sensors-logo

Journal Browser

Journal Browser

Advanced Sensors Based on Carbon Electrodes

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Chemical Sensors".

Deadline for manuscript submissions: closed (31 July 2017) | Viewed by 88985

Special Issue Editors


E-Mail Website
Guest Editor
Nadir S.r.l., Venice Area, Italy
Interests: electroanalytical chemistry, nanomaterials, surface chemistry, plasma chemistry

E-Mail Website
Guest Editor
Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Mestre, Italy
Interests: development of electrochemical sensors and biosensors for electrochemical and biomedical applications; environmental electroanalysis; modified electrodes; nanoelectrodes and arrays of nanoelectrodes; nanostructured electrodes
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, via Torino 155, 30172 Venezia Mestre, Italy
Interests: molecular electrochemistry; electrochemosensors and biosensors; environmental electroanalysis; nanoelectrodes and bio-nanoelectrochemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, a great revival in the use of carbon electrodes for analytical and sensing purposes was observed in relation to the variety of novel carbon forms accessible to analytical electrochemists. They include advanced carbon nanomaterials, such as carbon nanotubes, graphene and graphene oxide, as well as other carbon forms available both as bulk material or ultrathin- or nano-layers, carbon black, doped diamond, etc. These materials present remarkable electroanalytical properties both for the direct detection of electroactive species as well as being functionally tailored to develop sensitive and specific electrochemical sensors and biosensors. The goal of this Special Issue is to set the state-of-the-art on recent advances in this field with contributions which can include original research papers, technical communications and/or short notes, reviews and mini-reviews.

Dr. Paolo Scopece
Prof. Dr. Ligia Maria Moretto
Prof. Dr. Paolo Ugo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Graphite
  • Glassy carbon
  • Carbon nanotubes
  • Graphene
  • Carbon paste electrodes
  • Boron doped diamond
  • Carbon nanofibers
  • Carbon black
  • Pyrolyzed photoresist carbon electrodes
  • Screen printed electrodes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

2666 KiB  
Article
Nitrogen-Rich Polyacrylonitrile-Based Graphitic Carbons for Hydrogen Peroxide Sensing
by Brandon Pollack, Sunshine Holmberg, Derosh George, Ich Tran, Marc Madou and Maziar Ghazinejad
Sensors 2017, 17(10), 2407; https://doi.org/10.3390/s17102407 - 21 Oct 2017
Cited by 28 | Viewed by 6964
Abstract
Catalytic substrate, which is devoid of expensive noble metals and enzymes for hydrogen peroxide (H2O2), reduction reactions can be obtained via nitrogen doping of graphite. Here, we report a facile fabrication method for obtaining such nitrogen doped graphitized carbon [...] Read more.
Catalytic substrate, which is devoid of expensive noble metals and enzymes for hydrogen peroxide (H2O2), reduction reactions can be obtained via nitrogen doping of graphite. Here, we report a facile fabrication method for obtaining such nitrogen doped graphitized carbon using polyacrylonitrile (PAN) mats and its use in H2O2 sensing. A high degree of graphitization was obtained with a mechanical treatment of the PAN fibers embedded with carbon nanotubes (CNT) prior to the pyrolysis step. The electrochemical testing showed a limit of detection (LOD) 0.609 µM and sensitivity of 2.54 µA cm−2 mM−1. The promising sensing performance of the developed carbon electrodes can be attributed to the presence of high content of pyridinic and graphitic nitrogens in the pyrolytic carbons, as confirmed by X-ray photoelectron spectroscopy. The reported results suggest that, despite their simple fabrication, the hydrogen peroxide sensors developed from pyrolytic carbon nanofibers are comparable with their sophisticated nitrogen-doped graphene counterparts. Full article
(This article belongs to the Special Issue Advanced Sensors Based on Carbon Electrodes)
Show Figures

Figure 1

6205 KiB  
Article
Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®
by Stefano Cinti, Vincenzo Mazzaracchio, Ilaria Cacciotti, Danila Moscone and Fabiana Arduini
Sensors 2017, 17(10), 2267; https://doi.org/10.3390/s17102267 - 3 Oct 2017
Cited by 58 | Viewed by 8850
Abstract
Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M® (Heathrow Scientific, Vernon Hills, IL, USA) as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as [...] Read more.
Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M® (Heathrow Scientific, Vernon Hills, IL, USA) as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial. Full article
(This article belongs to the Special Issue Advanced Sensors Based on Carbon Electrodes)
Show Figures

Graphical abstract

1696 KiB  
Article
Ultrathin Tungsten Oxide Nanowires/Reduced Graphene Oxide Composites for Toluene Sensing
by Muhammad Hassan, Zhi-Hua Wang, Wei-Ran Huang, Min-Qiang Li, Jian-Wei Liu and Jia-Fu Chen
Sensors 2017, 17(10), 2245; https://doi.org/10.3390/s17102245 - 29 Sep 2017
Cited by 19 | Viewed by 6327
Abstract
Graphene-based composites have gained great attention in the field of gas sensor fabrication due to their higher surface area with additional functional groups. Decorating one-dimensional (1D) semiconductor nanomaterials on graphene also show potential benefits in gas sensing applications. Here we demonstrate the one-pot [...] Read more.
Graphene-based composites have gained great attention in the field of gas sensor fabrication due to their higher surface area with additional functional groups. Decorating one-dimensional (1D) semiconductor nanomaterials on graphene also show potential benefits in gas sensing applications. Here we demonstrate the one-pot and low cost synthesis of W18O49 NWs/rGO composites with different amount of reduced graphene oxide (rGO) which show excellent gas-sensing properties towards toluene and strong dependence on their chemical composition. As compared to pure W18O49 NWs, an improved gas sensing response (2.8 times higher) was achieved in case of W18O49 NWs composite with 0.5 wt. % rGO. Promisingly, this strategy can be extended to prepare other nanowire based composites with excellent gas-sensing performance. Full article
(This article belongs to the Special Issue Advanced Sensors Based on Carbon Electrodes)
Show Figures

Figure 1

3132 KiB  
Article
Microwave Deposition of Palladium Catalysts on Graphite Spheres and Reduced Graphene Oxide Sheets for Electrochemical Glucose Sensing
by Jian-De Xie, Siyong Gu and Houan Zhang
Sensors 2017, 17(10), 2163; https://doi.org/10.3390/s17102163 - 21 Sep 2017
Cited by 7 | Viewed by 5505
Abstract
This work outlines a synthetic strategy inducing the microwave-assisted synthesis of palladium (Pd) nanocrystals on a graphite sphere (GS) and reduced graphene oxide (rGO) supports, forming the Pd catalysts for non-enzymatic glucose oxidation reaction (GOR). The pulse microwave approach takes a short period [...] Read more.
This work outlines a synthetic strategy inducing the microwave-assisted synthesis of palladium (Pd) nanocrystals on a graphite sphere (GS) and reduced graphene oxide (rGO) supports, forming the Pd catalysts for non-enzymatic glucose oxidation reaction (GOR). The pulse microwave approach takes a short period (i.e., 10 min) to fast synthesize Pd nanocrystals onto a carbon support at 150 °C. The selection of carbon support plays a crucial role in affecting Pd particle size and dispersion uniformity. The robust design of Pd-rGO catalyst electrode displays an enhanced electrocatalytic activity and sensitivity toward GOR. The enhanced performance is mainly attributed to the synergetic effect that combines small crystalline size and two-dimensional conductive support, imparting high accessibility to non-enzymatic GOR. The rGO sheets serve as a conductive scaffold, capable of fast conducting electron. The linear plot of current response versus glucose concentration exhibits good correlations within the range of 1–12 mM. The sensitivity of the Pd-rGO catalyst is significantly enhanced by 3.7 times, as compared to the Pd-GS catalyst. Accordingly, the Pd-rGO catalyst electrode can be considered as a potential candidate for non-enzymatic glucose biosensor. Full article
(This article belongs to the Special Issue Advanced Sensors Based on Carbon Electrodes)
Show Figures

Figure 1

6610 KiB  
Article
A Third Generation Glucose Biosensor Based on Cellobiose Dehydrogenase Immobilized on a Glassy Carbon Electrode Decorated with Electrodeposited Gold Nanoparticles: Characterization and Application in Human Saliva
by Paolo Bollella, Lo Gorton, Roland Ludwig and Riccarda Antiochia
Sensors 2017, 17(8), 1912; https://doi.org/10.3390/s17081912 - 18 Aug 2017
Cited by 82 | Viewed by 14378
Abstract
Efficient direct electron transfer (DET) between a cellobiose dehydrogenase mutant from Corynascus thermophilus (CtCDH C291Y) and a novel glassy carbon (GC)-modified electrode, obtained by direct electrodeposition of gold nanoparticles (AuNPs) was realized. The electrode was further modified with a mixed self-assembled monolayer of [...] Read more.
Efficient direct electron transfer (DET) between a cellobiose dehydrogenase mutant from Corynascus thermophilus (CtCDH C291Y) and a novel glassy carbon (GC)-modified electrode, obtained by direct electrodeposition of gold nanoparticles (AuNPs) was realized. The electrode was further modified with a mixed self-assembled monolayer of 4-aminothiophenol (4-APh) and 4-mercaptobenzoic acid (4-MBA), by using glutaraldehyde (GA) as cross-linking agent. The CtCDH C291Y/GA/4-APh,4-MBA/AuNPs/GC platform showed an apparent heterogeneous electron transfer rate constant (ks) of 19.4 ± 0.6 s−1, with an enhanced theoretical and real enzyme surface coverage (Γtheor and Γreal) of 5287 ± 152 pmol cm−2 and 27 ± 2 pmol cm−2, respectively. The modified electrode was successively used as glucose biosensor exhibiting a detection limit of 6.2 μM, an extended linear range from 0.02 to 30 mM, a sensitivity of 3.1 ± 0.1 μA mM−1 cm−2 (R2 = 0.995), excellent stability and good selectivity. These performances compared favourably with other glucose biosensors reported in the literature. Finally, the biosensor was tested to quantify the glucose content in human saliva samples with successful results in terms of both recovery and correlation with glucose blood levels, allowing further considerations on the development of non-invasive glucose monitoring devices. Full article
(This article belongs to the Special Issue Advanced Sensors Based on Carbon Electrodes)
Show Figures

Figure 1

1962 KiB  
Article
Detection of Guanine and Adenine Using an Aminated Reduced Graphene Oxide Functional Membrane-Modified Glassy Carbon Electrode
by Di Li, Xiao-Lu Yang, Bao-Lin Xiao, Fang-Yong Geng, Jun Hong, Nader Sheibani and Ali Akbar Moosavi-Movahedi
Sensors 2017, 17(7), 1652; https://doi.org/10.3390/s17071652 - 18 Jul 2017
Cited by 15 | Viewed by 6970
Abstract
A new electrochemical sensor based on a Nafion, aminated reduced graphene oxide and chitosan functional membrane-modified glassy carbon electrode was proposed for the simultaneous detection of adenine and guanine. Fourier transform-infrared spectrometry (FTIR), transmission electron microscopy (TEM), and electrochemical methods were utilized for [...] Read more.
A new electrochemical sensor based on a Nafion, aminated reduced graphene oxide and chitosan functional membrane-modified glassy carbon electrode was proposed for the simultaneous detection of adenine and guanine. Fourier transform-infrared spectrometry (FTIR), transmission electron microscopy (TEM), and electrochemical methods were utilized for the additional characterization of the membrane materials. The prepared electrode was utilized for the detection of guanine (G) and adenine (A). The anodic peak currents to G and A were linear in the concentrations ranging from 0.1 to 120 μM and 0.2 to 110 μM, respectively. The detection limits were found to be 0.1 μM and 0.2 μM, respectively. Moreover, the modified electrode could also be used to determine G and A in calf thymus DNA. Full article
(This article belongs to the Special Issue Advanced Sensors Based on Carbon Electrodes)
Show Figures

Figure 1

2474 KiB  
Article
Detection of Quinoline in G. boninense-Infected Plants Using Functionalized Multi-Walled Carbon Nanotubes: A Field Study
by Fowotade Sulayman Akanbi, Nor Azah Yusof, Jaafar Abdullah, Yusran Sulaiman and Roozbeh Hushiarian
Sensors 2017, 17(7), 1538; https://doi.org/10.3390/s17071538 - 1 Jul 2017
Cited by 16 | Viewed by 5929
Abstract
Carbon nanotubes (CNTs) reinforced with gold nanoparticles (AuNPs) and chitosan nanoparticles (CTSNPs) were anchored on a screen-printed electrode to fabricate a multi-walled structure for the detection of quinoline. The surface morphology of the nanocomposites and the modified electrode was examined by an ultra-high [...] Read more.
Carbon nanotubes (CNTs) reinforced with gold nanoparticles (AuNPs) and chitosan nanoparticles (CTSNPs) were anchored on a screen-printed electrode to fabricate a multi-walled structure for the detection of quinoline. The surface morphology of the nanocomposites and the modified electrode was examined by an ultra-high resolution field emission scanning electron microscope (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy was used to confirm the presence of specific functional groups on the multi-walled carbon nanotubes MWCNTs. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to monitor the layer-by-layer assembly of ultra-thin films of nanocomposites on the surface of the electrode and other electrochemical characterizations. Under optimized conditions, the novel sensor displayed outstanding electrochemical reactivity towards the electro-oxidation of quinoline. The linear range was fixed between 0.0004 and 1.0 μM, with a limit of detection (LOD) of 3.75 nM. The fabricated electrode exhibited high stability with excellent sensitivity and selectivity, specifically attributable to the salient characteristics of AuNPs, CTSNPs, and MWCNTs and the synergistic inter-relationship between them. The newly developed electrode was tested in the field. The Ipa increased with an increase in the amount of quinoline solution added, and the peak potential deviated minimally, depicting the real capability of the newly fabricated electrode. Full article
(This article belongs to the Special Issue Advanced Sensors Based on Carbon Electrodes)
Show Figures

Figure 1

31688 KiB  
Article
Flexible, Low-Cost Sensor Based on Electrolyte Gated Carbon Nanotube Field Effect Transistor for Organo-Phosphate Detection
by Vijay Deep Bhatt, Saumya Joshi, Markus Becherer and Paolo Lugli
Sensors 2017, 17(5), 1147; https://doi.org/10.3390/s17051147 - 18 May 2017
Cited by 29 | Viewed by 7210
Abstract
A flexible enzymatic acetylcholinesterase biosensor based on an electrolyte-gated carbon nanotube field effect transistor is demonstrated. The enzyme immobilization is done on a planar gold gate electrode using 3-mercapto propionic acid as the linker molecule. The sensor showed good sensing capability as a [...] Read more.
A flexible enzymatic acetylcholinesterase biosensor based on an electrolyte-gated carbon nanotube field effect transistor is demonstrated. The enzyme immobilization is done on a planar gold gate electrode using 3-mercapto propionic acid as the linker molecule. The sensor showed good sensing capability as a sensor for the neurotransmitter acetylcholine, with a sensitivity of 5.7 μA/decade, and demonstrated excellent specificity when tested against interfering analytes present in the body. As the flexible sensor is supposed to suffer mechanical deformations, the endurance of the sensor was measured by putting it under extensive mechanical stress. The enzymatic activity was inhibited by more than 70% when the phosphate-buffered saline (PBS) buffer was spiked with 5 mg/mL malathion (an organophosphate) solution. The biosensor was successfully challenged with tap water and strawberry juice, demonstrating its usefulness as an analytical tool for organophosphate detection. Full article
(This article belongs to the Special Issue Advanced Sensors Based on Carbon Electrodes)
Show Figures

Figure 1

16512 KiB  
Article
The Electrochemical Behavior of Carbon Fiber Microelectrodes Modified with Carbon Nanotubes Using a Two-Step Electroless Plating/Chemical Vapor Deposition Process
by Longsheng Lu, Linsheng Liang, Kwok Siong Teh, Yingxi Xie, Zhenping Wan and Yong Tang
Sensors 2017, 17(4), 725; https://doi.org/10.3390/s17040725 - 30 Mar 2017
Cited by 21 | Viewed by 7829
Abstract
Carbon fiber microelectrode (CFME) has been extensively applied in the biosensor and chemical sensor domains. In order to improve the electrochemical activity and sensitivity of the CFME, a new CFME modified with carbon nanotubes (CNTs), denoted as CNTs/CFME, was fabricated and investigated. First, [...] Read more.
Carbon fiber microelectrode (CFME) has been extensively applied in the biosensor and chemical sensor domains. In order to improve the electrochemical activity and sensitivity of the CFME, a new CFME modified with carbon nanotubes (CNTs), denoted as CNTs/CFME, was fabricated and investigated. First, carbon fiber (CF) monofilaments grafted with CNTs (simplified as CNTs/CFs) were fabricated in two key steps: (i) nickel electroless plating, followed by (ii) chemical vapor deposition (CVD). Second, a single CNTs/CF monofilament was selected and encapsulated into a CNTs/CFME with a simple packaging method. The morphologies of as-prepared CNTs/CFs were characterized by scanning electron microscopy. The electrochemical properties of CNTs/CFMEs were measured in potassium ferrocyanide solution (K4Fe(CN)6), by using a cyclic voltammetry (CV) and a chronoamperometry method. Compared with a bare CFME, a CNTs/CFME showed better CV curves with a higher distinguishable redox peak and response current; the higher the CNT content was, the better the CV curves were. Because the as-grown CNTs significantly enhanced the effective electrode area of CNTs/CFME, the contact area between the electrode and reactant was enlarged, further increasing the electrocatalytic active site density. Furthermore, the modified microelectrode displayed almost the same electrochemical behavior after 104 days, exhibiting remarkable stability and outstanding reproducibility. Full article
(This article belongs to the Special Issue Advanced Sensors Based on Carbon Electrodes)
Show Figures

Figure 1

Review

Jump to: Research, Other

9076 KiB  
Review
Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon
by Alain Walcarius
Sensors 2017, 17(8), 1863; https://doi.org/10.3390/s17081863 - 11 Aug 2017
Cited by 63 | Viewed by 10470
Abstract
The past decade has seen an increasing number of extensive studies devoted to the exploitation of ordered mesoporous carbon (OMC) materials in electrochemistry, notably in the fields of energy and sensing. The present review summarizes the recent achievements made in field of electroanalysis [...] Read more.
The past decade has seen an increasing number of extensive studies devoted to the exploitation of ordered mesoporous carbon (OMC) materials in electrochemistry, notably in the fields of energy and sensing. The present review summarizes the recent achievements made in field of electroanalysis using electrodes modified with such nanomaterials. On the basis of comprehensive tables, the interest in OMC for designing electrochemical sensors is illustrated through the various applications developed to date. They include voltammetric detection after preconcentration, electrocatalysis (intrinsically due to OMC or based on suitable catalysts deposited onto OMC), electrochemical biosensors, as well as electrochemiluminescence and potentiometric sensors. Full article
(This article belongs to the Special Issue Advanced Sensors Based on Carbon Electrodes)
Show Figures

Figure 1

Other

Jump to: Research, Review

13451 KiB  
Technical Note
Flexible Boron-Doped Diamond (BDD) Electrodes for Plant Monitoring
by Shoko Tago, Tsuyoshi Ochiai, Seitaro Suzuki, Mio Hayashi, Takeshi Kondo and Akira Fujishima
Sensors 2017, 17(7), 1638; https://doi.org/10.3390/s17071638 - 15 Jul 2017
Cited by 14 | Viewed by 7116
Abstract
Detecting the bio-potential changes of plants would be useful for monitoring their growth and health in the field. A sensitive plant monitoring system with flexible boron-doped diamond (BDD) electrodes prepared from BDD powder and resin (Nafion or Vylon-KE1830) was investigated. The properties of [...] Read more.
Detecting the bio-potential changes of plants would be useful for monitoring their growth and health in the field. A sensitive plant monitoring system with flexible boron-doped diamond (BDD) electrodes prepared from BDD powder and resin (Nafion or Vylon-KE1830) was investigated. The properties of the electrodes were compared with those of small BDD plate-type electrodes by monitoring the bioelectric potentials of potted Aloe and hybrid species in the genus Opuntia. While flexible BDD electrodes have wide potential windows, their cyclic voltammograms are different from those of the BDD plate. Further, the potential gap between a pair of electrodes attached to the plants changes as the plants are stimulated artificially with a finger touch, suggesting that the bioelectric potentials in the plant also changed, manifesting as changes in the potential gap between the electrodes. The BDD electrodes were assessed for their response reproducibility to a finger stimulus for 30 days. It was concluded that the plant monitoring system worked well with flexible BDD electrodes. Further, the electrodes were stable, and as reliable as the BDD plate electrodes in this study. Thus, a flexible and inexpensive BDD electrode system was successfully fabricated for monitoring the bioelectric potential changes in plants. Full article
(This article belongs to the Special Issue Advanced Sensors Based on Carbon Electrodes)
Show Figures

Figure 1

Back to TopTop