Identification of Individual Zebrafish (Danio rerio): A Refined Protocol for VIE Tagging Whilst Considering Animal Welfare and the Principles of the 3Rs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing, and Husbandry
2.2. VIE Tagging
Newly Established Zebrafish VIE Tagging Protocol
- Lidocaine powder (Sigma L7757): Lidocaine stock solution (500 mg/L) prepared freshly weekly with filtered water (or purified reverse osmosis-RO water)(keep the stock solution in a dark or in covered glass bottle at 4 °C)
- Ethyl 3-aminobenzoate methanesulfonate/Tricaine powder (Sigma E10521):
- Melafix (API), active ingredient 1%Melaleuca
- Stress & Coat (API), active ingredient 10% Aloe Vera and 1% PVP-I
- VIE tagging equipment (needles, elastomer)
- Sponge fish holder (thick, soft-foam)
- Ethanol min. 70%
- Pre-processing (sedation and analgesia) tank
- Recovery tank (analgesia and treatment tank) with air stone
- Pre-recovery container for weight check (water from the recovery tank)
- Prepare the pre-processing tank: This tank is used for both sedation and analgesia to prepare the fish before the VIE tagging process takes place. Sedation for zebrafish is reached with 60–80 mg/L final concentration of Tricaine (MS-222). Analgesia for zebrafish is reached with 3–5 mg/L final concentration of lidocaine [57,58,66]; (Mocho, J-P personal communication 2017) [75]. Prepare the tank freshly, prior to the VIE tagging process. Use a 3 L fish tank filled with 1 L fish system water.
- Add 7 mL of lidocaine stock solution (500 mg/L), which gives a working concentration of 3.5 mg/L (with a maximum dose of 4–5 mg/L)
- Add ~15–20 mL of Tricaine stock (MS-222, 4 g/L), which results in a working concentration of 60–80 mg/L
- Add air-stone to aerate the tank
- Prepare the equipment for tagging
- Fill needles with coloured elastomers (important: do not use the supplied hardener-curing agent, only use the liquid elastomer ink). Prepare the desired number of colour types and use 70% ethanol to clean all needles before use
- Prepare the recovery tanks: These tanks are used as analgesic and treatment tanks at the same time, to house fish overnight after the VIE tagging process to recover. Prepare the recovery tanks freshly prior to the VIE tagging process. Use larger size fish tanks such as 10 L tanks filled with 8 L fish system water. The size of the recovery tank depends on the number of fish per tank that will be housed overnight. A maximum of 2–3 adult fish per L can be held into the recovery tanks (the number of juveniles or smaller fish per litre can be a bit higher).
- Add 48 mL of lidocaine stock solution (500 mg/L), which gives a working concentration approximately of 3 mg/L (with a maximum dose of 4–5 mg/L)
- Add 1 mL of Melafix (API) as the recommended dose is 5 mL/ 40 L of water
- Add 1 mL of Stress & Coat (API) as the recommended dose is 5 mL/ 40 L of water
- Add air-stone to aerate the tanks.
- Pre-recovery container: This container is used to measure the wet mass and the length of the tagged fish in a less stressful way.
- Fill the container (~50–100 mL) with water from the already prepared recovery tank (to measure the fish wet mass in water)
- Add a small amount of this water to a small plastic zip-lock bag (to measure the fish length while the fish are kept constantly in water in the bag)
- VIE tagging process: Once all equipment for the tagging has been prepared, fish can be separated in their holding tanks. (Feeding should be withheld for 24 h prior the tagging).
- Organise the tagging needles
- Transfer the zebrafish from their holding tank into the pre-process tank to be sedated.
- Once the fish are sedated (approximately 2–3 min, once their swimming slows), remove one fish with a small net or plastic spoon and place it onto the wet fish-holder sponge for the tagging (use water from recovery tank to wet the sponge). Be extremely careful in handling; use rubber gloves to reduce abrasion on the fish and hold the fish in the sponge carefully.
- Tag the fish where needed with the required colours. In this study, four tagging dorsal positions were used (top left, top right, bottom left, bottom right—Figure 1). Carefully eject the elastomer under the epidermis; introduce the needle into the marking location and insert it for around 4–7 mm long. Slowly withdraw the needle while injecting the elastomer. A long narrow mark is created. As it is important that the tag is fully contained under the tissue, avoid extrusion of the material by stopping the ink injection before removing the needle. After injecting all elastomers into the fish, clean any leaked elastomer from the skin of the fish with wet tissue paper. Clean all the used needles with ethanol.
- Transfer the fish into the pre-recovery container and measure its wet mass, then move the fish carefully with a plastic spoon into the prepared plastic bag containing water to measure the fish length.
- Transfer the fish into the recovery tank for treatment and monitor the fish behaviour and full recovery for an additional hour. If a fish looks unhealthy, shows stress symptoms including hyperventilation, freezing, erratic swimming, or any other behaviour which is not in the normal behavioural profile of the species [76], isolate and/or sacrifice it as necessary. After all the fish have been tagged and recovered, leave them in the recovery tank with aeration for overnight.
2.3. Data Recording and Processing
3. Results
3.1. Original VIE Tagging Protocol-Base Protocol
3.2. Newly Established VIE Tagging Protocol for Zebrafish
3.3. Evaluation of Colours
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reed, B.; Jennings, M. Guidance on the Housing and Care of Zebrafish Danio Rerio; RSPCA: West Sussex, UK, 2010. [Google Scholar]
- Ablain, J.; Zon, L.I. Of fish and men: Using zebrafish to fight human diseases. Trends Cell Biol. 2013, 23, 584–586. [Google Scholar] [CrossRef]
- Chakraborty, C.; Hsu, C.H.; Wen, Z.H.; Lin, C.S.; Agoramoorthy, G. Zebrafish: A Complete Animal Model for In Vivo Drug Discovery and Development. Curr. Drug Metab. 2009, 10, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Tavares, B.; Lopes, S.S. The Importance of Zebrafish in Biomedical Research. Acta Med. Port. 2013, 26, 583–592. [Google Scholar]
- Manfred, H.; Magee, J.; Sacha, Z.; Stephen, P. Reproductive behaviour of wild zebrafish (Danio rerio) in large tanks. Behaviour 2010, 147, 641–660. [Google Scholar] [CrossRef]
- Parsons, K.J.; Son, Y.H.; Crespel, A.; Thambithurai, D.; Killen, S.; Harris, M.P.; Albertson, R.C. Conserved but flexible modularity in the zebrafish skull: Implications for craniofacial evolvability. Proc. R. Soc. B Boil. Sci. 2018, 285, 20172671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thambithurai, D.; Hollins, J.; Van Leeuwen, T.; Rácz, A.; Lindström, J.; Parsons, K.; Killen, S.S. Shoal size as a key determinant of vulnerability to capture under a simulated fishery scenario. Ecol. Evol. 2018, 8, 6505–6514. [Google Scholar] [CrossRef] [PubMed]
- Thambithurai, D.; Crespel, A.; Norin, T.; Rácz, A.; Lindström, J.; Parsons, K.J.; Killen, S.S. Hypoxia alters vulnerability to capture and the potential for trait-based selection in a scaled-down trawl fishery. Conserv. Physiol. 2019, 7, coz082. [Google Scholar] [CrossRef] [PubMed]
- Sundin, J.; Morgan, R.; Finnøen, M.H.; Dey, A.; Sarkar, K.; Jutfelt, F. On the Observation of Wild Zebrafish (Danio rerio) in India. Zebrafish 2019, 16, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Morgan, R.; Sundin, J.; Finnøen, M.H.; Dresler, G.; Vendrell, M.M.; Dey, A.; Sarkar, K.; Jutfelt, F. Are model organisms representative for climate change research? Testing thermal tolerance in wild and laboratory zebrafish populations. Conserv. Physiol. 2019, 7, coz036. [Google Scholar] [CrossRef]
- Kinth, P.; Mahesh, G.; Panwar, Y. Mapping of Zebrafish Research: A Global Outlook. Zebrafish 2013, 10, 510–517. [Google Scholar] [CrossRef] [Green Version]
- Lidster, K.; Readman, G.D.; Prescott, M.J.; Owen, S. International survey on the use and welfare of zebrafish Danio rerio in research. J. Fish Biol. 2017, 90, 1891–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldsmith, P.; Solari, R. The Role of ZEBRAFISH in Drug Discovery—Drug Discovery World (DDW). Available online: https://www.ddw-online.com/the-role-of-zebrafish-in-drug-discovery-1526-200304/ (accessed on 22 October 2020).
- Avdesh, A.; Chen, M.; Martin-Iverson, M.T.; Mondal, A.; Ong, D.; Rainey-Smith, S.; Taddei, K.; Lardelli, M.; Groth, D.M.; Verdile, G.; et al. Regular Care and Maintenance of a Zebrafish (Danio rerio) Laboratory: An Introduction. J. Vis. Exp. 2012, e4196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasiadka, A.; Clark, M.D. Zebrafish Breeding in the Laboratory Environment. ILAR J. 2012, 53, 161–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, C. The husbandry of zebrafish (Danio rerio): A review. Aquaculture 2007, 269, 1–20. [Google Scholar] [CrossRef]
- Lawrence, C. New frontiers for zebrafish management. Methods Cell. Biol. 2016, 135, 483–508. [Google Scholar] [CrossRef] [PubMed]
- Delcourt, J.; Ovidio, M.; Denoël, M.; Muller, M.; Pendeville, H.; Deneubourg, J.-L.; Poncin, P. Individual identification and marking techniques for zebrafish. Rev. Fish Biol. Fish. 2018, 28, 839–864. [Google Scholar] [CrossRef]
- Cousin, X.; Daouk, T.; Péan, S.; Lyphout, L.; Schwartz, M.-E.; Bégout, M.-L. Electronic individual identification of zebrafish using radio frequency identification (RFID) microtags. J. Exp. Biol. 2012, 215, 2729–2734. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-H.; Durand, E.; Wang, J.; Zon, L.I.; Poss, K.D. Zebraflash transgenic lines for in vivo bioluminescence imaging of stem cells and regeneration in adult zebrafish. Development 2013, 140, 4988–4997. [Google Scholar] [CrossRef] [Green Version]
- Cheung, E.; Chatterjee, D.; Gerlai, R. Subcutaneous dye injection for marking and identification of individual adult zebrafish (Danio rerio) in behavioral studies. Behav. Res. Methods 2013, 46, 619–624. [Google Scholar] [CrossRef]
- Hohn, C.; Petrie-Hanson, L. Evaluation of visible implant elastomer tags in zebrafish (Danio rerio). Biol. Open 2013, 2, 1397–1401. [Google Scholar] [CrossRef] [Green Version]
- Frommen, J.G.; Hanak, S.; Schmiedl, C.A.; Thünken, T. Visible Implant Elastomer tagging influences social preferences of zebrafish (Danio rerio). Behaviour 2015, 152, 1765–1777. [Google Scholar] [CrossRef] [Green Version]
- Morgan, R.; Finnøen, M.H.; Jutfelt, F. CTmax is repeatable and doesn’t reduce growth in zebrafish. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ruberto, T.; Clément, R.J.; Spinello, C.; Neri, D.; Macrì, S.; Porfiri, M. The Tagging Procedure of Visible Implant Elastomers Influences Zebrafish Individual and Social Behavior. Zebrafish 2018, 15, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Frederick, J.L. Evaluation of Fluorescent Elastomer Injection as a Method for Marking Small Fish. Bull. Mar. Sci. 1997, 61, 399–408. [Google Scholar]
- Bailey, R.E.; Irvine, J.R.; Dalziel, F.C.; Nelson, T.C. Evaluations of Visible Implant Fluorescent Tags for Marking Coho Salmon Smolts. N. Am. J. Fish. Manag. 1998, 18, 191–196. [Google Scholar] [CrossRef]
- Olsen, E.M.; Vøllestad, L.A. An Evaluation of Visible Implant Elastomer for Marking Age-0 Brown Trout. N. Am. J. Fish. Manag. 2001, 21, 967–970. [Google Scholar] [CrossRef]
- Goldsmith, R.J.; Closs, G.P.; Steen, H. Evaluation of visible implant elastomer for individual marking of small perch and common bully. J. Fish Biol. 2003, 63, 631–636. [Google Scholar] [CrossRef]
- Coombs, J. Use of Visible Implant Fluorescent Elastomer (VIE) Tag Technique on Darters (Teleostei: Percidae): Mortality and Tag Retention. Southeast. Fishes Counc. Proc. 2008, 1, 3. [Google Scholar]
- Bolland, J.D.; Cowx, I.G.; Lucas, M.C. Evaluation of VIE and PIT tagging methods for juvenile cyprinid fishes. J. Appl. Ichthyol. 2009, 25, 381–386. [Google Scholar] [CrossRef]
- Soula, M.; Navarro, A.; Hildebrandt, S.; Zamorano, M.J.; Roo, J.; Hernández-Cruz, C.M.; Afonso, J.M. Evaluation of VIE (Visible Implant Elastomer) and PIT (Passive Integrated Transponder) physical tagging systems for the identification of red porgy fingerlings (Pagrus pagrus). Aquac. Int. 2011, 20, 571–583. [Google Scholar] [CrossRef]
- Jungwirth, A.; Balzarini, V.; Zöttl, M.; Salzmann, A.; Taborsky, M.; Frommen, J.G. Long-term individual marking of small freshwater fish: The utility of Visual Implant Elastomer tags. Behav. Ecol. Sociobiol. 2019, 73, 49. [Google Scholar] [CrossRef] [Green Version]
- Brannelly, L.A.; Chatfield, M.W.H.; Richards-zawacki, C.L. Method of Identification in Adult Anurans. J. Herpetol. 2013, 23, 125–129. [Google Scholar]
- Bainbridge, L.; Stockwell, M.; Valdez, J.; Klop-toker, K.; Clulow, S.; Clulow, J.; Mahony, M. Tagging Tadpoles: Retention Rates and Impacts of Visible Implant Elastomer (VIE) Tags from the Larval to Adult Amphibian Stages. Herpetol. J. 2015, 25, 133–140. [Google Scholar]
- Barry, P.D.; Tamone, S.L.; Tallmon, D.A. A comparison of tagging methodology for North Pacific giant octopus Enteroctopus dofleini. Fish. Res. 2011, 109, 370–372. [Google Scholar] [CrossRef]
- Mazlum, Y. Influence of Visible Implant Fluorescent Elastomer (VIE) Tagging on Growth, Molting and Survival of the Eastern White River Crayfish, Procambarus Acutus Acutus (Girard, 1852). Turkish J. Zool. 2007, 31, 209–212. [Google Scholar]
- Huang, W.-C.; Hsieh, Y.-S.; Chen, I.-H.; Wang, C.-H.; Chang, H.-W.; Yang, C.-C.; Ku, T.-H.; Yeh, S.-R.; Chuang, Y.-J. Combined Use of MS-222 (Tricaine) and Isoflurane Extends Anesthesia Time and Minimizes Cardiac Rhythm Side Effects in Adult Zebrafish. Zebrafish 2010, 7, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Readman, G.D.; Owen, S.F.; Murrell, J.C.; Knowles, T.G. Do Fish Perceive Anaesthetics as Aversive? PLoS ONE 2013, 8, e73773. [Google Scholar] [CrossRef] [Green Version]
- Wong, D.; Von Keyserlingk, M.A.G.; Richards, J.G.; Weary, D.M. Conditioned Place Avoidance of Zebrafish (Danio rerio) to Three Chemicals Used for Euthanasia and Anaesthesia. PLoS ONE 2014, 9, e88030. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Vázquez, F.J.; Terry, M.I.; Felizardo, V.O.; Vera, L.M. Daily Rhythms of Toxicity and Effectiveness of Anesthetics (MS222 and Eugenol) in Zebrafish (Danio Rerio). Chrono Int. 2011, 28, 109–117. [Google Scholar] [CrossRef]
- Mellor, D.J.; Beausoleil, N.J.; Stafford, K.J. Marking Amphibians, Reptiles and Marine Mammals: Animal Welfare, Practicalities and Public Perceptions in New Zealand; Department of Conservation Massey University: Wellington, New Zealand, 2004. [Google Scholar]
- Binning, S.A.; Ros, A.F.H.; Nusbaumer, D.; Roche, D.G. Physiological Plasticity to Water Flow Habitat in the Damselfish, Acanthochromis polyacanthus: Linking Phenotype to Performance. PLoS ONE 2015, 10, e0121983. [Google Scholar] [CrossRef] [Green Version]
- Henrich, T.; Hafer, N.; Mobley, K.B. Effects of VIE tagging and partial tissue sampling on the immune response of three-spined stickleback Gasterosteus aculeatus. J. Fish Biol. 2014, 85, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.; Valentim, A.M.; Pereira, N.M.; Antunes, L.M. Anaesthesia and analgesia in laboratory adult zebrafish: A question of refinement. Lab. Anim. 2016, 50, 476–488. [Google Scholar] [CrossRef]
- Martins, T.; Diniz, E.; Félix, L.M.; Antunes, L. Evaluation of anaesthetic protocols for laboratory adult zebrafish (Danio rerio). PLoS ONE 2018, 13, e0197846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prescott, M.J.; Lidster, K. Improving quality of science through better animal welfare: The NC3Rs strategy. Lab Anim. 2017, 46, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique. Available online: https://caat.jhsph.edu/principles/the-principles-of-humane-experimental-technique (accessed on 22 October 2020).
- Buchanan-Smith, H.M.; Rennie, A.E.; Vitale, A.; Pollo, S.; Prescott, M.J.; Db, M. Harmonising the Definition of Refinement. Anim. Welf. 2005, 14, 379–384. [Google Scholar]
- Rose, J.D. The Neurobehavioral Nature of Fishes and the Question of Awareness and Pain. Rev. Fish. Sci. 2002, 10, 1–38. [Google Scholar] [CrossRef]
- Iwama, G.K. The welfare of fish. Dis. Aquat. Org. 2007, 75, 155–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sneddon, L.U.; Braithwaite, V.A.; Gentle, M.J. Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system. Proc. R. Soc. B Boil. Sci. 2003, 270, 1115–1121. [Google Scholar] [CrossRef] [Green Version]
- Braithwaite, V.A.; Huntingford, F.A. Fish and Welfare: Do Fish Have the Capacity for Pain Perception and Suffering? Anim. Welf. 2004, 13, 87–92. [Google Scholar]
- Sneddon, L.U. WBI Studies Repository WBI Studies Repository Ethics and Welfare: Pain Perception in Fish Ethics and Welfare: Pain Perception in Fish. Bull. Eur. Ass. Fish Pathol. 2006, 26, 6–10. [Google Scholar]
- Ashley, P.J.; Sneddon, L.U.; McCrohan, C.R. Nociception in fish: Stimulus–response properties of receptors on the head of trout Oncorhynchus mykiss. Brain Res. 2007, 1166, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Braithwaite, V.A.; Boulcott, P. Pain perception, aversion and fear in fish. Dis. Aquat. Org. 2007, 75, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Deakin, A.G.; Buckley, J.; Alzu’Bi, H.S.; Cossins, A.R.; Spencer, J.W.; Al’Nuaimy, W.; Young, I.S.; Thomson, J.S.; Sneddon, L.U. Automated monitoring of behaviour in zebrafish after invasive procedures. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Deakin, A.G.; Spencer, J.W.; Cossins, A.R.; Young, I.S.; Sneddon, L.U. Welfare Challenges Influence the Complexity of Movement: Fractal Analysis of Behaviour in Zebrafish. Fishes 2019, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Sloman, K.A.; Bouyoucos, I.A.; Brooks, E.J.; Sneddon, L.U. Ethical considerations in fish research. J. Fish Biol. 2019, 94, 556–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sneddon, L.U. Evolution of nociception and pain: Evidence from fish models. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190290. [Google Scholar] [CrossRef] [PubMed]
- Sneddon, L.U. Pain in aquatic animals. J. Exp. Biol. 2015, 218, 967–976. [Google Scholar] [CrossRef] [Green Version]
- Sneddon, L.U. Comparative Physiology of Nociception and Pain. Physiology 2018, 33, 63–73. [Google Scholar] [CrossRef]
- Mettam, J.J.; Oulton, L.J.; McCrohan, C.R.; Sneddon, L.U. The efficacy of three types of analgesic drugs in reducing pain in the rainbow trout, Oncorhynchus mykiss. Appl. Anim. Behav. Sci. 2011, 133, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Luna, J.; Canty, M.N.; Al-Jubouri, Q.; Al-Nuaimy, W.; Sneddon, L.U. Behavioural responses of fish larvae modulated by analgesic drugs after a stress exposure. Appl. Anim. Behav. Sci. 2017, 195, 115–120. [Google Scholar] [CrossRef]
- Lopez-Luna, J.; Al-Jubouri, Q.; Al-Nuaimy, W.; Sneddon, L.U. Impact of analgesic drugs on the behavioural responses of larval zebrafish to potentially noxious temperatures. Appl. Anim. Behav. Sci. 2017, 188, 97–105. [Google Scholar] [CrossRef]
- Schroeder, P.G.; Sneddon, L.U. Exploring the efficacy of immersion analgesics in zebrafish using an integrative approach. Appl. Anim. Behav. Sci. 2017, 187, 93–102. [Google Scholar] [CrossRef]
- Sneddon, L.U. The evidence for pain in fish: The use of morphine as an analgesic. Appl. Anim. Behav. Sci. 2003, 83, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Sneddon, L.U. Clinical Anesthesia and Analgesia in Fish. J. Exot. Pet Med. 2012, 21, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Chatigny, F.; Creighton, C.M.; Stevens, E.D. Updated Review of Fish Analgesia. J. Am. Assoc. Lab. Anim. Sci. 2018, 57, 5–12. [Google Scholar]
- Readman, G.D.; Owen, S.F.; Knowles, T.G.; Murrell, J.C. Species specific anaesthetics for fish anaesthesia and euthanasia. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambel, J.; Pinho, R.; Sousa, R.; Ferreira, T.; Baptista, T.; Severiano, V.; Mendes, S.; Pedrosa, R. The efficacy of MS-222 as anaesthetic agent in four freshwater aquarium fish species. Aquac. Res. 2013, 46, 1582–1589. [Google Scholar] [CrossRef]
- Matthews, M.; Varga, Z.M. Anesthesia and Euthanasia in Zebrafish. ILAR J. 2012, 53, 192–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rácz, A.; Dwyer, T.; Killen, S.S. Overview of a Disease Outbreak and Introduction of a Step-by-Step Protocol for the Eradication ofMycobacteriumof Mycobacterium haemophilumin a Zebrafish System. Zebrafish 2019, 16, 77–86. [Google Scholar] [CrossRef]
- Westerfield, M. A Guide for the Laboratory Use of Zebrafish (Danio Rerio), 4th ed.; University of Oregon Press: Eugene, OR, USA, 2000. [Google Scholar]
- Mocho, J.P.; Fish Anaesthesia in the Lab. LASA Fish Anaesthesia Course Edinburgh, Edinburgh, UK. Personal communication, March 2017.
- Kalueff, A.V.; Gebhardt, M.; Stewart, A.M.; Cachat, J.M.; Brimmer, M.; Chawla, J.S.; Craddock, C.; Kyzar, E.J.; Roth, A.; Landsman, S.; et al. Towards a Comprehensive Catalog of Zebrafish Behavior 1.0 and Beyond. Zebrafish 2013, 10, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, J.M.; Watral, V.; Schreck, C.B.; Kent, M.L. Husbandry stress exacerbates mycobacterial infections in adult zebrafish, Danio rerio(Hamilton). J. Fish Dis. 2009, 32, 931–941. [Google Scholar] [CrossRef] [Green Version]
- Magnadottir, B. Immunological Control of Fish Diseases. Mar. Biotechnol. 2010, 12, 361–379. [Google Scholar] [CrossRef]
- Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 2011, 35, 1366–1375. [Google Scholar] [CrossRef]
- Bonga, S.E.W. The stress response in fish. Physiol. Rev. 1997, 77, 591–625. [Google Scholar] [CrossRef]
- Carter, K.M.; Woodley, C.M.; Brown, R.S. A review of tricaine methanesulfonate for anesthesia of fish. Rev. Fish Biol. Fish. 2010, 21, 51–59. [Google Scholar] [CrossRef]
- Valentim, A.M.; Félix, L.M.; Carvalho, L.; Diniz, E.; Antunes, L.M. A New Anaesthetic Protocol for Adult Zebrafish (Danio rerio): Propofol Combined with Lidocaine. PLoS ONE 2016, 11, e0147747. [Google Scholar] [CrossRef]
- Mettam, J.J.; McCrohan, C.; Sneddon, L.U. Characterisation of chemosensory trigeminal receptors in the rainbow trout, Oncorhynchus mykiss: Responses to chemical irritants and carbon dioxide. J. Exp. Biol. 2012, 215, 685–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sneddon, L.U. Pain in Laboratory Animals: A Possible Confounding Factor? Altern. Lab. Anim. 2017, 45, 161–164. [Google Scholar] [CrossRef]
- Peterson, D.; Trantham, R.B.; Trantham, T.G.; Caldwell, C.A. Tagging effects of passive integrated transponder and visual implant elastomer on the small-bodied white sands pupfish (Cyprinodon tularosa). Fish. Res. 2018, 198, 203–208. [Google Scholar] [CrossRef]
- Killen, S.S.; Mitchell, M.D.; Rummer, J.L.; Chivers, D.P.; Ferrari, M.C.O.; Meekan, M.G.; McCormick, M.I. Aerobic scope predicts dominance during early life in a tropical damselfish. Funct. Ecol. 2014, 28, 1367–1376. [Google Scholar] [CrossRef]
- Silver, G.S.; Luzier, C.W.; Whitesel, T.A. Detection and Longevity of Uncured and Cured Visible Implant Elastomer Tags in Larval Pacific Lampreys. N. Am. J. Fish. Manag. 2009, 29, 1496–1501. [Google Scholar] [CrossRef]
- Aleström, P.; D’Angelo, L.; Midtlyng, P.J.; Schorderet, D.F.; Schulte-Merker, S.; Sohm, F.; Warner, S. Zebrafish: Housing and husbandry recommendations. Lab. Anim. 2019, 54, 213–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Environmental Conditions | Room 1 Z-Hab Unit | Room 1 300 L Glass Tanks | Room 2 Rearing Unit + Glass System |
---|---|---|---|
Water temperature | 26.0–28.5 °C | 26.5–27.5 °C | 26.0–28.5 °C |
pH | 7.0–7.5 | 7.0–7.5 | 7.0–7.5 |
Conductivity | ~400 µS | ~200 µS | ~200 µS |
NO2 | <0.05 mg/L | <0.04 mg/L | <0.06 mg/L |
NO3 | <15 mg/L | <10 mg/L | <15 mg/L |
Ammonia | <<0.05 mg/L | <<0.05 mg/L | <<0.05 mg/L |
Fish feeding <4 months | 4× daily | ND | 4× daily |
Fish-feeding regime > 4 months | 2× daily | 2× daily | 2× daily |
Tank cleaning regime larvae–juvenile | <1 month–daily; >1 month–weekly | <1 month–daily; >1 month–weekly | <1 month–daily; >1 month–weekly |
Tank cleaning regime Adults | Monthly (wash tanks) | 3–4 weekly (clean and siphon) | 3–4 weekly (clean and siphon) |
Adult fish-holding density | 5 fish/L | 1–2 fish/L | 3–6 fish/L |
Light cycle | 13 h L: 11 h D | 13 h L: 11 h D | 13 h L: 11 h D |
Group of Fish | Injection Point Healing | Tagging Mortality Rate | VIE Tag Retention | DiseaseAfter Tagging | Number of Tagged Fish | Tagging Method |
---|---|---|---|---|---|---|
Wild-origin parental population (WP) | long periods | 20–25% | 60–70% retained | YES | 400 | base protocol |
F1 generation of wild population (WF1) | over a week | 10% | 85–90% retained | YES | 1100 | advanced base protocol |
Fish-farm-origin adult population pilot (FFA1) | a few days | 0–2% | 99–100% retained | NO | 160 | newly established protocol |
Fish-farm-origin adult population (FFA2) | a few days | 0–2% | 98–99% retained | NO | 790 | newly established protocol |
Fish-farm origin in house bred new generation (FF0) | a few days | 2–4% | 96–97% retained | NO | 1800 | newly established protocol |
Offspring of the in house bred FF0 population (FF1) | a few days | 2–4% | 98–99% retained | NO | 750 | newly established protocol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rácz, A.; Allan, B.; Dwyer, T.; Thambithurai, D.; Crespel, A.; Killen, S.S. Identification of Individual Zebrafish (Danio rerio): A Refined Protocol for VIE Tagging Whilst Considering Animal Welfare and the Principles of the 3Rs. Animals 2021, 11, 616. https://doi.org/10.3390/ani11030616
Rácz A, Allan B, Dwyer T, Thambithurai D, Crespel A, Killen SS. Identification of Individual Zebrafish (Danio rerio): A Refined Protocol for VIE Tagging Whilst Considering Animal Welfare and the Principles of the 3Rs. Animals. 2021; 11(3):616. https://doi.org/10.3390/ani11030616
Chicago/Turabian StyleRácz, Anita, Brooke Allan, Toni Dwyer, Davide Thambithurai, Amélie Crespel, and Shaun S. Killen. 2021. "Identification of Individual Zebrafish (Danio rerio): A Refined Protocol for VIE Tagging Whilst Considering Animal Welfare and the Principles of the 3Rs" Animals 11, no. 3: 616. https://doi.org/10.3390/ani11030616