Transcriptomic and Proteomic Study on Animal Venom: Looking Forward

A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Animal Venoms".

Deadline for manuscript submissions: 30 May 2025 | Viewed by 10421

Special Issue Editor


E-Mail Website
Guest Editor
BioIndustrial Center, Institute Butantan, São Paulo 05503-900, Brazil
Interests: snake venom; genomic; transcriptome; protein chemistry; antiserum production

Special Issue Information

Dear Colleagues,

Transcriptomic and proteomic studies concerning venom and venom glands constituted a major breakthrough in the characterization and knowledge of global crude venom compositions, and animal venom and venom glands in particular. More than 20 years have passed since the first studies utilized omics technologies, providing the first highthroughput data using these techniques. A critical evaluation of their contributions as well as their limitations may help to guide future research on animal venom toxin biology, with potential application in biomedical research. Novel technologies that can be combined with transcriptomic and proteomic studies are also emerging, providing new tools with the potential for a high impact in envenomation biology, evolution, therapy, the mechanisms implicated in the post-translational modification of these toxins and many other aspects. These would fill the knowledge gap at an accelerated pace. With this in mind, we will review the achievements, present contributions, gaps in the literature, integration and perspectives regarding these technologies for application in animal toxin biology and biomedical research, particularly when combined with new emerging technologies.

Dr. Paulo Lee Ho
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • transcriptome
  • proteome
  • venom composition
  • toxin(s)

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 3658 KiB  
Communication
Proteotranscriptomic Profiling of the Toxic Mucus of Kulikovia alborostrata (Pilidiophora, Nemertea)
by Vasiliy G. Kuznetsov, Daria I. Melnikova, Sergey V. Shabelnikov and Timur Yu. Magarlamov
Toxins 2025, 17(1), 5; https://doi.org/10.3390/toxins17010005 - 26 Dec 2024
Viewed by 381
Abstract
Nemertea is a phylum of bilaterally symmetrical, coelomate, unsegmented worms, also known as ribbon worms. Most species of the phylum Nemertea are marine predators that contain toxins in the single-celled glands of the proboscis and/or integument. Recent transcriptomic studies have shown that nemerteans [...] Read more.
Nemertea is a phylum of bilaterally symmetrical, coelomate, unsegmented worms, also known as ribbon worms. Most species of the phylum Nemertea are marine predators that contain toxins in the single-celled glands of the proboscis and/or integument. Recent transcriptomic studies have shown that nemerteans from all taxonomic groups possess a wide range of putative protein and peptide toxins, while the proteomic data for these animals are highly limited. In this study, proteotranscriptomic analysis was used to investigate the major protein components of the poison of the nemertean Kulikovia alborostrata. We identified 146 transcripts of putative toxins in the transcriptome of K. alborostrata and five putative toxins among the secreted proteins and peptides of the mucus of the animal. The expression levels of cysteine-rich peptides found in the mucus with similarity to known toxins were evaluated in different parts of the body of the worm by quantitative real-time PCR. The high level of expression of investigated peptides in the integument indicate the protective function of these toxins. Overall, this supports the idea that the mucus of nemerteans is a valuable source of peptide and protein toxins. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Graphical abstract

23 pages, 8050 KiB  
Article
Exploring the Venom Gland Transcriptome of Bothrops asper and Bothrops jararaca: De Novo Assembly and Analysis of Novel Toxic Proteins
by Joseph Espín-Angulo and Doris Vela
Toxins 2024, 16(12), 511; https://doi.org/10.3390/toxins16120511 - 27 Nov 2024
Viewed by 961
Abstract
Previous proteomic studies of viperid venom revealed that it is mainly composed of metalloproteinases (SVMPs), serine proteinases (SVSPs), phospholipase A2 (PLA2), and C-type lectins (CTLs). However, other proteins appear in minor amounts that affect prey and need to be identified. This study aimed [...] Read more.
Previous proteomic studies of viperid venom revealed that it is mainly composed of metalloproteinases (SVMPs), serine proteinases (SVSPs), phospholipase A2 (PLA2), and C-type lectins (CTLs). However, other proteins appear in minor amounts that affect prey and need to be identified. This study aimed to identify novel toxic proteins in the venom gland transcriptome of Bothrops asper and Bothrops jararaca, using data from NCBI. Bioinformatics tools were used to assemble, identify, and compare potentially novel proteins in both species, and we performed functional annotation with BLASTX against the NR database. While previous assemblies have been performed for B. jararaca, this is the first assembly of the B. asper venom gland transcriptome. Proteins with potentially novel functions were identified, including arylsulfatase and dihydroorotate dehydrogenase, among others, that could have implications for venom toxicity. These results suggest that the identified proteins may contribute to venom toxic variation and provide new opportunities for antivenom research. The study improves the understanding of the protein composition of Bothrops venom and suggests new possibilities for the development of treatments and antivenoms. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Graphical abstract

21 pages, 5193 KiB  
Article
Proteomic Profiling of Venoms from Bungarus suzhenae and B. bungaroides: Enzymatic Activities and Toxicity Assessment
by Chenying Yang, Li Ding, Qiyi He, Xiya Chen, Haiting Zhu, Feng Chen, Wanzhou Yang, Yuexin Pan, Zhiyuan Tai, Wenhao Zhang, Zeyuan Yu, Zening Chen and Xiaodong Yu
Toxins 2024, 16(11), 494; https://doi.org/10.3390/toxins16110494 - 16 Nov 2024
Viewed by 1427
Abstract
Kraits are venomous snakes of the genus Bungarus from the family Elapidae. Their venom typically demonstrates neurotoxicity; however, the toxicity is significantly influenced by the snake’s species and geographical origin. Among the Bungarus species, Bungarus suzhenae and B. bungaroides have been poorly [...] Read more.
Kraits are venomous snakes of the genus Bungarus from the family Elapidae. Their venom typically demonstrates neurotoxicity; however, the toxicity is significantly influenced by the snake’s species and geographical origin. Among the Bungarus species, Bungarus suzhenae and B. bungaroides have been poorly studied, with little to no information available regarding their venom composition. In this study, a proteomic approach was employed using LC-MS/MS to identify proteins from trypsin-digested peptides. The analysis revealed 102 venom-related proteins from 18 distinct functional protein families in the venom of B. suzhenae, with the primary components being three-finger toxins (3-FTx, 25.84%), phospholipase A2 (PLA2, 40.29%), L-amino acid oxidase (LAAO, 10.33%), Kunitz-type serine protease inhibitors (KUN, 9.48%), and snake venom metalloproteinases (SVMPs, 6.13%). In the venom of B. bungaroides, 99 proteins from 17 families were identified, with primary components being 3-FTx (33.87%), PLA2 (37.91%), LAAO (4.21%), and KUN (16.60%). Enzymatic activity assays confirmed the presence of key venom enzymes. Additionally, the LD50 values for B. suzhenae and B. bungaroides were 0.0133 μg/g and 0.752 μg/g, respectively, providing a reference for toxicity studies of these two species. This research elucidates the proteomic differences in the venoms of these two species, offering a foundation for developing antivenoms and clinical treatments for envenomation. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Figure 1

19 pages, 10599 KiB  
Article
Identification and Evolutionary Analysis of the Widely Distributed CAP Superfamily in Spider Venom
by Hongcen Jiang, Yiru Wang, Guoqing Zhang, Anqiang Jia, Zhaoyuan Wei and Yi Wang
Toxins 2024, 16(6), 240; https://doi.org/10.3390/toxins16060240 - 24 May 2024
Viewed by 1668
Abstract
Venom plays a crucial role in the defense and predation of venomous animals. Spiders (Araneae) are among the most successful predators and have a fascinating venom composition. Their venom mainly contains disulfide-rich peptides and large proteins. Here, we analyzed spider venom protein families, [...] Read more.
Venom plays a crucial role in the defense and predation of venomous animals. Spiders (Araneae) are among the most successful predators and have a fascinating venom composition. Their venom mainly contains disulfide-rich peptides and large proteins. Here, we analyzed spider venom protein families, utilizing transcriptomic and genomic data, and highlighted their similarities and differences. We show that spiders have specific combinations of toxins for better predation and defense, typically comprising a core toxin expressed alongside several auxiliary toxins. Among them, the CAP superfamily is widely distributed and highly expressed in web-building Araneoidea spiders. Our analysis of evolutionary relationships revealed four subfamilies (subA-subD) of the CAP superfamily that differ in structure and potential functions. CAP proteins are composed of a conserved CAP domain and diverse C-terminal domains. CAP subC shares similar domains with the snake ion channel regulator svCRISP proteins, while CAP subD possesses a sequence similar to that of insect venom allergen 5 (Ag5). Furthermore, we show that gene duplication and selective expression lead to increased expression of CAP subD, making it a core member of the CAP superfamily. This study sheds light on the functional diversity of CAP subfamilies and their evolutionary history, which has important implications for fully understanding the composition of spider venom proteins and the core toxin components of web-building spiders. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Figure 1

16 pages, 3236 KiB  
Article
Unveiling Novel Kunitz- and Waprin-Type Toxins in the Micrurus mipartitus Coral Snake Venom Gland: An In Silico Transcriptome Analysis
by Mónica Saldarriaga-Córdoba, Claudia Clavero-León, Paola Rey-Suarez, Vitelbina Nuñez-Rangel, Ruben Avendaño-Herrera, Stefany Solano-González and Juan F. Alzate
Toxins 2024, 16(5), 224; https://doi.org/10.3390/toxins16050224 - 11 May 2024
Cited by 3 | Viewed by 1559
Abstract
Kunitz-type peptide expression has been described in the venom of snakes of the Viperidae, Elapidae and Colubridae families. This work aimed to identify these peptides in the venom gland transcriptome of the coral snake Micrurus mipartitus. Transcriptomic analysis revealed a high diversity [...] Read more.
Kunitz-type peptide expression has been described in the venom of snakes of the Viperidae, Elapidae and Colubridae families. This work aimed to identify these peptides in the venom gland transcriptome of the coral snake Micrurus mipartitus. Transcriptomic analysis revealed a high diversity of venom-associated Kunitz serine protease inhibitor proteins (KSPIs). A total of eight copies of KSPIs were predicted and grouped into four distinctive types, including short KSPI, long KSPI, Kunitz–Waprin (Ku-WAP) proteins, and a multi-domain Kunitz-type protein. From these, one short KSPI showed high identity with Micrurus tener and Austrelaps superbus. The long KSPI group exhibited similarity within the Micrurus genus and showed homology with various elapid snakes and even with the colubrid Pantherophis guttatus. A third group suggested the presence of Kunitz domains in addition to a whey-acidic-protein-type four-disulfide core domain. Finally, the fourth group corresponded to a transcript copy with a putative 511 amino acid protein, formerly annotated as KSPI, which UniProt classified as SPINT1. In conclusion, this study showed the diversity of Kunitz-type proteins expressed in the venom gland transcriptome of M. mipartitus. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Graphical abstract

Review

Jump to: Research

22 pages, 3875 KiB  
Review
Venoms and Extracellular Vesicles: A New Frontier in Venom Biology
by Auwal A. Bala, Naoual Oukkache, Elda E. Sanchez, Montamas Suntravat and Jacob A. Galan
Toxins 2025, 17(1), 36; https://doi.org/10.3390/toxins17010036 - 14 Jan 2025
Viewed by 599
Abstract
Extracellular vesicles (EVs) are nanoparticle-sized vesicles secreted by nearly all cell types under normal physiological conditions. In toxicological research, EVs have emerged as a crucial link between public health and multi-omics approaches, offering insights into cellular responses to disease-causing injury agents such as [...] Read more.
Extracellular vesicles (EVs) are nanoparticle-sized vesicles secreted by nearly all cell types under normal physiological conditions. In toxicological research, EVs have emerged as a crucial link between public health and multi-omics approaches, offering insights into cellular responses to disease-causing injury agents such as environmental and biological toxins, contaminants, and drugs. Notably, EVs present a unique opportunity to deepen our understanding of the pathophysiology of envenomation by natural toxins. Recent advancements in isolating and purifying EV cargo, mass spectrometry techniques, and bioinformatics have positioned EVs as potential biomarkers that could elucidate biological signaling pathways and provide valuable information on the relationship between venomous toxins, their mechanisms of action, and the effectiveness of antivenoms. Additionally, EVs hold promise as proxies for various aspects of envenomation, including the toxin dosage, biological characterization, injury progression, and prognosis during therapeutic interventions. These aspects can be explored through multi-omics technology applied to EV contents from the plasma, saliva, or urine samples of envenomated individuals, offering a comprehensive integrative approach to understanding and managing envenomation cases. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Figure 1

36 pages, 1879 KiB  
Review
Current Technologies in Snake Venom Analysis and Applications
by Henrique Roman-Ramos and Paulo Lee Ho
Toxins 2024, 16(11), 458; https://doi.org/10.3390/toxins16110458 - 25 Oct 2024
Viewed by 2666
Abstract
This comprehensive review explores the cutting-edge advancements in snake venom research, focusing on the integration of proteomics, genomics, transcriptomics, and bioinformatics. Highlighting the transformative impact of these technologies, the review delves into the genetic and ecological factors driving venom evolution, the complex molecular [...] Read more.
This comprehensive review explores the cutting-edge advancements in snake venom research, focusing on the integration of proteomics, genomics, transcriptomics, and bioinformatics. Highlighting the transformative impact of these technologies, the review delves into the genetic and ecological factors driving venom evolution, the complex molecular composition of venoms, and the regulatory mechanisms underlying toxin production. The application of synthetic biology and multi-omics approaches, collectively known as venomics, has revolutionized the field, providing deeper insights into venom function and its therapeutic potential. Despite significant progress, challenges such as the functional characterization of toxins and the development of cost-effective antivenoms remain. This review also discusses the future directions of venom research, emphasizing the need for interdisciplinary collaborations and new technologies (mRNAs, cryo-electron microscopy for structural determinations of toxin complexes, synthetic biology, and other technologies) to fully harness the biomedical potential of venoms and toxins from snakes and other animals. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Figure 1

Back to TopTop