Pemphigus—The Crux of Clinics, Research, and Treatment during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Clinical Presentation
2.1. Pemphigus Vulgaris
2.2. Pemphigus Vegetans
2.3. Pemphigus Foliaceus
3. Non classical Pemphigus Clinical Variants
3.1. Pemphigus Herpetiformis (PH)
3.2. IgA Pemphigus
3.3. Paraneoplastic Pemphigus
3.4. IgG/IgA Pemphigus
3.5. Drug-Induced Pemphigus
3.6. “Unusual” Pemphigus Manifestations
4. Pemphigus and Comorbidities
5. Pemphigus and COVID-19
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmidt, E.; Kasperkiewicz, M.; Joly, P. Pemphigus. Lancet 2019, 394, 882–894. [Google Scholar] [CrossRef]
- Marinovic, B.; Lipozencic, J.; Jukic, I.L. Autoimmune blistering diseases: Incidence and treatment in Croatia. Dermatol. Clin. 2011, 29, 677–679. [Google Scholar] [CrossRef]
- Didona, D.; Maglie, R.; Eming, R.; Hertl, M. Pemphigus: Current and Future Therapeutic Strategies. Front. Immunol. 2019, 10, 1418. [Google Scholar] [CrossRef] [Green Version]
- Melchionda, V.; Harman, K.E. Pemphigus vulgaris and pemphigus foliaceus: An overview of the clinical presentation, investigations and management. Clin. Exp. Dermatol. 2019, 44, 740–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murrell, D.F. Blistering Diseases, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Pan, M.; Liu, X.; Zheng, J. The pathogenic role of autoantibodies in pemphigus vulgaris. Clin. Exp. Dermatol. 2011, 36, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Belloni-Fortina, A.; Faggion, D.; Pigozzi, B.; Peserico, A.; Bordignon, M.; Baldo, V.; Alaibac, M. Detection of autoantibodies against recombinant desmoglein 1 and 3 molecules in patients with pemphigus vulgaris: Correlation with disease extent at the time of diagnosis and during follow-up. Clin. Dev. Immunol. 2009, 2009, 187864. [Google Scholar] [CrossRef]
- Shinkuma, S.; Nishie, W.; Shibaki, A.; Sawamura, D.; Ito, K.; Tsuji-Abe, Y.; Natsuga, K.; Chan, P.T.; Amagai, M.; Shimizu, H. Cutaneous pemphigus vulgaris with skin features similar to the classic mucocutaneous type: A case report and review of the literature. Clin. Exp. Dermatol. 2008, 33, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Carew, B.; Wagner, G. Cutaneous pemphigus vulgaris with absence of desmoglein 1 autoantibodies. An example of the extended desmoglein compensation theory. Australas. J. Dermatol. 2014, 55, 292–295. [Google Scholar] [CrossRef]
- Koga, H.; Ohyama, B.; Tsuruta, D.; Ishii, N.; Hamada, T.; Dainichi, T.; Natsuaki, Y.; Sogame, R.; Fukuda, S.; Karashima, T.; et al. Five Japanese cases of antidesmoglein 1 antibody-positive and antidesmoglein 3 antibody-negative pemphigus with oral lesions. Br. J. Dermatol. 2012, 166, 976–980. [Google Scholar] [CrossRef]
- Sardana, K.; Garg, V.K.; Agarwal, P. Is there an emergent need to modify the desmoglein compensation theory in pemphigus on the basis of Dsg ELISA data and alternative pathogenic mechanisms? Br. J. Dermatol. 2013, 168, 669–674. [Google Scholar] [CrossRef]
- Harman, K.E.; Brown, D.; Exton, L.S.; Groves, R.W.; Hampton, P.J.; Mohd Mustapa, M.F.; Setterfield, J.F.; Yesudian, P.D. British Association of Dermatologists’ guidelines for the management of pemphigus vulgaris 2017. Br. J. Dermatol. 2017, 177, 1170–1201. [Google Scholar] [CrossRef] [Green Version]
- Delavarian, Z.; Layegh, P.; Pakfetrat, A.; Zarghi, N.; Khorashadizadeh, M.; Ghazi, A. Evaluation of desmoglein 1 and 3 autoantibodies in pemphigus vulgaris: Correlation with disease severity. J. Clin. Exp. Dent. 2020, 12, 440–445. [Google Scholar] [CrossRef]
- Sirois, D.A.; Fatahzadeh, M.; Roth, R.; Ettlin, D. Diagnostic patterns and delays in pemphigus vulgaris: Experience with 99 patients. Arch. Dermatol. 2000, 136, 1569–1570. [Google Scholar] [CrossRef] [PubMed]
- Daltaban, Ö.; Özçentik, A.; Akman Karakaş, A.; Üstün, K.; Hatipoğlu, M.; Uzun, S. Clinical presentation and diagnostic delay in pemphigus vulgaris: A prospective study from Turkey. J. Oral Pathol. Med. 2020, 49, 681–686. [Google Scholar] [CrossRef]
- Loi, C.; Magnano, M.; Ravaioli, G.M.; Sacchelli, L.; Patrizi, A.; Bardazzi, F. Rituximab therapy in pemphigus: A long-term follow-up. Dermatol. Ther. 2019, 32, 12763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joly, P.; Maho-Vaillant, M.; Prost-Squarcioni, C.; Hebert, V.; Houivet, E.; Calbo, S.; Caillot, F.; Golinski, M.L.; Labeille, B.; Picard-Dahan, C.; et al. First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): A prospective, multicentre, parallel-group, open-label randomised trial. Lancet 2017, 389, 2031–2040. [Google Scholar] [CrossRef]
- Joly, P.; Horvath, B.; Patsatsi, A.; Uzun, S.; Bech, R.; Beissert, S.; Bergman, R.; Bernard, P.; Borradori, L.; Caproni, M.; et al. Updated S2K guidelines on the management of pemphigus vulgaris and foliaceus initiated by the european academy of dermatology and venereology (EADV). J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1900–1913. [Google Scholar] [CrossRef]
- Murrell, D.F.; Peña, S.; Joly, P.; Marinovic, B.; Hashimoto, T.; Diaz, L.A.; Sinha, A.A.; Payne, A.S.; Daneshpazhooh, M.; Eming, R.; et al. Diagnosis and management of pemphigus: Recommendations of an international panel of experts. J. Am. Acad. Dermatol. 2020, 82, 575–585. [Google Scholar] [CrossRef]
- Baum, S.; Raviv, T.; Gilboa, S.; Pavlotsky, F.; Barzilai, A. Efficacy of Repeated Courses of Rituximab as Treatment for Pemphigus Vulgaris. Acta Derm. Venereol. 2020, 100. [Google Scholar] [CrossRef]
- Sharma, V.K.; Gupta, V.; Bhari, N.; Singh, V. Rituximab as an adjuvant therapy for pemphigus: Experience in 61 patients from a single center with long-term follow-up. Int. J. Dermatol. 2020, 59, 76–81. [Google Scholar] [CrossRef]
- Kushner, C.J.; Wang, S.; Tovanabutra, N.; Tsai, D.E.; Werth, V.P.; Payne, A.S. Factors Associated With Complete Remission After Rituximab Therapy for Pemphigus. JAMA Dermatol. 2019, 155, 1404–1409. [Google Scholar] [CrossRef] [PubMed]
- Shimanovich, I.; Baumann, T.; Schmidt, E.; Zillikens, D.; Hammers, C.M. Long-term outcomes of rituximab therapy in pemphigus. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 2884–2889. [Google Scholar] [CrossRef]
- Currimbhoy, S.; Zhu, V.; Dominguez, A.R.; Pandya, A.G. Rituximab in the treatment of 38 patients with Pemphigus with long-term follow-up. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1050–1052. [Google Scholar] [CrossRef]
- Toosi, R.; Mahmoudi, H.; Balighi, K.; Teimourpour, A.; Alaeen, H.; Shaghaghi, M.; Abedini, R.; Daneshpazhooh, M. Efficacy and safety of biosimilar rituximab in patients with pemphigus vulgaris: A prospective observational study. J. Dermatolog. Treat. 2021, 32, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Albers, L.N.; Liu, Y.; Bo, N.; Swerlick, R.A.; Feldman, R.J. Developing biomarkers for predicting clinical relapse in pemphigus patients treated with rituximab. J. Am. Acad. Dermatol. 2017, 77, 1074–1082. [Google Scholar] [CrossRef] [PubMed]
- Messersmith, L.; Krauland, K. Pemphigus Vegetans. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Zaraa, I.; Sellami, A.; Bouguerra, C.; Sellami, M.K.; Chelly, I.; Zitouna, M.; Makni, S.; Hmida, A.B.; Mokni, M.; Osman, A.B. Pemphigus vegetans: A clinical, histological, immunopathological and prognostic study. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Verma, G.K.; Tegta, G.R.; Sharma, A.; Kaur, M.; Sharma, S. A Rare Case of Extensive Pemphigus Vegetans. Indian Dermatol. Online J. 2019, 11, 87–90. [Google Scholar] [CrossRef] [PubMed]
- James, K.A.; Culton, D.A.; Diaz, L.A. Diagnosis and clinical features of pemphigus foliaceus. Dermatol. Clin. 2011, 29, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Kridin, K. Pemphigus group: Overview, epidemiology, mortality, and comorbidities. Immunol. Res. 2018, 66, 255–270. [Google Scholar] [CrossRef]
- Costa, L.M.C.; Cappel, M.A.; Keeling, J.H. Clinical, pathologic, and immunologic features of pemphigus herpetiformis: A literature review and proposed diagnostic criteria. Int. J. Dermatol. 2019, 58, 997–1007. [Google Scholar] [CrossRef]
- Huilgol, S.C.; Black, M.M. Management of the immunobullous disorders. II. Pemphigus. Clin. Exp. Dermatol. 1995, 20, 283–293. [Google Scholar] [CrossRef]
- O’Connell, M.; Goulden, V. Half-half blisters. N. Engl. J. Med. 2012, 366, e31. [Google Scholar] [CrossRef] [Green Version]
- Porro, A.M.; Caetano Lde, V.; Maehara Lde, S.; Enokihara, M.M. Non-classical forms of pemphigus: Pemphigus herpetiformis, IgA pemphigus, paraneoplastic pemphigus and IgG/IgA pemphigus. An. Bras. Dermatol. 2014, 89, 96–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, N.D.; Hashimoto, T.; Amagai, M.; Chan, L.S. The new pemphigus variants. J. Am. Acad. Dermatol. 1999, 40, 649–671. [Google Scholar] [CrossRef]
- Howell, S.M.; Bessinger, G.T.; Altman, C.E.; Belnap, C.M. Rapid response of IgA pemphigus of the subcorneal pustular dermatosis subtype to treatment with adalimumab and mycophenolate mofetil. J. Am. Acad. Dermatol. 2005, 53, 541–543. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, S.C. Paraneoplastic Pemphigus: Paraneoplastic Autoimmune Disease of the Skin and Mucosa. Front. Immunol. 2019, 10, 1259. [Google Scholar] [CrossRef] [Green Version]
- Kappius, R.H.; Ufkes, N.A. Paraneoplastic Pemphigus. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Tirado-Sánchez, A.; Bonifaz, A. Paraneoplastic Pemphigus. A Life-Threatening Autoimmune Blistering Disease. Actas Dermosifiliogr. 2017, 108, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Borradori, L.; Lombardi, T.; Samson, J.; Girardet, C.; Saurat, J.H.; Hügli, A. Anti-CD20 monoclonal antibody (rituximab) for refractory erosive stomatitis secondary to CD20(+) follicular lymphoma-associated paraneoplastic pemphigus. Arch. Dermatol. 2001, 137, 269–272. [Google Scholar] [PubMed]
- Amber, K.T.; Valdebran, M.; Grando, S.A. Paraneoplastic autoimmune multiorgan syndrome (PAMS): Beyond the single phenotype of paraneoplastic pemphigus. Autoimmun. Rev. 2018, 17, 1002–1010. [Google Scholar] [CrossRef]
- Kasperkiewicz, M.; Ellebrecht, C.T.; Takahashi, H.; Yamagami, J.; Zillikens, D.; Payne, A.S.; Amagai, M. Pemphigus. Nat. Rev. Dis. Primers. 2017, 3, 17026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oiso, N.; Yamashita, C.; Yoshioka, K.; Amagai, M.; Komai, A.; Nagata, Y.; Hashimoto, T.; Ishii, M. IgG/IgA pemphigus with IgG and IgA antidesmoglein 1 antibodies detected by enzyme-linked immunosorbent assay. Br. J. Dermatol. 2002, 147, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Toosi, S.; Collins, J.W.; Lohse, C.M.; Wolz, M.M.; Wieland, C.N.; Camilleri, M.J.; Bruce, A.J.; McEvoy, M.T.; Lehman, J.S. Clinicopathologic features of IgG/IgA pemphigus in comparison with classic (IgG) and IgA pemphigus. Int. J. Dermatol. 2016, 55, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Lane, N.; Parekh, P. IgG/IgA pemphigus. Am. J. Dermatopathol. 2014, 36, 1002–1004. [Google Scholar] [CrossRef]
- Hosoda, S.; Suzuki, M.; Komine, M.; Murata, S.; Hashimoto, T.; Ohtsuki, M. A case of IgG/IgA pemphigus presenting malar rash-like erythema. Acta Derm. Venereol. 2012, 92, 164–166. [Google Scholar]
- Criscito, M.C.; Cohen, J.M.; Toosi, S.; Penn, L.A.; Ross, C.L.; Park, J.; Love, E.M.; Lehman, J.S.; Brinster, N.K. A retrospective study on the clinicopathologic features of IgG/IgA pemphigus. J. Am. Acad. Dermatol. 2021, 85, 237–240. [Google Scholar] [CrossRef]
- Chapman, C.M.; Kwock, J.; Cresce, N.; Privette, E.; Cropley, T.; Gru, A.A. IgG/IgA pemphigus in a patient with a history of pemphigus vulgaris: An example of epitope spreading? J. Cutan. Pathol. 2019, 46, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Mentink, L.F.; de Jong, M.C.; Kloosterhuis, G.J.; Zuiderveen, J.; Jonkman, M.F.; Pas, H.H. Coexistence of IgA antibodies to desmogleins 1 and 3 in pemphigus vulgaris, pemphigus foliaceus and paraneoplastic pemphigus. Br. J. Dermatol. 2007, 156, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S.; Goldberg, I. Drug-induced pemphigus. Clin. Dermatol. 2011, 29, 455–457. [Google Scholar] [CrossRef]
- Pile, H.D.; Yarrarapu, S.N.S. Drug Induced Pemphigus. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Hayashida, M.Z.; Pinheiro, J.R.S.; Enokihara, M.M.S.E.S.; Vasconcellos, M.R.A. Biologic therapy-induced pemphigus. An. Bras. Dermatol. 2017, 92, 591–593. [Google Scholar] [CrossRef] [Green Version]
- Ghaedi, F.; Etesami, I.; Aryanian, Z.; Kalantari, Y.; Goodarzi, A.; Teymourpour, A.; Tavakolpour, S.; Mahmoudi, H.; Daneshpazhooh, M. Drug-induced pemphigus: A systematic review of 170 patients. Int. Immunopharmacol. 2021, 92, 107299. [Google Scholar] [CrossRef]
- Öktem, A.; Hayran, Y.; Uysal, P.İ.; Atılan, A.U.; Yalçın, B. Evaluation of the Importance of Immunological Profile for Pemphigus Vulgaris in the Light of Necessity to Modify Compensation Theory. Acta Dermatovenerol. Croat. 2018, 26, 100–104. [Google Scholar]
- Marinović, B.; Mokos, Z.B.; Basta-Juzbašić, A.; Jukić, I.L.; Lončarić, D.; Hashimoto, T.; Pašić, A. Atypical clinical appearance of pemphigus vulgaris on the face: Case report. Acta Dermatovenerol. Croat. 2005, 13, 233–236. [Google Scholar] [PubMed]
- Bystryn, J.C.; Steinman, N.M. The adjuvant therapy of pemphigus. An update. Arch. Dermatol. 1996, 132, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Hsu, D.Y.; Brieva, J.; Sinha, A.A.; Langan, S.M.; Silverberg, J.I. Comorbidities and inpatient mortality for pemphigus in the USA. Br. J. Dermatol. 2016, 174, 1290–1298. [Google Scholar] [CrossRef] [PubMed]
- Yasir, M.; Goyal, A.; Bansal, P.; Sonanthalia, S. Corticosteroid adverse effects. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Chen, D.M.; Odueyungbo, A.; Csinady, E.; Gearhart, L.; Lehane, P.; Cheu, M.; Maho-Vaillant, M.; Prost-Squarcioni, C.; Hebert, V.; Houivet, E.; et al. French Study Group on Autoimmune Bullous Diseases. Rituximab is an effective treatment in patients with pemphigus vulgaris and demonstrates a steroid-sparing effect. Br. J. Dermatol. 2020, 182, 1111–1119. [Google Scholar] [CrossRef] [Green Version]
- Kridin, K.; Jones, V.A.; Patel, P.M.; Zelber-Sagi, S.; Hammers, C.M.; Damiani, G.; Amber, K.T.; Cohen, A.D. Patients with pemphigus are at an increased risk of developing rheumatoid arthritis: A large-scale cohort study. Immunol. Res. 2020, 68, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Parameswaran, A.; Attwood, K.; Sato, R.; Seiffert-Sinha, K.; Sinha, A.A. Identification of a new disease cluster of pemphigus vulgaris with autoimmune thyroid disease, rheumatoid arthritis and type I diabetes. Br. J. Dermatol. 2015, 172, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Firooz, A.; Mazhar, A.; Ahmed, A.R. Prevalence of autoimmune-diseases in the family members of patients with pemphigus-vulgaris. J. Am. Acad. Dermatol. 1994, 31, 434–437. [Google Scholar] [CrossRef]
- Kridin, K.; Jones, V.A.; Patel, P.M.; Gibson, F.T.; Amber, K.T.; Cohen, A.D. Hidradenitis suppurativa and pemphigus: A cross-sectional study. Arch. Dermatol. Res. 2020, 312, 501–505. [Google Scholar] [CrossRef]
- Kridin, K.; Zelber-Sagi, S.; Comaneshter, D.; Cohen, A.D. Coexistent Solid Malignancies in Pemphigus: A Population-Based Study. JAMA Dermatol. 2018, 154, 435–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, F.; Neumann, K.; Recke, A.; Zillikens, D.; Linder, R.; Schmidt, E. Malignancies in pemphigus and pemphigoid diseases. J. Investig. Dermatol. 2015, 135, 1445–1447. [Google Scholar] [CrossRef] [Green Version]
- Beyzaee, A.M.; Rahmatpour Rokni, G.; Patil, A.; Goldust, M. Rituximab as the treatment of pemphigus vulgaris in the COVID-19 pandemic era: A narrative review. Dermatol. Ther. 2021, 34, 14405. [Google Scholar] [CrossRef]
- Tavakolpour, S.; Aryanian, Z.; Seiranfianpour, F.; Dodangeh, M.; Etesami, I.; Daneshpazhooh, M.; Balighi, K.; Mahmoudi, H.; Goodarzi, A. A systematic review on efficacy, safety, and treatment-durability of low-dose rituximab for the treatment of Pemphigus: Special focus on COVID-19 pandemic concerns. Immunopharmacol. Immunotoxicol. 2021, 43, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.; Roberts, C.A.K.; Pryce, G.; Kang, A.S.; Marta, M.; Reyes, S.; Schmierer, K.; Giovannoni, G.; Amor, S. COVID-19 vaccine-readiness for anti-CD20-depleting therapy in autoimmune diseases. Clin. Exp. Immunol. 2020, 202, 149–161. [Google Scholar] [CrossRef]
- Wack, S.; Patton, T.; Ferris, L.K. COVID-19 vaccine safety and efficacy in patients with immune-mediated inflammatory disease: Review of available evidence. J. Am. Acad. Dermatol. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Deepak, P.; Kim, W.; Paley, M.A.; Yang, M.; Carridi, A.B.; El-Qunni, A.A.; Haile, A.; Huang, K.; Kinnett, B.; Liebeskind, M.J.; et al. Glucocorticoids and B cell depleting agents substantially impair immunogenicity of mRNA vaccines to SARS-CoV-2. medRxiv 2021. [Google Scholar] [CrossRef]
- Boyarsky, B.J.; Ruddy, J.A.; Connolly, C.M.; Ou, M.T.; Werbel, W.A.; Garonzik-Wang, J.M.; Segev, D.L.; Paik, J.J. Antibody response to a single dose of SARS-CoV-2 mRNA vaccine in patients with rheumatic and musculoskeletal diseases. Ann. Rheum. Dis. 2021, 80, 1098–1099. [Google Scholar] [CrossRef]
- Spiera, R.; Jinich, S.; Jannat-Khah, D. Rituximab, but not other antirheumatic therapies, is associated with impaired serological response to SARS-CoV-2 vaccination in patients with rheumatic diseases. Ann. Rheum. Dis. 2021, 80, 135–1359. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, G.A.; Della-Torre, E.; Moroni, L.; Yacoub, M.R.; Dagna, L. Correspondence on ‘Immunogenicity and safety of anti-SARS- Cov-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort’. Ann. Rheum. Dis. 2021, 80, e160. [Google Scholar] [CrossRef] [PubMed]
- Bonelli, M.M.; Mrak, D.; Perkmann, T.; Haslacher, H.; Aletaha, D. SARS-CoV-2 vaccination in rituximab-treated patients: Evidence for impaired humoral but inducible cellular immune response. Ann. Rheum. Dis. 2021, 80, 1355–1356. [Google Scholar] [CrossRef]
- Mohme, S.; Schmalzing, M.; Müller, C.S.L.; Müller, C.S.L.; Vogt, T.; Goebeler, M.; Stoevesandt, J. Immunizations in immunocompromised patients: A guide for dermatologists. J. Dtsch. Dermatol. Ges. 2020, 18, 699–723. [Google Scholar] [CrossRef] [PubMed]
- Shakshouk, H.; Daneshpazhooh, M.; Murrell, D.F.; Lehman, J.S. Treatment considerations for patients with pemphigus during the COVID-19 pandemic. J. Am. Acad. Dermatol. 2020, 82, 235–236. [Google Scholar] [CrossRef] [PubMed]
- Schultz, B.; Pearson, D.R.; Mansh, M. Reply to “Treatment considerations for patients with pemphigus during the COVID-19 pandemic”. J. Am. Acad. Dermatol. 2021, 84, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Di Altobrando, A.; Patrizi, A.; Abbenante, D.; Bardazzi, F. Rituximab: A safe therapeutic option during the COVID-19 pandemic? J. Dermatolog. Treat. 2020, 29, 1. [Google Scholar] [CrossRef]
- Drenovska, K.; Vassileva, S.; Tanev, I.; Joly, P. Impact of COVID-19 on autoimmune blistering diseases. Clin. Dermatol. 2021, 39, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Montagnon, C.M.; Lehman, J.S.; Murrell, D.F.; Camilleri, M.J.; Tolkachjov, S.N. Intraepithelial autoimmune bullous dermatoses disease activity assessment and therapy. J. Am. Acad. Dermatol. 2021, 84, 1523–1537. [Google Scholar] [CrossRef]
- Kasperkiewicz, M. COVID-19 outbreak and autoimmune bullous diseases: A systematic review of published cases. J. Am. Acad. Dermatol. 2021, 84, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, H.; Farid, A.S.; Nili, A.; Dayani, D.; Tavakolpour, S.; Soori, T.; Teimourpour, A.; Isazade, A.; Abedini, R.; Balighi, K.; et al. Autoimmune Bullous Diseases Research Group. Characteristics and outcomes of COVID-19 in patients with autoimmune bullous diseases: A retrospective cohort study. J. Am. Acad. Dermatol. 2021, 84, 1098–1100. [Google Scholar] [CrossRef] [PubMed]
- Strangfeld, A.; Schäfer, M.; Gianfrancesco, M.A.; Lawson-Tovey, S.; Liew, J.W.; Ljung, L.; Mateus, E.F.; Richez, C.; Santos, M.J.; Schmajuk, G.; et al. COVID-19 Global Rheumatology Alliance. Factors associated with COVID-19-related death in people with rheumatic diseases: Results from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann. Rheum. Dis. 2021, 80, 930–942. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.S.; Férnandez, X.C.; Moriano Morales, C.; Álvarez, E.D.; Álvarez Castro, C.; López Robles, A.; Pérez Sandoval, T. Biological agents for rheumatic diseases in the outbreak of COVID-19: Friend or foe? RMD Open 2021, 7, 001439. [Google Scholar] [CrossRef]
- Kasperkiewicz, M.; Schmidt, E.; Amagai, M.; Fairley, J.A.; Joly, P.; Murrell, D.F.; Payne, A.S.; Yale, M.L.; Zillikens, D.; Woodley, D.T. Updated international expert recommendations for the management of autoimmune bullous diseases during the COVID-19 pandemic. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 412–414. [Google Scholar]
- Ashraf, M.U.; Kim, Y.; Kumar, S.; Seo, D.; Ashraf, M.; Bae, Y.S. COVID-19 Vaccines (Revisited) and Oral-Mucosal Vector System as a Potential Vaccine Platform. Vaccines 2021, 9, 171. [Google Scholar] [CrossRef] [PubMed]
1st Line Treatment | No Disease Control at Week 3–4 | |
---|---|---|
Mild PV [18] (involved BSA < 5% and limited oral lesions not impairing food intake or requiring analgesics; PDAI score ≤ 15 |
|
|
Moderate to severe PV [18] (involved ≥ 15% BSA, multiple mucosal involvement, severe oral lesions or dysphagia with weight loss, significant pain; moderate PV PDAI score > 15 and ≤45; severe PV PDAI score > 45) |
|
|
Dermatologic | Thin skin |
Purpura | |
Ecchymoses | |
Acne | |
Increased hair growth (hirsutism) | |
Facial erythema | |
Striae | |
Cushingoid appearance | |
Ophthalmologic | Cataract |
Glaucoma | |
Cardiovascular | Fluid retention |
Hypertension | |
Arteriosclerosis | |
Arrhythmias | |
Bone and muscle | Osteoporosis |
Avascular necrosis | |
Proximal myopathy | |
Neuropsychiatric | Euphoria |
Emotional disturbances | |
Depression | |
Insomnia | |
Pseudotumor cerebri | |
Metabolic | Hyperglycemia |
Hypokalemia | |
Endocrine | Supression of hypothalamic-pituitary-adrenal axis |
Obesity (truncal) | |
Immune system | Immunosuppression |
Gastrointestinal | Gastritis |
Peptic ulcer disease | |
Steatohepatitis |
Clinics | Management | Therapy | Risk of COVID-19 | |
---|---|---|---|---|
Mild-to-moderate (PDAI ≤ 45) | Risk of exacerbation due to discontinuation of treatment | Outpatient unit, day-hospital | Tapering corticosteroids | Higher if corticosteroid dose > 20 mg and if other immunosuppressive agents administered [80] |
Severe (PDAI > 45) | Risk of exacerbation due to discontinuation of treatment; risk of more severe form of COVID-19 due to high doses of immunosuppressive agents | Hospitalization with negative PCR test | RTX on a case to case basis depending on local infection rate, underlying comorbidities, adherence to epidemiological measures, and full vaccination [81] | Higher if RTX administered [80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinović, B.; Miše, J.; Jukić, I.L.; Bukvić Mokos, Z. Pemphigus—The Crux of Clinics, Research, and Treatment during the COVID-19 Pandemic. Biomedicines 2021, 9, 1555. https://doi.org/10.3390/biomedicines9111555
Marinović B, Miše J, Jukić IL, Bukvić Mokos Z. Pemphigus—The Crux of Clinics, Research, and Treatment during the COVID-19 Pandemic. Biomedicines. 2021; 9(11):1555. https://doi.org/10.3390/biomedicines9111555
Chicago/Turabian StyleMarinović, Branka, Joško Miše, Ines Lakoš Jukić, and Zrinka Bukvić Mokos. 2021. "Pemphigus—The Crux of Clinics, Research, and Treatment during the COVID-19 Pandemic" Biomedicines 9, no. 11: 1555. https://doi.org/10.3390/biomedicines9111555
APA StyleMarinović, B., Miše, J., Jukić, I. L., & Bukvić Mokos, Z. (2021). Pemphigus—The Crux of Clinics, Research, and Treatment during the COVID-19 Pandemic. Biomedicines, 9(11), 1555. https://doi.org/10.3390/biomedicines9111555