sensors-logo

Journal Browser

Journal Browser

Antennas and Propagation for 5G and Beyond: From Ground to Space

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Communications".

Deadline for manuscript submissions: closed (30 June 2023) | Viewed by 2052

Special Issue Editor


E-Mail Website
Guest Editor
Department of Electronics Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
Interests: wireless system; antenna; wireless power transfer
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Next-generation communication standards such as 5G, B5G and 6G are among the most important technologies for the future. Advanced antenna and RF front-end systems are key technologies to meet the demanding requirements for next-generation communications. This Special Issue includes a broad research topic on sub-6GHz/mmWave technology for 5G, sub-THz technology for 6G antenna technology, and satellite antenna/RF system.

Dr. Sangkil Kim
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 5837 KiB  
Article
Channel Selectivity of Satellite Transponders with the Antenna Combined with a Size-Reduced Metallic Waveguide Bandpass Filter Having Thin Metamaterial Resonators
by Junghyun Cho, Yejune Seo, Wonjae Shin, Eungdon Lee and Sungtek Kahng
Sensors 2023, 23(4), 1948; https://doi.org/10.3390/s23041948 - 9 Feb 2023
Viewed by 1648
Abstract
Global and intercontinental networking relies on satellite communication. Its wireless communication system always has antennas and their feed assembly comprising waveguides. This makes the satellite payload heavy and costly. In this paper, a novel method is proposed to effectively reduce the size of [...] Read more.
Global and intercontinental networking relies on satellite communication. Its wireless communication system always has antennas and their feed assembly comprising waveguides. This makes the satellite payload heavy and costly. In this paper, a novel method is proposed to effectively reduce the size of a waveguide bandpass filter (BPF). Because the metallic cavities make the conventional waveguide end up with a large geometry, especially for high-order BPFs, very compact waveguide-type resonators having metamaterial zeroth-order resonance (WG-ZOR) are designed on the cross-section of the waveguide and substituted for the cavities. While the cavities are half-wavelength resonators, the WG-ZOR is shorter than one eighth of a wavelength. A substantial reduction in size and weight of the waveguide filter is observed as the resonators are cascaded in series through coupling elements in the X-band much longer than K- or Ka-band. An X-band of 7.25~7.75 GHz is chosen to verify the method as the passband with attenuation of 40 dB at 7.00 GHz and 8.00 GHz as the roll-off in the stopband. The BPF is manufactured using the CNC milling technique. The design is carried out with geometrical parameters, not of the level of 10 μm, but the level of 100 μm, which is good for manufacturers but a big challenge for component designers. The measurement of the manufactured metal waveguide filter reveals that the passband has about ≤1 dB and ≤−15 dB as insertion loss and reflection coefficient and the stopband has ≤−40 dB as attenuation, which are in good agreement with the results of the circuit and simulation. The proposed filter has a length of 3.5 λg as the eighth-order BPF, but the conventional waveguide is 5 λg as the seventh-order BPF for the same area of the cross-section. This metamaterial BPF is combined with a horn antenna. The filter enables the wide-band antenna to distinguish the band of transmission from that of noise suppression. This channel selectivity is obviously observed by the filter integrated antenna test. Full article
(This article belongs to the Special Issue Antennas and Propagation for 5G and Beyond: From Ground to Space)
Show Figures

Figure 1

Back to TopTop