Advances in Cyanotoxins: Latest Developments in Risk Assessment

A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Marine and Freshwater Toxins".

Deadline for manuscript submissions: 20 August 2025 | Viewed by 2276

Special Issue Editors


E-Mail Website
Guest Editor
Department of Food Science, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
Interests: toxicology; risk assessment; food safety; cyanotoxins; microcystins; cylindrospermopsin
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Food Science, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
Interests: toxicology; risk assessment; food safety; cyanotoxins; microcystins; cylindrospermopsin
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Harmful algae blooms and cyanotoxin production have expanded their occurrence, driven by climate change. On the other hand, the establishment of legal limits follows a slower pace, hampered by the limitations in the toxicological databases. Microcystins and cylindrospermopsins are two of the more extensively investigated cyanotoxins, although their toxicological profiles have not yet been fully elucidated. For other different cyanotoxins, much more research is required to gain insight into their potential risks.

This Special Issue of Toxins focuses on recent developments in the risk assessment of cyanotoxins in a broad sense including hazard identification and assessment, exposure evaluation and risk characterization in relation to their impact on human and environmental health.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but not limited to) the following:

  • Toxicokinetics: uptake, distribution, metabolism and elimination;
  • Study of toxicity mechanisms and identification of adverse outcome pathways;
  • Toxicological evaluation using in silico, in vitro and in vivo methods;
  • Determination of the content and potential accumulation of cyanotoxins in water and food chain, including novel analytical approaches;
  • Identification and toxicity of degradation products;
  • Updated occurrence data and worldwide distribution;
  • Risk characterization;
  • Effects of multiple exposure to cyanotoxins and other environmental contaminants;
  • Potential strategies to prevent or ameliorate cyanotoxins’ toxicity.

Prof. Dr. Ana M. Cameán
Prof. Dr. Ángeles Jos
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cyanotoxins
  • toxicokinetics
  • toxicity
  • exposure
  • risksWe look forward to receiving your contributions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 1482 KiB  
Article
Assessment of the Effects of Anatoxin-a In Vitro: Cytotoxicity and Uptake
by Cristina Plata-Calzado, Ana I. Prieto, Ana M. Cameán and Angeles Jos
Toxins 2024, 16(12), 541; https://doi.org/10.3390/toxins16120541 - 13 Dec 2024
Viewed by 525
Abstract
Anatoxin-a (ATX-a) is a cyanotoxin whose toxicological profile has been underinvestigated in comparison to other cyanotoxins such as microcystins (MCs) or cylindrospermopsin (CYN). However, its wide distribution, occurrence, and toxic episodes justify more attention. It is classified as a neurotoxin, but it has [...] Read more.
Anatoxin-a (ATX-a) is a cyanotoxin whose toxicological profile has been underinvestigated in comparison to other cyanotoxins such as microcystins (MCs) or cylindrospermopsin (CYN). However, its wide distribution, occurrence, and toxic episodes justify more attention. It is classified as a neurotoxin, but it has also been reported to affect other organs and systems. Thus, the aim of this study was to establish, as a first tier in its toxicological evaluation, its cytotoxicity in a wide range of cell lines representative of potential target organs (N2a, SH-SY5Y, HepG2, Caco2, L5178Y Tk+/−, THP-1 and Jurkat). As limited effects were observed after exposure to up to 200 µg/mL of ATX-a for 24 h (only Jurkat and THP-1 cells showed reduced cell viability), cell uptake experiments were performed by ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS). The results showed that the immune system cells had the highest percentage of ATX-a in the intracellular fraction, followed by neuronal cells and finally Caco-2 and HepG2 cells. Moreover, the expression of genes related to cell death mechanisms in THP-1 cells was also analyzed by polymerase chain reaction (PCR) and showed no changes under the conditions tested. Further research is required on ATX-a’s toxic effects and toxicokinetics to contribute to its risk assessment. Full article
(This article belongs to the Special Issue Advances in Cyanotoxins: Latest Developments in Risk Assessment)
Show Figures

Figure 1

20 pages, 6584 KiB  
Article
Persistence of Microcystin in Three Agricultural Ponds in Georgia, USA
by Jaclyn E. Smith, James A. Widmer, Jennifer L. Wolny, Laurel L. Dunn, Matthew D. Stocker, Robert L. Hill, Oliva Pisani, Alisa W. Coffin and Yakov Pachepsky
Toxins 2024, 16(11), 482; https://doi.org/10.3390/toxins16110482 - 7 Nov 2024
Viewed by 716
Abstract
Cyanobacteria and their toxins can have multiple effects on agricultural productivity and water bodies. Cyanotoxins can be transported to nearby crops and fields during irrigation and may pose a risk to animal health through water sources. Spatial and temporal variations in cyanotoxin concentrations [...] Read more.
Cyanobacteria and their toxins can have multiple effects on agricultural productivity and water bodies. Cyanotoxins can be transported to nearby crops and fields during irrigation and may pose a risk to animal health through water sources. Spatial and temporal variations in cyanotoxin concentrations have been reported for large freshwater sources such as lakes and reservoirs, but there are fewer studies on smaller agricultural surface water bodies. To determine whether spatiotemporal patterns of the cyanotoxin microcystin occurred in agricultural waters used for crop irrigation and livestock watering, three agricultural ponds on working farms in Georgia, USA, were sampled monthly within a fixed spatial grid over a 17-month period. Microcystin concentrations, which ranged between 0.04 and 743.75 ppb, were determined using microcystin–ADDA ELISA kits. Temporal stability was assessed using mean relative differences between microcystin concentrations at each location and averaged concentrations across ponds on each sampling date. There were locations or zones in all three ponds that were consistently higher or lower than the average daily microcystin concentrations throughout the year, with the highest microcystin concentrations occurring in winter. Additionally, microcystin patterns were strongly correlated with the patterns of chlorophyll, phycocyanin, and turbidity. The results of this work showed that consistent spatiotemporal patterns in cyanotoxins can occur in produce irrigation and livestock watering ponds, and this should be accounted for when developing agricultural water monitoring programs. Full article
(This article belongs to the Special Issue Advances in Cyanotoxins: Latest Developments in Risk Assessment)
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 2438 KiB  
Review
Lesser-Known Cyanotoxins: A Comprehensive Review of Their Health and Environmental Impacts
by Molham Al Haffar, Ziad Fajloun, Sami Azar, Jean-Marc Sabatier and Ziad Abi Khattar
Toxins 2024, 16(12), 551; https://doi.org/10.3390/toxins16120551 - 19 Dec 2024
Viewed by 205
Abstract
Cyanobacteria, also known as blue-green algae, are a diverse phylum of photosynthetic, Gram-negative bacteria and one of the largest microbial taxa. These organisms produce cyanotoxins, which are secondary metabolites that can have significant impacts on both human health and the environment. While toxins [...] Read more.
Cyanobacteria, also known as blue-green algae, are a diverse phylum of photosynthetic, Gram-negative bacteria and one of the largest microbial taxa. These organisms produce cyanotoxins, which are secondary metabolites that can have significant impacts on both human health and the environment. While toxins like Microcystins and Cylindrospermopsins are well-documented and have been extensively studied, other cyanotoxins, including those produced by Lyngbya and Nostoc, remain underexplored. These lesser-known toxins can cause various health issues in humans, including neurotoxicity, hepatotoxicity, and dermatotoxicity, each through distinct mechanisms. Moreover, recent studies have shown that cyanobacteria can be aerosolized and transmitted through the air over long distances, providing an additional route for human exposure to their harmful effects. However, it remains an area that requires much more investigation to accurately assess the health risks and develop appropriate public health guidelines. In addition to direct exposure to toxins, cyanobacteria can lead to harmful algal blooms, which pose further risks to human and wildlife health, and are a global concern. There is limited knowledge about these lesser-known cyanotoxins, highlighting the need for further research to understand their clinical manifestations and improve society’s preparedness for the associated health risks. This work aims to review the existing literature on these underexplored cyanotoxins, which are associated with human intoxication, elucidate their clinical relevance, address significant challenges in cyanobacterial research, and provide guidance on mitigating their adverse effects. Full article
(This article belongs to the Special Issue Advances in Cyanotoxins: Latest Developments in Risk Assessment)
Show Figures

Figure 1

Back to TopTop