstract
This work presented the production and incorporation of calcium-hydrolyzed nano-solutions at three concentrations (1, 2, and 3 wt.%) in alkali-activated gold mine tailings (MTs) from Arequipa, Perú. As the primary activator solution, a sodium hydroxide (NaOH) solution at 10 M was used. Calcium-hydrolyzed [...] Read more.
This work presented the production and incorporation of calcium-hydrolyzed nano-solutions at three concentrations (1, 2, and 3 wt.%) in alkali-activated gold mine tailings (MTs) from Arequipa, Perú. As the primary activator solution, a sodium hydroxide (NaOH) solution at 10 M was used. Calcium-hydrolyzed nanoparticles with a particle size of 10 nm were localized inside self-assembled molecular spherical systems (micelles) with diameters of less than 80 nm that were well-dispersed in aqueous solutions and acted as secondary activator, and also as additional calcium resource for alkali-activated materials (AAMs) based on low-calcium gold MTs. High-resolution transmission electron microscopy/energy-dispersive X-ray spectroscopy (HR-TEM/EDS) analyses were carried out to characterize the morphology, size, and structure of the calcium-hydrolyzed nanoparticles. Fourier transform infrared (FTIR) analyses were then used to understand the chemical bonding interactions in the calcium-hydrolyzed nanoparticles and in the AAMs. Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) and quantitative X-ray diffraction (QXRD) were performed to study the structural, chemical, and phase compositions of the AAMs; uniaxial compressive tests evaluated the compressive strength of the reaction AAMs; and nitrogen adsorption–desorption analyses measured porosity changes in the AAMs at the nanostructure level. The results indicated that the main cementing product generated was amorphous binder gel with low quantities of nanostructured C-S-H and C-A-S-H phases. The surplus production of this amorphous binder gel produced denser AAMs at the micro-level and nano-level (macroporous systems). In addition, each increase in the concentration of calcium-hydrolyzed nano-solution had a direct/proportional effect on the mechanical properties of the AAM samples. AAM with 3 wt.% calcium-hydrolyzed nano-solution had the highest compressive strength, with a value of 15.16 MPa, which represented an increase of 62% compared with the original system without nanoparticles that were aged under the same conditions at 70 °C for seven days. These results provided useful information about the positive effect of calcium-hydrolyzed nanoparticles on gold MTs and their conversion into sustainable building materials through alkali activation. Full article
Show Figures

Figure 1

26 pages, 5695 KiB  
Article
Synthesized Zeolite Based on Egyptian Boiler Ash Residue and Kaolin for the Effective Removal of Heavy Metal Ions from Industrial Wastewater
by Ahmed H. Ibrahim, Xianjun Lyu and Amr B. ElDeeb
Nanomaterials 2023, 13(6), 1091; https://doi.org/10.3390/nano13061091 - 17 Mar 2023
Cited by 16 | Viewed by 2930
Abstract
The increase of global environmental restrictions concerning solid and liquid industrial waste, in addition to the problem of climate change, which leads to a shortage of clean water resources, has raised interest in developing alternative and eco-friendly technologies for recycling and reducing the [...] Read more.
The increase of global environmental restrictions concerning solid and liquid industrial waste, in addition to the problem of climate change, which leads to a shortage of clean water resources, has raised interest in developing alternative and eco-friendly technologies for recycling and reducing the amount of these wastes. This study aims to utilize Sulfuric acid solid residue (SASR), which is produced as a useless waste in the multi-processing of Egyptian boiler ash. A modified mixture of SASR and kaolin was used as the basic component for synthesizing cost-effective zeolite using the alkaline fusion-hydrothermal method for the removal of heavy metal ions from industrial wastewater. The factors affecting the synthesis of zeolite, including the fusion temperature and SASR: kaolin mixing ratios, were investigated. The synthesized zeolite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), particle size analysis (PSD) and N2 adsorption-desorption. The SASR: kaolin weight ratio of 1:1.5 yields faujasite and sodalite zeolite with 85.21% crystallinity, which then shows the best composition and characteristics of the synthesized zeolite. The factors affecting the adsorption of Zn2+, Pb2+, Cu2+, and Cd2+ ions from wastewater on synthesized zeolite surfaces, including the effect of pH, adsorbent dosage, contact time, initial concentration, and temperature, have been investigated. The obtained results indicate that a pseudo-second-order kinetic model and Langmuir isotherm model describe the adsorption process. The maximum adsorption capacities of Zn2+, Pb2+, Cu2+, and Cd2+ ions onto zeolite at 20 °C were 12.025, 15.96, 12.247, and 16.17 mg·g−1, respectively. The main mechanisms controlling the removal of these metal ions from aqueous solution by synthesized zeolite were proposed to be either surface adsorption, precipitation, or ion exchange. The quality of the wastewater sample obtained from the Egyptian General Petroleum Corporation (Eastern Desert, Egypt) was highly improved using the synthesized zeolite and the content of heavy metal ions was significantly reduced, which enhances the utilization of the treated water in agriculture. Full article
Show Figures

Graphical abstract

14 pages, 2385 KiB  
Article
Magnetic Iron Oxide Nanoneedles with Hierarchical Structure for Controllable Catalytic Activity of 4-Nitrophenol Reduction
by Hyokyung Jeon and Ha-Jin Lee
Nanomaterials 2023, 13(6), 1037; https://doi.org/10.3390/nano13061037 - 13 Mar 2023
Cited by 7 | Viewed by 1845
Abstract
Catalyst systems with high catalytic activity and sustainability are highly desirable. Here, we report a design for catalytic composites with a hierarchical structure in which polydopamine (PD), multi-metallic nanocatalysts and iron oxide nanoneedles are successively deposited on a magnetic core. PD layers with [...] Read more.
Catalyst systems with high catalytic activity and sustainability are highly desirable. Here, we report a design for catalytic composites with a hierarchical structure in which polydopamine (PD), multi-metallic nanocatalysts and iron oxide nanoneedles are successively deposited on a magnetic core. PD layers with various thicknesses are coated onto the magnetic core and serve as a template by which to take up multi-metallic nanocatalysts such as Au, Ag and Pt nanoparticles. The iron oxide nanoneedles act as spacers, preventing the nanocomposite from aggregating and increasing the surface area of the composite. The distinctive structures of the controllable template, the multi-metallic catalysts and needle-like layers enable the rapid migration of reactive ionic species and enhance catalytic ability via the synergistic effect of the multi-metallic nanocatalysts and iron oxide nanoneedles. Moreover, due to the strong magnetic property of the catalytic nanocomposites, they can be easily recovered with an external magnet and reused. Our hierarchical nanocomposites for recyclable nanocatalysts provide a new design concept for highly efficient catalysts. Full article
Show Figures

Figure 1

10 pages, 3482 KiB  
Communication
Synthesis and Application of Ion-Exchange Magnetic Microspheres for Deep Removal of Trace Acetic Acid from DMAC Waste Liquid
by Xuna Jin, Yao Lu, Heyao Zhang, Yuheng Ju, Xiaodan Zeng, Xiang Li, Jie Chen, Zhigang Liu, Shihua Yu and Shanshan Wang
Nanomaterials 2023, 13(3), 509; https://doi.org/10.3390/nano13030509 - 27 Jan 2023
Cited by 4 | Viewed by 1364
Abstract
In order to develop a deep method for removing trace acetic acid from industrial solvents, a type of quaternary ammonium-salt-modified magnetic microspheres was developed as a potential nanoadsorbent for low-concentration acetic-acid-enhanced removal from DMAC aqueous solution. The ion-exchange magnetic microspheres (Fe3O [...] Read more.
In order to develop a deep method for removing trace acetic acid from industrial solvents, a type of quaternary ammonium-salt-modified magnetic microspheres was developed as a potential nanoadsorbent for low-concentration acetic-acid-enhanced removal from DMAC aqueous solution. The ion-exchange magnetic microspheres (Fe3O4@SiO2@N(CH3)3+) have been prepared by a two-step sol-gel method with N-trimethoxysilylpropyl-N, N, N-trimethylammonium chloride as functional monomer, tetraethyl orthosilicate as a cross-linking agent, Fe3O4@SiO2 as a matrix. The nanocomposite is characterized by SEM, FI-IR, XRD, VSM, and XPS. Moreover, the optimization of adsorption experiments shows that the maximum adsorption capacity of nanoadsorbent is 7.25 mg/g at a concentration = 30 mg/L, adsorbent dosage = 10 mg, V = 10 mL, and room temperature. Furthermore, the saturated Fe3O4@SiO2@N(CH3)3+ achieved an efficient regeneration using a simple desorption method and demonstrated a good regeneration performance after five adsorption/desorption cycles. In addition, Fe3O4@SiO2@N(CH3)3+ was used to remove acetic acid in DMAC waste liquid; the adsorption effect is consistent with that of a nanoadsorbent of acetic acid in an aqueous solution. These results indicate that Fe3O4@SiO2@N(CH3)3+ can efficiently treat acetic acid that is difficult to remove from DMAC waste liquid. Full article
Show Figures

Figure 1

Review

Jump to: Research

38 pages, 1928 KiB  
Review
An Up-to-Date Review on the Remediation of Dyes and Phenolic Compounds from Wastewaters Using Enzymes Immobilized on Emerging and Nanostructured Materials: Promises and Challenges
by Mohammed K. Al-Sakkaf, Ibrahim Basfer, Mustapha Iddrisu, Salem A. Bahadi, Mustafa S. Nasser, Basim Abussaud, Qasem A. Drmosh and Sagheer A. Onaizi
Nanomaterials 2023, 13(15), 2152; https://doi.org/10.3390/nano13152152 - 25 Jul 2023
Cited by 11 | Viewed by 2432
Abstract
Addressing the critical issue of water pollution, this review article emphasizes the need to remove hazardous dyes and phenolic compounds from wastewater. These pollutants pose severe risks due to their toxic, mutagenic, and carcinogenic properties. The study explores various techniques for the remediation [...] Read more.
Addressing the critical issue of water pollution, this review article emphasizes the need to remove hazardous dyes and phenolic compounds from wastewater. These pollutants pose severe risks due to their toxic, mutagenic, and carcinogenic properties. The study explores various techniques for the remediation of organic contaminants from wastewater, including an enzymatic approach. A significant challenge in enzymatic wastewater treatment is the loss of enzyme activity and difficulty in recovery post-treatment. To mitigate these issues, this review examines the strategy of immobilizing enzymes on newly developed nanostructured materials like graphene, carbon nanotubes (CNTs), and metal–organic frameworks (MOFs). These materials offer high surface areas, excellent porosity, and ample anchoring sites for effective enzyme immobilization. The review evaluates recent research on enzyme immobilization on these supports and their applications in biocatalytic nanoparticles. It also analyzes the impact of operational factors (e.g., time, pH, and temperature) on dye and phenolic compound removal from wastewater using these enzymes. Despite promising outcomes, this review acknowledges the challenges for large-scale implementation and offers recommendations for future research to tackle these obstacles. This review concludes by suggesting that enzyme immobilization on these emerging materials could present a sustainable, environmentally friendly solution to the escalating water pollution crisis. Full article
Show Figures

Figure 1

Back to TopTop