Research Trends in Octopus Biological Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection Strategy
2.2. Data Loading and Converting
3. Results
3.1. Sources Impact
3.2. Country Productivity and Affiliations
3.3. Conceptual Structure
3.4. Social Structure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jereb, P.; Roper, C.F.E.; Norman, M.D.; Finn, J.K.; Cephalopods of the World. An annotated and illustrated catalogue of cephalopod species known to date. In Octopods and Vampire Squids; FAO: Rome, Italy, 2014; Volume 3, ISBN 1020-8682. [Google Scholar]
- Doubleday, Z.A.; Prowse, T.A.A.; Arkhipkin, A.; Pierce, G.J.; Semmens, J.; Steer, M.; Leporati, S.C.; Lourenço, S.; Quetglas, A.; Sauer, W.; et al. Global proliferation of cephalopods. Curr. Biol. 2016, 26, R406–R407. [Google Scholar] [CrossRef] [Green Version]
- Clark, C. A Review of the global commercial cephalopod fishery, with a focus on apparent expansion, changing environments, and management. Ph.D. Thesis, Nova Southeastern University, Fort Lauderdale, FL, USA, Retrieved NSUWorks. May 2019. [Google Scholar]
- O’Brien, C.E.; Roumbedakis, K.; Winkelmann, I.E. The current state of cephalopod science and perspectives on the most critical challenges ahead from three early-career researchers. Front. Physiol. 2018, 9, 700. [Google Scholar] [CrossRef]
- Di Cosmo, A.; Bertapelle, C.; Porcellini, A.; Polese, G. Magnitude assessment of adult neurogenesis in the Octopus vulgaris brain using a flow cytometry-based technique. Front. Physiol. 2018, 9, 1050. [Google Scholar] [CrossRef]
- Bertapelle, C.; Polese, G.; Di Cosmo, A. Enriched environment increases PCNA and PARP1 levels in Octopus vulgaris central nervous system: First evidence of adult neurogenesis in Lophotrochozoa. J. Exp. Zool. Part. Mol. Dev. Evol. 2017, 328, 347–359. [Google Scholar] [CrossRef]
- Winlow, W.; Di Cosmo, A. Editorial: Sentience, ain, and Anesthesia in Advanced Invertebrates. Front. Physiol. 2019, 10. [Google Scholar] [CrossRef]
- Juárez, O.E.; López-Galindo, L.; Pérez-Carrasco, L.; Lago-Lestón, A.; Rosas, C.; Di Cosmo, A.; Galindo-Sánchez, C.E. Octopus maya white body show sex-specific transcriptomic profiles during the reproductive phase, with high differentiation in signaling pathways. PLoS ONE 2019, 14, e0216982. [Google Scholar] [CrossRef] [PubMed]
- Winlow, W.; Polese, G.; Moghadam, H.F.; Ahmed, I.A.; Di Cosmo, A. Sense and insensibility—An appraisal of the effects of clinical anesthetics on gastropod and cephalopod molluscs as a step to improved welfare of cephalopods. Front. Physiol. 2018, 9, 1147. [Google Scholar] [CrossRef]
- Maselli, V.; Xu, F.; Syed, N.I.; Polese, G.; Di Cosmo, A. A novel approach to primary cell culture for Octopus vulgaris neurons. Front. Physiol. 2018, 9, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarrella, I.; Ponte, G.; Baldascino, E.; Fiorito, G. Learning and memory in Octopus vulgaris: A case of biological plasticity. Curr. Opin. Neurobiol. 2015, 35, 74–79. [Google Scholar] [CrossRef]
- Maselli, V.; Polese, G.; Al-Soudy, A.S.; Buglione, M.; Di Cosmo, A. Cognitive stimulation induces differential gene expression in Octopus vulgaris: The key role of protocadherins. Biology 2020, 9, 196. [Google Scholar] [CrossRef] [PubMed]
- Winters, G.C.; Polese, G.; Di Cosmo, A.; Moroz, L.L. Mapping of neuropeptide Y expression in Octopus brains. J. Morphol. 2020, 281, 790–801. [Google Scholar] [CrossRef] [PubMed]
- Maselli, V.; Al-Soudy, A.S.; Buglione, M.; Aria, M.; Polese, G.; Di Cosmo, A. Sensorial hierarchy in Octopus vulgaris’s food choice: Chemical vs. visual. Animals 2020, 10, 457. [Google Scholar] [CrossRef] [Green Version]
- Villanueva, R.; Perricone, V.; Fiorito, G. Cephalopods as predators: A short journey among behavioral flexibilities, adaptions, and feeding habits. Front. Physiol. 2017, 8, 598. [Google Scholar] [CrossRef] [Green Version]
- Di Cosmo, A.; Maselli, V.; Polese, G. Octopus vulgaris: An alternative in evolution. Results Probl. Cell Differ. 2018, 65, 585–598. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. Mapping Scientific Frontiers; Springer: London, UK, 2013; ISBN 978-1-4471-5127-2. [Google Scholar]
- Wallin, J.A. Bibliometric methods: Pitfalls and possibilities. Basic Clin. Pharmacol. Toxicol. 2005, 97, 261–275. [Google Scholar] [CrossRef]
- De Battisti, F.; Salini, S. Robust analysis of bibliometric data. Stat. Methods Appl. 2013, 22, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [Green Version]
- Aria, M.; Alterisio, A.; Scandurra, A.; Pinelli, C.; D’Aniello, B. The scholar’s best friend: Research trends in dog cognitive and behavioral studies. Anim. Cogn. 2021, 24, 541–553. [Google Scholar] [CrossRef]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. Inf. 2020, 29. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [Green Version]
- Egghe, L. Theory and practise of the g-index. Scientometrics 2006, 69, 131–152. [Google Scholar] [CrossRef]
- Von Bohlen und Halbach, O. How to judge a book by its cover? How useful are bibliometric indices for the evaluation of “scientific quality” or “scientific productivity”? Ann. Anat. 2011, 193, 191–196. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Q.; Zheng, F.; Long, C.; Lu, Z.; Duan, Z. Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. J. Assoc. Inf. Sci. Technol. 2016, 67, 967–972. [Google Scholar] [CrossRef]
- Callon, M.; Courtial, J.P.; Laville, F. Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics 1991, 22, 155–205. [Google Scholar] [CrossRef]
- Cahlik, T. Comparison of the maps of science. Scientometrics 2000, 49, 373–387. [Google Scholar] [CrossRef]
- Cobo, M.J.; Martínez, M.A.; Gutiérrez-Salcedo, M.; Fujita, H.; Herrera-Viedma, E. 25 years at Knowledge-Based Systems: A bibliometric analysis. Knowl. Based Syst. 2015, 80, 3–13. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Newman, M.E.J. Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 2001, 64 (Pt 1), 016131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanelli, D.; Larivière, V. Researchers’ individual publication rate has not increased in a century. PLoS ONE 2016, 11, e0149504. [Google Scholar] [CrossRef] [PubMed]
- European Parliament and Council of the European Union. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Strasbourg: Concil of Europe. 2010. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32010L0063 (accessed on 16 June 2021).
- Persson, O.; Glänzel, W.; Danell, R. Inflationary bibliometric values: The role of scientific collaboration and the need for relative indicators in evaluative studies. Scientometrics 2004, 60, 421–432. [Google Scholar] [CrossRef]
- Narin, F. Globalization of research, scholarly information, and patents—Ten year trends. Ser. Libr. 1991, 21, 33–44. [Google Scholar] [CrossRef]
- O’Brien, C.E.; Ponte, G.; Fiorito, G. Octopus. Encycl. Anim. Behav. 2019, 142–148. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef]
Main Information about Collection | ||
---|---|---|
Timespan | EP (1985–2010) | RP (2011–2020) |
Document Types | ||
Total | 1414 | 1366 |
Article | 1348 | 1278 |
Review | 66 | 88 |
Data | ||
Sources | 360 | 408 |
Average citations per documents | 32.26 | 12.48 |
Average citations per year per doc | 1.66 | 1.80 |
References | 34,424 | 47,238 |
Document Contents | ||
Keywords Plus (ID) | 3644 | 4294 |
Author’s Keywords (DE) | 2807 | 3813 |
Authors | ||
Authors | 2741 | 4235 |
Author Appearances | 4859 | 6951 |
Authors of single-authored documents | 124 | 52 |
Authors of multi-authored documents | 2617 | 4183 |
Authors Collaboration | ||
Single-authored documents | 184 | 58 |
Documents per Author | 0.52 | 0.32 |
Annual Publication Rate per Author | 0.30 | 0.26 |
Co-Authors per Documents | 3.44 | 5.09 |
Collaboration Index | 2.13 | 3.20 |
Source Impact EP (1985–2010) | |||||||
Source | TC | NP | h-index | g-index | m-index | PY_start | |
1 | Marine Biology | 1944 | 47 | 30 | 43 | 0.81 | 1985 |
2 | Aquaculture | 1944 | 34 | 28 | 34 | 1.00 | 1994 |
3 | Marine Ecology Progress Series | 1580 | 31 | 24 | 31 | 0.67 | 1986 |
4 | Fisheries Research | 1184 | 39 | 22 | 33 | 0.71 | 1991 |
5 | Journal of Experimental Biology | 1434 | 42 | 21 | 37 | 0.57 | 1985 |
6 | Journal of Experimental Marine Biology and Ecology | 1207 | 32 | 21 | 32 | 0.58 | 1986 |
7 | Bulletin of Marine Science | 960 | 43 | 20 | 29 | 0.65 | 1991 |
8 | Biochemistry | 854 | 25 | 18 | 25 | 0.49 | 1985 |
9 | Biological Bulletin | 882 | 24 | 17 | 24 | 0.53 | 1990 |
10 | Journal of Zoology | 702 | 20 | 17 | 20 | 0.47 | 1986 |
Source Impact RP (2011–2020) | |||||||
Source | TC | NP | h-index | g-index | m-index | PY_start | |
1 | Plos One | 968 | 48 | 19 | 29 | 1.73 | 2011 |
2 | Aquaculture | 469 | 34 | 15 | 20 | 1.36 | 2011 |
3 | Journal of Experimental Marine Biology and Ecology | 520 | 29 | 14 | 22 | 1.27 | 2011 |
4 | Journal of Experimental Biology | 334 | 23 | 13 | 18 | 1.18 | 2011 |
5 | Aquaculture Research | 411 | 44 | 12 | 17 | 1.09 | 2011 |
6 | Fisheries Research | 382 | 40 | 12 | 16 | 1.09 | 2011 |
7 | Current Biology | 380 | 13 | 12 | 13 | 1.09 | 2011 |
8 | Frontiers in Physiology | 411 | 54 | 11 | 16 | 1.38 | 2014 |
9 | Marine Ecology Progress Series | 300 | 20 | 11 | 17 | 1.00 | 2011 |
10 | General and Comparative Endocrinology | 341 | 13 | 8 | 13 | 0.73 | 2011 |
Country Production EP (1985–2010) | Country Production RP (2011–2020) | ||||||
---|---|---|---|---|---|---|---|
Region | Freq | % by C | Region | Freq | % by C | ||
1 | USA | 443 | 58.2 | 1 | USA | 532 | 30.5 |
2 | Japan | 279 | 47.3 | 2 | Spain | 501 | 34.3 |
3 | Italy | 246 | 40.2 | 3 | China | 388 | 37.1 |
4 | Spain | 230 | 63.5 | 4 | Mexico | 375 | 28.0 |
5 | United Kingdom | 187 | 56.1 | 5 | Italy | 309 | 35.6 |
6 | France | 153 | 43.8 | 6 | Australia | 256 | 31.6 |
7 | Australia | 144 | 55.6 | 7 | United Kingdom | 205 | 27.3 |
8 | Germany | 115 | 56.5 | 8 | Portugal | 203 | 29.6 |
9 | Canada | 98 | 48.0 | 9 | Japan | 164 | 36.6 |
10 | Portugal | 98 | 44.9 | 10 | Chile | 155 | 21.9 |
Country Production by Corresponding Author EP (1985–2010) | ||||||
Country | CNP | Freq | SCP | MCP | MCP_Ratio | |
1 | USA | 258 | 0.20 | 216 | 42 | 0.16 |
2 | Spain | 146 | 0.11 | 104 | 42 | 0.29 |
3 | Japan | 132 | 0.10 | 124 | 8 | 0.06 |
4 | United Kingdom | 105 | 0.08 | 78 | 27 | 0.26 |
5 | Italy | 99 | 0.08 | 76 | 23 | 0.23 |
6 | Australia | 80 | 0.06 | 61 | 19 | 0.24 |
7 | France | 67 | 0.05 | 43 | 24 | 0.36 |
8 | Germany | 65 | 0.05 | 55 | 10 | 0.15 |
9 | Canada | 47 | 0.04 | 36 | 11 | 0.23 |
10 | Portugal | 44 | 0.03 | 36 | 8 | 0.18 |
Country Production by Corresponding Author RP (2011–2020) | ||||||
Country | CNP | Freq | SCP | MCP | MCP_Ratio | |
1 | Spain | 172 | 0.13 | 103 | 69 | 0.40 |
2 | USA | 162 | 0.12 | 119 | 43 | 0.27 |
3 | China | 144 | 0.11 | 116 | 28 | 0.19 |
4 | Italy | 110 | 0.08 | 72 | 38 | 0.35 |
5 | Mexico | 105 | 0.08 | 61 | 44 | 0.42 |
6 | Australia | 81 | 0.06 | 44 | 37 | 0.46 |
8 | Portugal | 60 | 0.04 | 34 | 26 | 0.43 |
7 | Japan | 60 | 0.04 | 47 | 13 | 0.22 |
9 | United Kingdom | 56 | 0.04 | 20 | 36 | 0.64 |
10 | Brazil | 46 | 0.03 | 33 | 13 | 0.28 |
Most Productive Affiliations EP (1985–2010) | Most Productive Affiliations RP (2011–2020) | ||||
---|---|---|---|---|---|
Affiliations | Articles | Affiliations | Articles | ||
1 | Univ Texas | 49 | 1 | Univ Nacl Autonoma Mexico | 103 |
2 | Univ Tasmania | 43 | 2 | Inst Espanol Oceanog | 93 |
3 | Univ Aberdeen | 33 | 3 | Ocean Univ China | 54 |
4 | Hebrew Univ Jerusalem | 31 | 4 | Univ Aveiro | 39 |
5 | Univ Lethbridge | 28 | 5 | Hebrew Univ Jerusalem | 36 |
6 | Univ Caen | 26 | 6 | Shanghai Ocean Univ | 36 |
7 | Inst Espanol Oceanog | 25 | 7 | Univ Austral Chile | 36 |
8 | Univ Padua | 25 | 8 | Univ Vigo | 35 |
9 | Inst Invest Marinas | 23 | 9 | La Trobe Univ | 30 |
10 | Univ Nacl Autonoma Mexico | 22 | 10 | Univ Tasmania | 28 |
Collaboration EP (1985–2010) | |||
From | To | Frequency | |
1 | United Kingdom | Ireland | 16 |
2 | USA | Canada | 16 |
3 | Spain | France | 12 |
4 | Spain | Portugal | 12 |
5 | Usa | Italy | 11 |
6 | Usa | Japan | 11 |
7 | Spain | Canada | 9 |
8 | Spain | United Kingdom | 9 |
9 | United Kingdom | Australia | 9 |
10 | USA | Australia | 9 |
Collaboration RP (2011–2020) | |||
From | To | Frequency | |
1 | Spain | Portugal | 49 |
2 | Spain | United Kingdom | 36 |
3 | United Kingdom | Portugal | 31 |
4 | Spain | Mexico | 30 |
5 | Usa | Australia | 30 |
6 | Italy | United Kingdom | 26 |
7 | Mexico | Chile | 25 |
8 | USA | China | 22 |
9 | Australia | United Kingdom | 21 |
10 | United Kingdom | France | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Cosmo, A.; Pinelli, C.; Scandurra, A.; Aria, M.; D’Aniello, B. Research Trends in Octopus Biological Studies. Animals 2021, 11, 1808. https://doi.org/10.3390/ani11061808
Di Cosmo A, Pinelli C, Scandurra A, Aria M, D’Aniello B. Research Trends in Octopus Biological Studies. Animals. 2021; 11(6):1808. https://doi.org/10.3390/ani11061808
Chicago/Turabian StyleDi Cosmo, Anna, Claudia Pinelli, Anna Scandurra, Massimo Aria, and Biagio D’Aniello. 2021. "Research Trends in Octopus Biological Studies" Animals 11, no. 6: 1808. https://doi.org/10.3390/ani11061808
APA StyleDi Cosmo, A., Pinelli, C., Scandurra, A., Aria, M., & D’Aniello, B. (2021). Research Trends in Octopus Biological Studies. Animals, 11(6), 1808. https://doi.org/10.3390/ani11061808