Effectiveness of New Isomalt-Containing Toothpaste Formulations in Preventing Dental Caries: A Microbial Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Demineralization Assessment by Surface Microhardness (SMH) Testing
3.2. Demineralization Assessment Using Transverse Microradiography (TMR)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kassebaum, N.J.; Bernabé, E.; Dahiya, M.; Bhandari, B.; Murray, C.J.L.; Marcenes, W. Global burden of untreated caries: A systematic review and meta regression. J. Dent. Res. 2015, 94, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Preventing Dental Caries with Community Programs. Available online: http://www.cdc.gov/OralHealth/publications/factsheets/dental_caries.htm (accessed on 31 December 2023).
- Bowden, G.H. The microbial ecology of dental caries. Microb. Ecol. Health Dis. 2000, 12, 138–148. [Google Scholar]
- World Health Organization. Fluorides and oral health. Report of the WHO Expert Committee on Oral Health Status and Fluoride Use. World Health Organ. Tech. Rep. Ser. 1994, 846, 1–37. [Google Scholar]
- Banas, J.A. Virulence properties of Streptococcus mutans. Front. Biosci. 2004, 9, 1267–1277. [Google Scholar] [CrossRef]
- Kleinberg, I. A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: An alternative to Streptococcus mutans and the specific-plaque hypothesis. Crit. Rev. Oral Biol. Med. 2002, 13, 108–125. [Google Scholar] [CrossRef]
- Gao, X.J.; Fan, Y.; Kent, R.L., Jr.; Van Houte, J.; Margolis, H.C. Association of caries activity with the composition of dental plaque fluid. J. Dent. Res. 2001, 80, 1834–1839. [Google Scholar] [CrossRef]
- Aranibar Quiroz, E.M.; Lingstrom, P.; Birkhed, D. Influence of short-term sucrose exposure on plaque acidogenicity and cariogenic microflora in individuals with different levels of mutans streptococci. Caries Res. 2003, 37, 51–57. [Google Scholar] [CrossRef]
- World Health Organization. Guideline: Sugars Intake for Adults and Children. Available online: https://www.who.int/publications/i/item/9789241549028 (accessed on 25 July 2024).
- Rice, T.; Zannini, E.; Arendt, E.K.; Coffey, A. A review of polyols—Biotechnological production, food applications, regulation, labeling and health effects. Crit. Rev. Food Sci. Nutr. 2020, 60, 2034–2051. [Google Scholar] [CrossRef]
- Imfeld, T. Efficacy of sweeteners and sugar substitutes in caries prevention. Caries Res. 1993, 27 (Suppl. 1), 50–55. [Google Scholar] [CrossRef] [PubMed]
- Featherstone, J.D.B. Effects of Isomalt sweetener on the caries process: A review. J. Clin. Dent. 1994, 5, 82–85. [Google Scholar]
- ALHumaid, J.; Bamashmous, M. Meta-analysis on the effectiveness of xylitol in caries prevention. J. Int. Soc. Prevent. Communit. Dent. 2022, 12, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Bader, J.D.; Vollmer, W.M.; Shugars, D.A.; Gilbert, G.H.; Amaechi, B.T.; Brown, J.P.; Laws, R.L.; Funkhouser, K.A.; Makhija, S.K.; Ritter, A.V.; et al. Results from the Xylitol for Adult Caries Trial (X-ACT). J. Am. Dent. Assoc. 2013, 144, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Takatsuka, T.; Exterkate, R.A.M.; ten Cate, J.M. Effects of Isomalt on enamel de- and remineralization, a combined in vitro pH-cycling model and in situ study. Clin. Oral Investig. 2008, 12, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Amaechi, B.T.; AbdulAzees, P.A.; Mohseni, S.; Luong, M.N.; Lin, C.Y.; Restrepo-Ceron, M.C.; Kataoka, Y.; Omosebi, T.O.; Kanthaiah, K. Caries preventing efficacy of new Isomalt-containing mouthrinse formulations: A microbial study. BDJ Open. 2024, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Imfeld, T.N. Non-nutritive sweeteners, sugar substitutes, and confectionery products. In Identification of Low Caries Risk Dietary Components; Karger: Basel, Switzerland, 1983; pp. 117–141. [Google Scholar]
- Ichikawa, T.; Yano, Y.; Fujita, Y.; Kashiwabara, T.; Nagao, K. The enhancement effect of three sugar alcohols on the fungicidal effect of benzethonium chloride toward Candida albican. J. Dent. 2008, 36, 965–968. [Google Scholar] [CrossRef]
- Schaeffer, L.M.; Szewczyk, G.; Nesta, J.; Vandeven, M.; Du-Thumm, L.; Williams, M.I.; Arvanitidou, E. In vitro antibacterial efficacy of cetylpyridinium chloride-containing mouthwashes. J. Clin. Dent. 2011, 22, 183–186. [Google Scholar]
- Latimer, J.; Munday, J.L.; Buzza, K.M.; Forbes, S.; Sreenivasan, P.K.; McBain, A.J. Antibacterial and anti-biofilm activity of mouth rinses containing cetylpyridinium chloride and sodium fluoride. BMC Microbiol. 2015, 15, 169. [Google Scholar] [CrossRef]
- Teng, F.; He, T.; Huang, S.; Bo, C.; Li, Z.; Chang, J.; Liu, J.; Charbonneau, D.; Xu, J.; Li, R.; et al. Cetylpyridinium chloride mouth rinses alleviate experimental gingivitis by inhibiting dental plaque maturation. Int. J. Oral Sci. 2016, 8, 182–190. [Google Scholar] [CrossRef]
- Haps, S.; Slot, D.E.; Berchier, C.E. The effect of cetylpyridinium chloride-containing mouth rinses as adjuncts to toothbrushing on plaque and parameters of gingival inflammation: A systematic review. Int. J. Dent. Hyg. 2008, 6, 290–303. [Google Scholar] [CrossRef]
- Gunsolley, J.C. Clinial efficacy of antimicrobial mouthrinses. J. Dent. 2010, 38 (Suppl. 1), S6–S10. [Google Scholar] [CrossRef]
- Langa, G.P.J.; Muniz, F.W.M.G.; Costa, R.D.S.A.; da Silveira, T.M.; Rösing, C.K. The effect of cetylpyridinium chloride mouthrinse as adjunct to toothbrushing compared to placebo on interproximal plaque and gingival inflammation-a systematic review with meta-analyses. Clin. Oral Investig. 2021, 25, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.A.; Karthikeyan, R.; Rawls, H.R.; Amaechi, B.T. Anti-cariogenic effect of a cetylpyridinium chloride-containing nanoemulsion. J. Dent. 2010, 38, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Barkvoll, P.; Rolla, G.; Svendsen, K. Interaction between chlorhexidine digluconate and sodium lauryl sulfate in vivo. J. Clin. Periodontol. 1989, 16, 593–595. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.; Addy, M.; Newcombe, R. The antibacterial effect of toothpastes on the salivary flora. J. Clin. Periodontol. 1988, 15, 193–199. [Google Scholar] [CrossRef]
- Nordstrom, A.; Mystikos, C.; Ramberg, P.; Birkhed, D. Effect on de novo plaque formation of rinsing with toothpaste slurries and water solutions with a high fluoride concentration (5000 ppm). Eur. J. Oral Sci. 2009, 117, 563–567. [Google Scholar] [CrossRef]
- Giertsen, E.; Scheie, A.A.; Rolla, G. Plaque inhibition by a combination of zinc citrate and sodium lauryl sulfate. Caries Res. 1989, 23, 278–283. [Google Scholar] [CrossRef]
- Sälzer, S.; Rosema, N.A.; Martin, E.C.; Slot, D.E.; Timmer, C.J.; Dörfer, C.E.; van der Weijden, G.A. The effectiveness of dentifrices without and with sodium lauryl sulfate on plaque, gingivitis and gingival abrasion--a randomized clinical trial. Clin. Oral Investig. 2016, 20, 443–450. [Google Scholar] [CrossRef]
- Amaechi, B.T.; Abdul Azees, P.A.; Farah, R.; Movaghari Pour, F.; Dillow, A.M.; Lin, C.Y. Evaluation of an Artificial Mouth for Dental Caries Development. Microorganisms 2023, 11, 628. [Google Scholar] [CrossRef]
- Ramalingam, K.; Amaechi, B.T.; Ralph, R.H.; Lee, V.A. Antimicrobial activity of nanoemulsion on cariogenic planktonic and biofilm organisms. Arch. Oral Biol. 2012, 57, 15–22. [Google Scholar] [CrossRef]
- Karthikeyan, R.; Amaechi, B.T.; Rawls, H.R.; Lee, V.A. Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Arch. Oral Biol. 2011, 56, 437–445. [Google Scholar] [CrossRef]
- de Josselin de Jong, E.; ten Bosch, J.J.; Noordman, J. Optimised microcomputer guided quantitative microradiography on dental mineralised tissue slices. Phys. Med. Biol. 1987, 32, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Tenuta, L.M.A.; Cury, J.A. Fluoride: Its role in dentistry. Braz. Oral Res. 2010, 24, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Rethman, M.P.; Beltrán-Aguilar, E.D.; Billings, R.J.; Burne, R.A.; Clark, M.; Donly, K.J.; Hujoel, P.P.; Katz, B.P.; Milgrom, P.; Sohn, W.; et al. Nonfluoride caries-preventive agents: Executive summary of evidence-based clinical recommendations. American Dental Association Council on Scientific Affairs Expert Panel on Nonfluoride Caries-Preventive Agents. J. Am. Dent. Assoc. 2011, 142, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Twetman, S. Treatment protocols: Nonfluoride management of the caries disease process and available diagnostics. Dent. Clin. N. Am. 2010, 54, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Dhar, V.; Tinanoff, N. Update on Sugar Alcohols and Their Role in Caries Prevention. Decis. Dent. 2016, 2, 44–47. [Google Scholar]
- Milgrom, P.; Söderling, E.M.; Nelson, S.; Chi, D.L.; Nakai, Y. Clinical evidence for polyol efficacy. Adv. Dent. Res. 2012, 24, 112–116. [Google Scholar] [CrossRef]
- Tupker, R.A.; Vermeulen, K.; Fidler, V.; Coenraads, P.J. Irritancy testing of sodium laurate and other anionic detergents using an open exposure model. Skin Res. Technol. 1997, 3, 133–136. [Google Scholar] [CrossRef]
- Alli, B.Y.; Erinoso, O.A.; Olawuyi, A.B. Effecct of sodium lauryl sulfate on recurrent aphthous stomatitis: A systemic review. J. Oral Pathol. Med. 2019, 48, 358–364. [Google Scholar] [CrossRef]
- Marinho, V.C.; Higgins, J.P.; Sheiham, A.; Logan, S. Fluoride toothpastes for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev. 2003, 2003, CD002278. [Google Scholar] [CrossRef]
- Marinho, V.C. Cochrane reviews of randomized trials of fluoride therapies for preventing dental caries. Eur. Arch. Paediatr. Dent. 2009, 10, 183–191. [Google Scholar] [CrossRef]
- Marinho, V.C. Evidence-based effectiveness of topical fluorides. Adv. Dent. Res. 2008, 20, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Marinho, V.C.; Higgins, J.P.; Sheiham, A.; Logan, S. One topical fluoride (toothpastes, or mouthrinses, or gels, or varnishes) versus another for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev. 2004, 2004, CD002780. [Google Scholar] [CrossRef] [PubMed]
- Nordström, A.; Birkhed, D. Preventive effect of high-fluoride dentifrice (5000 ppm) in caries-active adolescents: A 2-year clinical trial. Caries Res. 2010, 44, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, J.E.; Ellwood, R.P.; Chandler, R.E. A comprehensive summary of fluoride dentifrice caries clinical trials. Am. J. Dent. 1993, 6, S59–S106. [Google Scholar]
Toothpaste Composition | De-Ionized Distilled Water (DDW) | Isomalt-CPC Toothpaste (ICT) | Isomalt Toothpaste (IT) | Isomalt-SLS Toothpaste (IST) | Biotene Fluoride Toothpaste (FT) | GUM Fluoride-SLS Toothpaste (FST) |
---|---|---|---|---|---|---|
Fluoride | 1100 ppm | 1100 ppm | 1100 ppm | 1100 ppm | 1100 ppm | |
Isomalt | 10 % | 10 % | 10 % | - | - | |
CPC | 0.05% | - | - | - | - | |
SLS | - | - | Yes | - | Yes |
Day | Time | Treatment |
---|---|---|
Day 1 | 8:00 | Circulation of bacteria-free Todd Hewitt Broth (THB) starts. |
10:00–11:00 | Bacteria-inoculated THB is circulated for 12 h (adhesion phase) | |
11:00 | Circulation of bacteria-free THB re-starts. | |
20:00 | Sucrose circulation for 6 min | |
20:06 till next morning | Circulation of bacteria-free THB re-starts. | |
Day 2–Day 7 | 7:00 | 2 min treatment with toothpaste. |
7:02 | Circulation of bacteria-free THB re-starts. | |
8:00 | Sucrose circulation for 6 min | |
8:06 | Circulation of bacteria-free THB re-starts. | |
14:00 | Sucrose circulation for 6 min | |
14:06 | Circulation of bacteria-free THB re-starts. | |
19:00 | 2 min treatment with toothpaste. | |
19:02 | Circulation of bacteria-free Todd Hewitt Broth (THB) re-starts. | |
20:00 | Sucrose circulation for 6 min | |
20:06 | Circulation of bacteria-free THB re-starts. |
Treatment Groups | %∆SMH (% Demineralization) | % Reduction in Demineralization Relative to Control (DDW) |
---|---|---|
Deionized distilled water (DDW) | 30.8 ± 1.1 | - |
Isomalt-CPC toothpaste (ICT) | 3.9 ± 0.6 | 88 |
Isomalt toothpaste (IT) | 16.8 ± 1.3 | 45 |
Isomalt-SLS toothpaste (IST) | 8.6 ± 0.9 | 72 |
Biotene Fluoride toothpaste (FT) | 12.6 ± 1.2 | 59 |
GUM Fluoride-SLS toothpaste (FST) | 15.3 ± 0.9 | 50 |
Treatment Groups | Mean Mineral Loss ± SD | % Reduction in Mineral Loss Relative to Control (DDW) |
---|---|---|
Deionized distilled water (DDW) | 3059.33 ± 178.33 | - |
Isomalt-CPC toothpaste (ICT) | 404.67 ± 18.89 | 87 |
Isomalt toothpaste (IT) | 1557.33 ± 61.67 | 49 |
Isomalt-SLS toothpaste (IST) | 863.33 ± 20.53 | 72 |
Biotene Fluoride toothpaste (FT) | 1077.27 ± 11.60 | 65 |
GUM Fluoride-SLS toothpaste (FST) | 1520 ± 47.77 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaechi, B.T.; Abdul Azees, P.A.; Mohseni, S.; Restrepo-Ceron, M.C.; Kataoka, Y.; Omosebi, T.O.; Kanthaiah, K. Effectiveness of New Isomalt-Containing Toothpaste Formulations in Preventing Dental Caries: A Microbial Study. Dent. J. 2024, 12, 290. https://doi.org/10.3390/dj12090290
Amaechi BT, Abdul Azees PA, Mohseni S, Restrepo-Ceron MC, Kataoka Y, Omosebi TO, Kanthaiah K. Effectiveness of New Isomalt-Containing Toothpaste Formulations in Preventing Dental Caries: A Microbial Study. Dentistry Journal. 2024; 12(9):290. https://doi.org/10.3390/dj12090290
Chicago/Turabian StyleAmaechi, Bennett Tochukwu, Parveez Ahamed Abdul Azees, Sahar Mohseni, Maria Camila Restrepo-Ceron, Yuko Kataoka, Temitope Olabisi Omosebi, and Kannan Kanthaiah. 2024. "Effectiveness of New Isomalt-Containing Toothpaste Formulations in Preventing Dental Caries: A Microbial Study" Dentistry Journal 12, no. 9: 290. https://doi.org/10.3390/dj12090290