Differential Impact of Valproic Acid on SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 Expression in Adult Glioblastoma Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Glioblastoma Cells and The Tested Groups
2.2. RNA Extraction and Quantitative Real-Time PCR Analysis
2.3. Statistical Analysis
3. Results
3.1. VPA Treatment Effect on SLC5A8 Expression in U87 and T98G Cells
3.2. VPA Treatment Effect on SLC12A2 Expression in U87 and T98G Cells
3.3. The VPA Treatment Effect on SLC12A5 Expression in U87 and T98G Cells
3.4. The VPA Treatment Effect on CDH1 Expression in U87 and T98G Cells
3.5. The VPA Treatment Effect on CDH2 Expression in U87 and T98G Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- D’Amico, R.S.; Englander, Z.K.; Canoll, P.; Bruce, J.N. Extent of Resection in Glioma-A Review of the Cutting Edge. World Neurosurg. 2017, 103, 538–549. [Google Scholar] [CrossRef]
- Thotala, D.; Karvas, R.M.; Engelbach, J.A.; Garbow, J.R.; Hallahan, A.N.; DeWees, T.A.; Laszlo, A.; Hallahan, D.E. Valproic Acid Enhances the Efficacy of Radiation Therapy by Protecting Normal Hippocampal Neurons and Sensitizing Malignant Glioblastoma Cells. Oncotarget 2015, 6, 35004–35022. [Google Scholar] [CrossRef]
- Chang, C.Y.; Li, J.R.; Wu, C.C.; Ou, Y.C.; Chen, W.Y.; Kuan, Y.H.; Wang, W.Y.; Chen, C.J. Valproic Acid Sensitizes Human Glioma Cells to Gefitinib-Induced Autophagy. IUBMB Life 2015, 67, 869–879. [Google Scholar] [CrossRef]
- Lu, V.M.; Texakalidis, P.; McDonald, K.L.; Mekary, R.A.; Smith, T.R. The Survival Effect of Valproic Acid in Glioblastoma and Its Current Trend: A Systematic Review and Meta-Analysis. Clin. Neurol. Neurosurg. 2018, 174, 149–155. [Google Scholar] [CrossRef]
- Kresbach, C.; Bronsema, A.; Guerreiro, H.; Rutkowski, S.; Schüller, U.; Winkler, B. Long-Term Survival of an Adolescent Glioblastoma Patient under Treatment with Vinblastine and Valproic Acid Illustrates Importance of Methylation Profiling. Childs Nerv. Syst. 2022, 38, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Happold, C.; Gorlia, T.; Chinot, O.; Gilbert, M.R.; Nabors, L.B.; Wick, W.; Pugh, S.L.; Hegi, M.; Cloughesy, T.; Roth, P.; et al. Does Valproic Acid or Levetiracetam Improve Survival in Glioblastoma? A Pooled Analysis of Prospective Clinical Trials in Newly Diagnosed Glioblastoma. J. Clin. Oncol. 2016, 34, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Natale, G.; Fini, E.; Calabrò, P.F.; Carli, M.; Scarselli, M.; Bocci, G. Valproate and Lithium: Old Drugs for New Pharmacological Approaches in Brain Tumors? Cancer Lett. 2023, 560, 216125. [Google Scholar] [CrossRef]
- Krauze, A.V.; Zhao, Y.; Li, M.C.; Shih, J.; Jiang, W.; Tasci, E.; Cooley Zgela, T.; Sproull, M.; Mackey, M.; Shankavaram, U.; et al. Revisiting Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients with Glioblastoma-Proteomic Alteration and Comparison Analysis with the Standard-of-Care Chemoirradiation. Biomolecules 2023, 13, 1499. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Guan, W. Valproic Acid: A Promising Therapeutic Agent in Glioma Treatment. Front. Oncol. 2021, 11, 687362. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, S.; Yuan, X.; Hu, Z.; Li, H.; Wu, M.; Yuan, J.; Zhao, Z.; Su, J.; Wang, X.; et al. Valproic Acid Promotes Human Glioma U87 Cells Apoptosis and Inhibits Glycogen Synthase Kinase-3β Through ERK/Akt Signaling. Cell. Physiol. Biochem. 2016, 39, 2173–2185. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Y.; Wang, H.; Niu, J.; Hou, H.; Jiang, Y. Histone Deacetylase Inhibitor, Valproic Acid, Radiosensitizes the C6 Glioma Cell Line in Vitro. Oncol. Lett. 2014, 7, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.H.; Zhang, P.; Fisher, B.J.; Macdonald, D.R.; McElroy, J.P.; Lesser, G.J.; Fleming, J.; Chakraborty, A.R.; Liu, Z.; Becker, A.P.; et al. Association of MGMT Promoter Methylation Status with Survival Outcomes in Patients with High-Risk Glioma Treated with Radiotherapy and Temozolomide: An Analysis from the NRG Oncology/RTOG 0424 Trial. JAMA Oncol. 2018, 4, 1405–1409. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Butta, V.; Cilibrasi, C.; Baronchelli, S.; Redaelli, S.; Dalprà, L.; Lavitrano, M.; Bentivegna, A. Epigenetic Targeting of Glioma Stem Cells: Short-Term and Long-Term Treatments with Valproic Acid Modulate DNA Methylation and Differentiation Behavior, but Not Temozolomide Sensitivity. Oncol. Rep. 2016, 35, 2811–2824. [Google Scholar] [CrossRef]
- Larangeira Nóbrega, A.H.; Sampaio Pimentel, R.; Prado, A.P.; Garcia, J.; Frozza, R.L.; Bernardi, A. Neuroinflammation in Glioblastoma: The Role of the Microenvironment in Tumour Progression. Curr. Cancer Drug Targets 2024, 24, 579–594. [Google Scholar] [CrossRef] [PubMed]
- Stakišaitis, D.; Kapočius, L.; Valančiūtė, A.; Balnytė, I.; Tamošuitis, T.; Vaitkevičius, A.; Sužiedėlis, K.; Urbonienė, D.; Tatarūnas, V.; Kilimaitė, E.; et al. SARS-CoV-2 Infection, Sex-Related Differences, and a Possible Personalized Treatment Approach with Valproic Acid: A Review. Biomedicines 2022, 10, 962. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.F.B.; Aires, C.C.P.; Luis, P.B.M.; Ruiter, J.P.N.; IJlst, L.; Duran, M.; Wanders, R.J.A.; Tavares de Almeida, I. Valproic Acid Metabolism and Its Effects on Mitochondrial Fatty Acid Oxidation: A Review. J. Inherit. Metab. Dis. 2008, 31, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Ghodke-Puranik, Y.; Thorn, C.F.; Lamba, J.K.; Leeder, J.S.; Song, W.; Birnbaum, A.K.; Altman, R.B.; Klein, T.E. Valproic Acid Pathway: Pharmacokinetics and Pharmacodynamics. Pharmacogenet Genom. 2013, 23, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Jovanovich, N.; Habib, A.; Chilukuri, A.; Hameed, N.U.F.; Deng, H.; Shanahan, R.; Head, J.R.; Zinn, P.O. Sex-Specific Molecular Differences in Glioblastoma: Assessing the Clinical Significance of Genetic Variants. Front. Oncol. 2024, 13, 1340386. [Google Scholar] [CrossRef]
- Stakišaitis, D.; Kapočius, L.; Kilimaitė, E.; Gečys, D.; Šlekienė, L.; Balnytė, I.; Palubinskienė, J.; Lesauskaitė, V. Preclinical Study in Mouse Thymus and Thymocytes: Effects of Treatment with a Combination of Sodium Dichloroacetate and Sodium Valproate on Infectious Inflammation Pathways. Pharmaceutics 2023, 15, 2715. [Google Scholar] [CrossRef]
- Stakišaitis, D.; Kapočius, L.; Tatarūnas, V.; Gečys, D.; Mickienė, A.; Tamošuitis, T.; Ugenskienė, R.; Vaitkevičius, A.; Balnytė, I.; Lesauskaitė, V. Effects of Combined Treatment with Sodium Dichloroacetate and Sodium Valproate on the Genes in Inflammation- and Immune-Related Pathways in T Lymphocytes from Patients with SARS-CoV-2 Infection with Pneumonia: Sex-Related Differences. Pharmaceutics 2024, 16, 409. [Google Scholar] [CrossRef]
- Damanskienė, E.; Balnytė, I.; Valančiūtė, A.; Alonso, M.M.; Stakišaitis, D. Different Effects of Valproic Acid on SLC12A2, SLC12A5 and SLC5A8 Gene Expression in Pediatric Glioblastoma Cells as an Approach to Personalised Therapy. Biomedicines 2022, 10, 968. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, W.; Xu, W.; Yang, B.; Cui, M.; Li, Z.; Zhang, H.; Jin, C.; Xue, H.; Zhang, J. Comprehensive Analysis of the Oncogenic, Genomic Alteration, and Immunological Landscape of Cation-Chloride Cotransporters in Pan-Cancer. Front. Oncol. 2022, 12, 819688. [Google Scholar] [CrossRef]
- Chen, J.C.; Lee, I.N.; Huang, C.; Wu, Y.P.; Chung, C.Y.; Lee, M.H.; Lin, M.H.C.; Yang, J.T. Valproic Acid-Induced Amphiregulin Secretion Confers Resistance to Temozolomide Treatment in Human Glioma Cells. BMC Cancer 2019, 19, 756. [Google Scholar] [CrossRef] [PubMed]
- Damanskienė, E.; Balnytė, I.; Valančiūtė, A.; Alonso, M.M.; Preikšaitis, A.; Stakišaitis, D. The Different Temozolomide Effects on Tumorigenesis Mechanisms of Pediatric Glioblastoma PBT24 and SF8628 Cell Tumor in CAM Model and on Cells In Vitro. Int. J. Mol. Sci. 2022, 23, 2001. [Google Scholar] [CrossRef] [PubMed]
- Cong, D.; Zhu, W.; Kuo, J.S.; Hu, S.; Sun, D. Ion Transporters in Brain Tumors. Curr. Med. Chem. 2015, 22, 1171–1181. [Google Scholar] [CrossRef]
- Garzon-Muvdi, T.; Schiapparelli, P.; ap Rhys, C.; Guerrero-Cazares, H.; Smith, C.; Kim, D.H.; Kone, L.; Farber, H.; Lee, D.Y.; An, S.S.; et al. Regulation of Brain Tumor Dispersal by NKCC1 through a Novel Role in Focal Adhesion Regulation. PLoS Biol. 2012, 10, e1001320. [Google Scholar] [CrossRef] [PubMed]
- Algharabil, J.; Kintner, D.B.; Wang, Q.; Begum, G.; Clark, P.A.; Yang, S.-S.; Lin, S.-H.; Kahle, K.T.; Kuo, J.S.; Sun, D. Inhibition of Na(+)-K(+)-2Cl(−) Cotransporter Isoform 1 Accelerates Temozolomide-Mediated Apoptosis in Glioblastoma Cancer Cells. Cell. Physiol. Biochem. 2012, 30, 33–48. [Google Scholar] [CrossRef]
- Kahle, K.T.; Rinehart, J.; Lifton, R.P. Phosphoregulation of the Na-K-2Cl and K-Cl Cotransporters by the WNK Kinases. Biochim. Biophys. Acta 2010, 1802, 1150–1158. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Deng, C.; Fei, M. SLC12A5 as a Novel Potential Biomarker of Glioblastoma Multiforme. Mol. Biol. Rep. 2023, 50, 4285–4299. [Google Scholar] [CrossRef]
- Ikeda, K.; Shiraishi, K.; Koga, T.; Motooka, Y.; Fujino, K.; Shibata, H.; Mori, T.; Suzuki, M. Prognostic Significance of Aberrant Methylation of Solute Carrier Gene Family 5A8 in Lung Adenocarcinoma. Ann. Thorac. Surg. 2015, 99, 1755–1759. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.; Maunakea, A.; Jun, P.; Bollen, A.W.; Hodgson, J.G.; Goldenberg, D.D.; Weiss, W.A.; Costello, J.F. Shared Epigenetic Mechanisms in Human and Mouse Gliomas Inactivate Expression of the Growth Suppressor SLC5A8. Cancer Res. 2005, 65, 3617–3623. [Google Scholar] [CrossRef] [PubMed]
- Milutinovic, S.; Detich, N.; Szyf, M. Valproate Induces Widespread Epigenetic Reprogramming Which Involves Demethylation of Specific Genes. Carcinogenesis 2007, 28, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Thangaraju, M.; Carswell, K.N.; Prasad, P.D.; Ganapathy, V. Colon Cancer Cells Maintain Low Levels of Pyruvate to Avoid Cell Death Caused by Inhibition of HDAC1/HDAC3. Biochem. J. 2009, 417, 379–389. [Google Scholar] [CrossRef]
- Lewis-Tuffin, L.J.; Rodriguez, F.; Giannini, C.; Scheithauer, B.; Necela, B.M.; Sarkaria, J.N.; Anastasiadis, P.Z. Misregulated E-Cadherin Expression Associated with an Aggressive Brain Tumor Phenotype. PLoS ONE 2010, 5, e13665. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, F.J.; Scheithauer, B.W.; Giannini, C.; Bryant, S.C.; Jenkins, R.B. Epithelial and Pseudoepithelial Differentiation in Glioblastoma and Gliosarcoma. Cancer 2008, 113, 2779–2789. [Google Scholar] [CrossRef] [PubMed]
- Belut, D.R.; Lima, E.d.O.; Zanini, M.A.; Galvani, A.F.; Furtado, F.B.; Ferrasi, A.C. CDH1 Hypermethylation: A Potential Molecular Pathway for Invasiveness in Glioblastoma. Eur. J. Cancer Prev. 2024, 33, 73-btii. [Google Scholar] [CrossRef]
- Sun, H.; Long, S.; Wu, B.; Liu, J.; Li, G. NKCC1 Involvement in the Epithelial-to-Mesenchymal Transition Is a Prognostic Biomarker in Gliomas. PeerJ 2020, 8, e8787. [Google Scholar] [CrossRef]
- de Sousa Abreu, R.; Penalva, L.O.; Marcotte, E.M.; Vogel, C. Global Signatures of Protein and MRNA Expression Levels. Mol. Biosyst. 2009, 5, 1512–1526. [Google Scholar] [CrossRef]
- Vogel, C.; Marcotte, E.M. Insights into the Regulation of Protein Abundance from Proteomic and Transcriptomic Analyses. Nat. Rev. Genet. 2012, 13, 227–232. [Google Scholar] [CrossRef]
- Koussounadis, A.; Langdon, S.P.; Um, I.H.; Harrison, D.J.; Smith, V.A. Relationship between Differentially Expressed MRNA and MRNA-Protein Correlations in a Xenograft Model System. Sci. Rep. 2015, 5, 10775. [Google Scholar] [CrossRef]
- Stakišaitis, D.; Damanskienė, E.; Curkūnavičiūtė, R.; Juknevičienė, M.; Alonso, M.M.; Valančiūtė, A.; Ročka, S.; Balnytė, I. The Effectiveness of Dichloroacetate on Human Glioblastoma Xenograft Growth Depends on Na+ and Mg2+ Cations. Dose-Response 2021, 19, 1559325821990166. [Google Scholar] [CrossRef]
- T98G [T98-G]. Available online: https://www.atcc.org/products/crl-1690 (accessed on 7 February 2024).
- Xing, Y.; Wei, X.; Liu, Y.; Wang, M.-M.; Sui, Z.; Wang, X.; Zhu, W.; Wu, M.; Lu, C.; Fei, Y.-H.; et al. Autophagy Inhibition Mediated by MCOLN1/TRPML1 Suppresses Cancer Metastasis via Regulating a ROS-Driven TP53/P53 Pathway. Autophagy 2022, 18, 1932–1954. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhang, Q.; Luo, L.; Ning, B.; Fang, Y. Β-asarone Inhibited Cell Growth and Promoted Autophagy via P53/Bcl-2/Bclin-1 and P53/AMPK/MTOR Pathways in Human Glioma U251 Cells. J. Cell. Physiol. 2018, 233, 2434–2443. [Google Scholar] [CrossRef] [PubMed]
- McCall, M.N.; McMurray, H.R.; Land, H.; Almudevar, A. On Non-Detects in QPCR Data. Bioinformatics 2014, 30, 2310–2316. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.; Schmittgen, T. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Madhumita; Paul, S. Capturing the Latent Space of an Autoencoder for Multi-Omics Integration and Cancer Subtyping. Comput. Biol. Med. 2022, 148, 105832. [Google Scholar] [CrossRef] [PubMed]
- Pallud, J.; Le Van Quyen, M.; Bielle, F.; Pellegrino, C.; Varlet, P.; Labussiere, M.; Cresto, N.; Dieme, M.J.; Baulac, M.; Duyckaerts, C.; et al. Cortical GABAergic Excitation Contributes to Epileptic Activities around Human Glioma. Sci. Transl. Med. 2014, 6, 244ra89. [Google Scholar] [CrossRef] [PubMed]
- Aronica, E.; Boer, K.; Redeker, S.; Spliet, W.G.M.; van Rijen, P.C.; Troost, D.; Gorter, J.A. Differential Expression Patterns of Chloride Transporters, Na+-K+-2Cl−-Cotransporter and K+-Cl−-Cotransporter, in Epilepsy-Associated Malformations of Cortical Development. Neuroscience 2007, 145, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, K.; Zhou, J.-J.; Shao, J.-Y.; Chen, S.-R.; Pan, H.-L. DNA Demethylation in the Hypothalamus Promotes Transcription of Agtr1a and Slc12a2 and Hypertension Development. J. Biol. Chem. 2024, 300, 105597. [Google Scholar] [CrossRef] [PubMed]
- Kahle, K.T.; Deeb, T.Z.; Puskarjov, M.; Silayeva, L.; Liang, B.; Kaila, K.; Moss, S.J. Modulation of Neuronal Activity by Phosphorylation of the K-Cl Cotransporter KCC2. Trends Neurosci. 2013, 36, 726–737. [Google Scholar] [CrossRef]
- Hartmann, A.M.; Nothwang, H.G. NKCC1 and KCC2: Structural Insights into Phospho-Regulation. Front. Mol. Neurosci. 2022, 15, 964488. [Google Scholar] [CrossRef]
- Zhu, W.; Begum, G.; Pointer, K.; A Clark, P.; Yang, S.-S.; Lin, S.-H.; Kahle, K.T.; Kuo, J.S.; Sun, D. WNK1-OSR1 Kinase-Mediated Phospho-Activation of Na+-K+-2Cl− Cotransporter Facilitates Glioma Migration. Mol. Cancer 2014, 13, 31. [Google Scholar] [CrossRef]
- Turner, K.L.; Sontheimer, H. Cl− and K+ Channels and Their Role in Primary Brain Tumour Biology. Philos. Trans. R Soc. Lond. B Biol. Sci. 2014, 369, 20130095. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.R.; Cuddapah, V.A.; Watkins, S.; Rohn, K.J.; Dy, T.E.; Sontheimer, H. With-No-Lysine Kinase 3 (WNK3) Stimulates Glioma Invasion by Regulating Cell Volume. Am. J. Physiol. Cell Physiol. 2011, 301, C1150–C1160. [Google Scholar] [CrossRef]
- Haas, B.R.; Sontheimer, H. Inhibition of the Sodium-Potassium-Chloride Cotransporter Isoform-1 Reduces Glioma Invasion. Cancer Res. 2010, 70, 5597–5606. [Google Scholar] [CrossRef]
- Bortner, C.D.; Sifre, M.I.; Cidlowski, J.A. Cationic Gradient Reversal and Cytoskeleton-Independent Volume Regulatory Pathways Define an Early Stage of Apoptosis. J. Biol. Chem. 2008, 283, 7219–7229. [Google Scholar] [CrossRef] [PubMed]
- Bortner, C.D.; Cidlowski, J.A. Cell Shrinkage and Monovalent Cation Fluxes: Role in Apoptosis. Arch. Biochem. Biophys. 2007, 462, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Di Cristo, G.; Awad, P.N.; Hamidi, S.; Avoli, M. KCC2, Epileptiform Synchronization, and Epileptic Disorders. Prog. Neurobiol. 2018, 162, 1–16. [Google Scholar] [CrossRef]
- Iuchi, T.; Hasegawa, Y.; Kawasaki, K.; Sakaida, T. Epilepsy in Patients with Gliomas: Incidence and Control of Seizures. J. Clin. Neurosci. 2015, 22, 87–91. [Google Scholar] [CrossRef]
- Conti, L.; Palma, E.; Roseti, C.; Lauro, C.; Cipriani, R.; de Groot, M.; Aronica, E.; Limatola, C. Anomalous Levels of Cl− Transporters Cause a Decrease of GABAergic Inhibition in Human Peritumoral Epileptic Cortex. Epilepsia 2011, 52, 1635–1644. [Google Scholar] [CrossRef]
- McMoneagle, E.; Zhou, J.; Zhang, S.; Huang, W.; Josiah, S.S.; Ding, K.; Wang, Y.; Zhang, J. Neuronal K+-Cl− Cotransporter KCC2 as a Promising Drug Target for Epilepsy Treatment. Acta Pharmacol. Sin. 2024, 45, 1–22. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, G.; O’Toole, K.K.; Moss, S.J.; Maguire, J. Compromised GABAergic Inhibition Contributes to Tumor-Associated Epilepsy. Epilepsy Res. 2016, 126, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, S.; Gopal, E.; Fei, Y.-J.; Ganapathy, V. Functional Identification of SLC5A8, a Tumor Suppressor down-Regulated in Colon Cancer, as a Na(+)-Coupled Transporter for Short-Chain Fatty Acids. J. Biol. Chem. 2004, 279, 13293–13296. [Google Scholar] [CrossRef] [PubMed]
- Coady, M.J.; Chang, M.; Charron, F.M.; Plata, C.; Wallendorff, B.; Sah, J.F.; Markowitz, S.D.; Romero, M.F.; Lapointe, J. The Human Tumour Suppressor Gene SLC5A8 Expresses a Na+ –Monocarboxylate Cotransporter. J. Physiol. 2004, 557, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak-Celińska, A.; Kleszcz, R.; Stasiłowicz-Krzemień, A.; Cielecka-Piontek, J. Sodium Butyrate Enhances Curcuminoids Permeability through the Blood-Brain Barrier, Restores Wnt/β-Catenin Pathway Antagonists Gene Expression and Reduces the Viability of Glioblastoma Cells. Int. J. Mol. Sci. 2021, 22, 11285. [Google Scholar] [CrossRef] [PubMed]
- Kamson, D.O.; Chinnasamy, V.; Grossman, S.A.; Bettegowda, C.; Barker, P.B.; Stacpoole, P.W.; Oeltzschner, G. In-Vivo Magnetic Resonance Spectroscopy of Lactate as a Non-Invasive Biomarker of Dichloroacetate Activity in Cancer and Non-Cancer Central Nervous System Disorders. Front. Oncol. 2023, 13, 1077461. [Google Scholar] [CrossRef]
Study Group | n | Indicator, Mean ± SD | ||
---|---|---|---|---|
CT | ∆CT | |||
SLC5A8 | GAPDH | |||
U87 control | 6 | 37.31 ± 1.51 | 16.25 ± 1.26 | – |
U87 1.5 mM VPA | 5 | 34.88 ± 0.54 | 16.73 ± 0.29 | 18.15 ± 0.57 |
U87 0.75 mM VPA | 6 | 35.39 ± 1.19 | 16.41 ± 1.21 | – |
U87 0.5 mM VPA | 6 | 36.51 ± 0.61 | 17.87 ± 1.77 | – |
T98G control | 6 | not detected | 17.41 ± 0.22 | – |
T98G 1.5 mM VPA | 5 | 36.31 ± 0.82 | 18.07 ± 0.77 | – |
T98G 0.75 mM VPA | 6 | 37.16 ± 0.36 | 18.60 ± 0.37 | – |
T98G 0.5 mM VPA | 6 | not detected | 17.93 ± 0.76 | – |
Study Group | n | Indicator, Mean ± SD | ||||
---|---|---|---|---|---|---|
CT | ∆CT | ∆∆CT | 2−∆∆CT | |||
SLC12A2 | GAPDH | |||||
U87 control | 6 | 22.07 ± 1.23 | 18.14 ± 1.41 | 3.93 ± 0.64 | 0.00 ± 0.64 | 1.08 ± 0.46 |
U87 1.5 mM VPA | 5 | 22.62 ± 0.36 | 18.76 ± 0.93 | 3.87 ± 0.83 | −0.06 ± 0.83 | 1.20 ± 0.54 |
U87 0.75 mM VPA | 6 | 22.40 ± 0.36 | 18.52 ± 1.25 | 3.88 ± 1.15 | −0.05 ± 1.14 | 1.28 ± 0.71 |
U87 0.5 mM VPA | 6 | 23.49 ± 1.09 | 19.72 ± 1.87 | 3.77 ± 1.16 | −0.16 ± 1.16 | 1.36 ± 0.70 |
T98G control | 6 | 21.63 ± 0.60 | 19.87 ± 0.23 | 1.76 ± 0.60 a | 0.00 ± 0.60 | 1.07 ± 0.19 |
T98G 1.5 mM VPA | 5 | 21.37 ± 0.55 | 20.50 ± 0.31 | 0.87 ± 0.50 b | −0.89 ± 0.50 | 1.94 ± 0.61 |
T98G 0.75 mM VPA | 6 | 21.83 ± 0.16 | 20.81 ± 0.20 | 1.02 ± 0.30 c,d | −0.75 ± 0.30 | 1.71 ± 0.35 |
T98G 0.5 mM VPA | 6 | 22.00 ± 0.26 | 19.83 ± 0.74 | 2.17 ± 0.53 e,f,g | 0.41 ± 0.53 | 0.79 ± 0.23 |
Study Group | n | Indicator, mean ± SD | ||||
---|---|---|---|---|---|---|
CT | ∆CT | ∆∆CT | 2−∆∆CT | |||
SLC12A5 | GAPDH | |||||
U87 control | 6 | 33.79 ± 1.21 | 16.25 ± 1.26 | 17.54 ± 1.07 | 0.00 ± 1.07 | 1.05 ± 1.26 |
U87 1.5 mM VPA | 5 | 31.89 ± 0.66 | 16.73 ± 0.29 | 15.16 ± 0.75 a | −2.38 ± 0.75 | 5.97 ± 3.18 |
U87 0.75 mM VPA | 6 | 32.00 ± 0.63 | 16.41 ± 1.21 | 15.59 ± 0.73 b | −1.95 ± 0.73 | 4.40 ± 2.39 |
U87 0.5 mM VPA | 6 | 33.28 ± 1.35 | 17.87 ± 1.77 | 15.41 ± 0.45 c | −2.12 ± 0.45 | 4.54 ± 1.18 |
T98G control | 6 | 37.31 ± 0.46 | 17.41 ± 0.22 | – | – | – |
T98G 1.5 mM VPA | 5 | 36.46 ± 0.60 | 18.07 ± 0.77 | – | – | – |
T98G 0.75 mM VPA | 6 | 37.10 ± 0.46 | 18.60 ± 0.37 | – | – | – |
T98G 0.5 mM VPA | 6 | 36.79 ± 0.70 | 17.93 ± 0.76 | – | – | – |
Study Group | n | Indicator, Mean ± SD | ||
---|---|---|---|---|
CT | ∆CT | |||
CDH1 | GAPDH | |||
U87 control | 6 | 36.21 ± 0.49 | 16.25 ± 1.26 | – |
U87 1.5 mM VPA | 5 | 35.86 ± 0.60 | 16.73 ± 0.29 | – |
U87 0.75 mM VPA | 6 | 36.41 ± 0.61 | 16.41 ± 1.21 | – |
U87 0.5 mM VPA | 6 | 36.12 ± 0.56 | 17.87 ± 1.77 | – |
T98G control | 6 | not detected | 17.41 ± 0.22 | – |
T98G 1.5 mM VPA | 5 | 34.89 ± 0.38 | 18.07 ± 0.77 | 16.81 ± 0.57 |
T98G 0.75 mM VPA | 6 | 34.87 ± 0.38 | 18.60 ± 0.37 | 16.27 ± 0.47 |
T98G 0.5 mM VPA | 6 | 35.08 ± 0.83 | 17.93 ± 0.76 | – |
Study Group | n | Indicator, Mean ± SD | ||||
---|---|---|---|---|---|---|
CT | ∆CT | ∆∆CT | 2−∆∆CT | |||
CDH2 | GAPDH | |||||
U87 control | 6 | 23.82 ± 0.72 | 18.14 ± 1.41 | 5.68 ± 1.26 | 0.00 ± 1.26 | 1.01 ± 0.82 |
U87 1.5 mM VPA | 5 | 22.74 ± 1.44 | 18.76 ± 0.93 | 3.98 ± 0.52 a | −1.70 ± 0.52 | 3.41 ± 1.16 |
U87 0.75 mM VPA | 6 | 23.60 ± 0.68 | 18.52 ± 1.25 | 5.07 ± 0.64 b | −0.61 ± 0.64 | 1.64 ± 0.62 |
U87 0.5 mM VPA | 6 | 24.10 ± 1.46 | 19.72 ± 1.87 | 4.38 ± 1.11 | −1.30 ± 1.11 | 3.06 ± 1.93 |
T98G control | 6 | 23.64 ± 0.22 | 19.87 ± 0.23 | 3.78 ± 0.30 c | 0.00 ± 0.30 | 1.02 ± 0.17 |
T98G 1.5 mM VPA | 5 | 23.11 ± 0.46 | 20.50 ± 0.31 | 2.61 ± 0.45 d,e | −1.17 ± 0.45 | 2.34 ± 0.74 |
T98G 0.75 mM VPA | 6 | 23.52 ± 0.31 | 20.81 ± 0.20 | 2.71 ± 0.22 f,g | −1.06 ± 0.22 | 2.11 ± 0.33 |
T98G 0.5 mM VPA | 6 | 22.90 ± 0.31 | 19.83 ± 0.74 | 3.07 ± 0.55 h,i | −0.71 ± 0.55 | 1.73 ± 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juknevičienė, M.; Balnytė, I.; Valančiūtė, A.; Alonso, M.M.; Preikšaitis, A.; Sužiedėlis, K.; Stakišaitis, D. Differential Impact of Valproic Acid on SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 Expression in Adult Glioblastoma Cells. Biomedicines 2024, 12, 1416. https://doi.org/10.3390/biomedicines12071416
Juknevičienė M, Balnytė I, Valančiūtė A, Alonso MM, Preikšaitis A, Sužiedėlis K, Stakišaitis D. Differential Impact of Valproic Acid on SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 Expression in Adult Glioblastoma Cells. Biomedicines. 2024; 12(7):1416. https://doi.org/10.3390/biomedicines12071416
Chicago/Turabian StyleJuknevičienė, Milda, Ingrida Balnytė, Angelija Valančiūtė, Marta Marija Alonso, Aidanas Preikšaitis, Kęstutis Sužiedėlis, and Donatas Stakišaitis. 2024. "Differential Impact of Valproic Acid on SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 Expression in Adult Glioblastoma Cells" Biomedicines 12, no. 7: 1416. https://doi.org/10.3390/biomedicines12071416
APA StyleJuknevičienė, M., Balnytė, I., Valančiūtė, A., Alonso, M. M., Preikšaitis, A., Sužiedėlis, K., & Stakišaitis, D. (2024). Differential Impact of Valproic Acid on SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 Expression in Adult Glioblastoma Cells. Biomedicines, 12(7), 1416. https://doi.org/10.3390/biomedicines12071416