Glycemic Index Values of Pasta Products: An Overview
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Database Development
2.3. Data Analysis
3. Results
3.1. GI Data
3.2. Formulations
3.3. Experimental Protocol Data
4. Discussion
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- FAO. Food Outlook-Biannual Report on Global Food Markets; FAO: Rome, Italy, 2017; ISBN 9789251097823. [Google Scholar]
- Blaak, E.E.; Antoine, J.-M.; Benton, D.; Björck, I.; Bozzetto, L.; Brouns, F.; Diamant, M.; Dye, L.; Hulshof, T.; Holst, J.J.; et al. Impact of Postprandial Glycaemia on Health and Prevention of Disease. Obes. Rev. 2012, 13, 923–984. [Google Scholar] [CrossRef]
- Ludwig, D.S. the Glycemic Index: Physiological Mechanisms Relating to Obesity, Diabetes, and Cardiovascular Disease. J. Am. Med. Assoc. 2002, 287, 2414–2423. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Hu, F.B.; Tappy, L.; Brand-Miller, J. Dietary Carbohydrates: Role of Quality and Quantity in Chronic Disease. BMJ 2018, 361, k2340. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Jenkins, A.L.; Goff, D. V Glycemic Index of Foods: A Physiological Basis for Carbohydrate Exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.; Manson, J.; Liu, S. Glycemic Index, Glycemic Load, and Risk of Type 2 Diabetes. Am. J. Clin. Nutr. 2002, 76, 274S–280S. [Google Scholar] [CrossRef] [Green Version]
- Mastorakou, D.; Rabaeus, M.; Salen, P.; Pounis, G.; De, L.M. Mediterranean Diet: A Health-Protective Dietary Pattern for Modern Times; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128145562. [Google Scholar]
- International Pasta Organisation (IPO). The World Pasta Industry Status Report; International Pasta Organization: Rome, Italy, 2019; Available online: Http://Www.Internationalpasta.Org (accessed on 25 April 2021).
- Giacco, R.; Vitale, M.; Riccardi, G. Pasta: Role in Diet. In Encyclopedia of Food and Health; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 242–245. ISBN 9780123849533. [Google Scholar]
- Colonna, P.; Barry, J.-L.; Cloarec, D.; Bornet, F.; Gouilloud, S.; Galmiche, J.-P. Enzymic Susceptibility of Starch From Pasta. J. Cereal Sci. 1990, 11, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Granfeldt, Y.; Björck, I. Glycemic Response to Starch in Pasta: A Study of Mechanisms of Limited Enzyme Availability. J. Cereal Sci. 1991, 14, 47–61. [Google Scholar] [CrossRef]
- Petitot, M.; Abecassis, J.; Micard, V. Structuring of Pasta Components during Processing: Impact on Starch and Protein Digestibility and Allergenicity. Trends Food Sci. Technol. 2009, 20, 521–532. [Google Scholar] [CrossRef]
- Granfeldt, Y.; Bjorck, I.; Hagander, B. on the Importance of Processing Conditions, Product Thickness and Egg Addition for the Glycaemic and Hormonal Responses to Pasta: A Comparison with Bread Made from “Pasta Ingredients”. Eur. J. Clin. Nutr. 1991, 45, 489–499. [Google Scholar]
- Jenkins, D.J.A.; Wolever, T.M.S.; Jenkins, A.L.; Lee, R.; Wong, G.S.; Josse, R. Glycemic Response to Wheat Products: Reduced Response to Pasta But No Effect of Fiber. Diabetes Care 1983, 6, 155–159. [Google Scholar] [CrossRef]
- Wolever, T.M.S.; Jenkins, D.J.A.; Kalmusky, J.; Giordano, C.; Giudici, S.; Thompson, L.U.; Wong, G.S.; Josse, R.G. Glycemic Response to Pasta: Effect of Surface Area, Degree of Cooking, and Protein Enrichment. Diabetes Care 1986, 9, 401–404. [Google Scholar] [CrossRef]
- Zou, W.; Sissons, M.; Gidley, M.J.; Gilbert, R.G.; Warren, F.J. Combined Techniques for Characterising Pasta Structure Reveals How the Gluten Network Slows Enzymic Digestion Rate. Food Chem. 2015, 188, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aal, E.S.M.; Hucl, P. Amino Acid Composition and in Vitro Protein Digestibility of Selected Ancient Wheats and their End Products. J. Food Compos. Anal. 2002, 15, 737–747. [Google Scholar] [CrossRef]
- Firdaus, M.; Yahya; Nugraha, G.R.H.; Utari, D.D. Fortification of Seaweed (Eucheuma Cottonii) Flour on Nutrition, Iodine, and Glycemic Index of Pasta. In The IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2017; Volume 89. [Google Scholar]
- Goñi, I.; Valentín-Gamazo, C. Chickpea Flour Ingredient Slows Glycemic Response to Pasta in Healthy Volunteers. Food Chem. 2003, 81, 511–515. [Google Scholar] [CrossRef]
- Oliviero, T.; Fogliano, V. Food Design Strategies to Increase Vegetable Intake: The Case of Vegetable Enriched Pasta. Trends Food Sci. Technol. 2016, 51, 58–64. [Google Scholar] [CrossRef]
- Turco, I.; Bacchetti, T.; Morresi, C.; Padalino, L.; Ferretti, G. Polyphenols and the Glycaemic Index of Legume Pasta. Food Funct. 2019, 10, 5931–5938. [Google Scholar] [CrossRef]
- Wahanik, A.L.; Chang, Y.K.; Clerici, M.T.P.S. How to Make Pastas Healthier? Food Rev. Int. 2018, 34, 52–69. [Google Scholar] [CrossRef]
- Aravind, N.; Sissons, M.; Fellows, C.M. Effect of Soluble Fibre (Guar Gum and Carboxymethylcellulose) Addition on Technological, Sensory and Structural Properties of Durum Wheat Spaghetti. Food Chem. 2012, 131, 893–900. [Google Scholar] [CrossRef]
- Gallegos-Infante, J.-A.; Bello-Perez, L.A.; Rocha-Guzman, N.E.; Gonzalez-Laredo, R.F.; Avila-ontiveros, M. Effect of the Addition of Common Bean (Phaseolus Vulgaris L.) Flour on the in Vitro Digestibility of Starch and Undigestible Carbohydrates in Spaghetti. J. Food Sci. 2010, 75, 151–156. [Google Scholar] [CrossRef]
- Khan, I.; Yousif, A.; Johnson, S.K.; Gamlath, S. Effect of Sorghum Flour Addition on Resistant Starch Content, Phenolic Profile and Antioxidant Capacity of Durum Wheat Pasta. Food Res. Int. 2013, 54, 578–586. [Google Scholar] [CrossRef] [Green Version]
- Bogue, J.; Collins, O.; Troy, A.J. Market Analysis and Concept Development of Functional Foods. In Developing New Functional Food and Nutraceutical Products; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 29–45. ISBN 9780128027790. [Google Scholar]
- Karelakis, C.; Zevgitis, P.; Galanopoulos, K.; Mattas, K. Consumer Trends and Attitudes to Functional Foods. J. Int. Food Agribus. Mark. 2020, 32, 266–294. [Google Scholar] [CrossRef]
- Chavez-Gonzalez, M.L.; Buenrostro-Figueroa, J.J.; Aguilar, C.N. Handbook of Research on Food Science and Technology: Volume 3: Functional Foods and Nutraceuticals; Apple Academic Press: Palm Bay, FL, USA, 2021; ISBN 9781774635308. [Google Scholar]
- Björck, I.; Granfeldt, Y.; Liljeberg, H.; Tovar, J.; Asp, N.G. Food Properties Affecting the Digestion and Absorption of Carbohydrates. Am. J. Clin. Nutr. 1994, 59, 699s–705s. [Google Scholar] [CrossRef]
- Brand, J.C.; Nicholson, P.L.; Thorburn, A.W.; Truswell, A.S.; Brand, C.; Nicholson, L. Food Processing and the Glycemic Index. Am. J. Clin. Nutr. 1985, 42, 1192–1196. [Google Scholar] [CrossRef]
- Englyst, K.N.; Englyst, H.N. Carbohydrate Bioavailability. Br. J. Nutr. 2005, 94, 1–11. [Google Scholar] [CrossRef]
- Blair, R.M.; Henley, E.C.; Tabor, A. Soy Foods Have Low Glycemic and Insulin Response Indices in Normal Weight Subjects. Nutr. J. 2006, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Marinangeli, C.P.F.; Kassis, A.N.; Jones, P.J.H. Glycemic Responses and Sensory Characteristics of Whole Yellow Pea Flour Added to Novel Functional Foods. J. Food Sci. 2009, 74, S385–S389. [Google Scholar] [CrossRef]
- Scazzina, F.; Dall’asta, M.; Pellegrini, N.; Brighenti, F. Glycaemic Index of Some Commercial Gluten-Free Foods. Eur. J. Nutr. 2015, 54, 1021–1026. [Google Scholar] [CrossRef]
- International Standards Organisation. Food Products Determination of the Glycaemic Index (Gi) and Recommendation for Food Classification; International Standards Organisation: Geneva, Switzerland, 2010; ISO 26642. [Google Scholar]
- Fares, C.; Codianni, P.; Nigro, F.; Platani, C.; Scazzina, F.; Pellegrini, N. Processing and Cooking Effects on Chemical, Nutritional and Functional Properties of Pasta Obtained From Selected Emmer Genotypes. J. Sci. Food Agric. 2008, 88, 2435–2444. [Google Scholar] [CrossRef]
- Scazzina, F.; Dall’asta, M.; Casiraghi, M.C.; Sieri, S.; Del Rio, D.; Pellegrini, N.; Brighenti, F. Glycemic Index and Glycemic Load of Commercial Italian Foods. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 419–429. [Google Scholar] [CrossRef]
- Wolever, T.M.S.; Vorster, H.H.; Björck, I.; Brand-Miller, J.; Brighenti, F.; Mann, J.I.; Ramdath, D.D.; Granfeldt, Y.; Holt, S.; Perry, T.L.; et al. Determination of the Glycaemic Index of Foods: Interlaboratory Study. Eur. J. Clin. Nutr. 2003, 57, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Chiavaroli, L.; Di Pede, G.; Dall’asta, M.; Cossu, M.; Francinelli, V.; Goldoni, M.; Scazzina, F.; Brighenti, F. the Importance of Glycemic Index on Post-Prandial Glycaemia in the Context of Mixed Meals: A Randomized Controlled Trial on Pasta and Rice. Nutr. Metab. Cardiovasc. Dis. 2020, 31, 615–625. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [Green Version]
- Hajifaraji, M.; Rezvani, V.; Yaghoobi, A.S.; Morteza, H.; Maddah, M. Glycemic Indices of Three Commonly Consumed Foods: A Clinical Trial in Iranian Healthy Adults. Med. J. Nutr. Metab. 2012, 5, 253–257. [Google Scholar] [CrossRef]
- Sissons, M.; Sestili, F.; Botticella, E.; Masci, S.; Lafiandra, D. Can Manipulation of Durum Wheat Amylose Content Reduce the Glycaemic Index of Spaghetti? Foods 2020, 9, 693. [Google Scholar] [CrossRef]
- Peressini, D.; Cavarape, A.; Brennan, M.A.; Gao, J.; Brennan, C.S. Viscoelastic Properties of Durum Wheat Doughs Enriched with Soluble Dietary Fibres in Relation to Pasta-Making Performance and Glycaemic Response of Spaghetti. Food Hydrocoll. 2020, 102, 105613. [Google Scholar] [CrossRef]
- Greffeuille, V.; Marsset-Baglieri, A.; Molinari, N.; Cassan, D.; Sutra, T.; Avignon, A.; Micard, V. Enrichment of Pasta with Faba Bean Does Not Impact Glycemic or Insulin Response But Can Enhance Satiety Feeling and Digestive Comfort When Dried at Very High Temperature. Food Funct. 2015, 6, 2996–3005. [Google Scholar] [CrossRef]
- Henry, C.J.K.; Lightowler, H.J.; Strik, C.M.; Renton, H.; Hails, S. Glycaemic Index and Glycaemic Load Values of Commercially Available Products in the Uk. Br. J. Nutr. 2005, 94, 922–930. [Google Scholar] [CrossRef] [Green Version]
- Simonato, B.; Curioni, A.; Pasini, G. Digestibility of Pasta Made with Three Wheat Types: A Preliminary Study. Food Chem. 2015, 174, 219–225. [Google Scholar] [CrossRef]
- Granfeldt, Y.; Wu, X.; Björck, I. Determination of Glycaemic Index; Some Methodological Aspects Related to the Analysis of Carbohydrate Load and Characteristics of the Previous Evening Meal. Eur. J. Clin. Nutr. 2006, 60, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, N.; Hall, C.; Jenkins, A.L. Development of Low Glycemic Index (Gi) Foods By Incorporating Pulse Ingredients Into Cereal-Based Products: Use of in Vitro Screening and in Vivo Methodologies. Cereal Chem. J. 2017, 94, 110–116. [Google Scholar] [CrossRef]
- Henry, C.J.K.K.; Lightowler, H.J.; Kendall, F.L.; Storey, M. the Impact of the Addition of toppings/Fillings on the Glycaemic Response to Commonly Consumed Carbohydrate Foods. Eur. J. Clin. Nutr. 2006, 60, 763–769. [Google Scholar] [CrossRef]
- Carreira, M.C.; Lajolo, F.M.; De Menezes, E.W. Glycemic Index: Effect of Food Storage Under Low Temperature. Braz. Arch. Biol. Technol. 2004, 47, 569–574. [Google Scholar] [CrossRef]
- Aldughpassi, A.; Abdel-Aal, E.-S.M.; Wolever, T.M.S. The Journal of Nutrition Nutrient Physiology, Metabolism, and Nutrient-Nutrient Interactions Barley Cultivar, Kernel Composition, and Processing Affect the Glycemic Index 1-3. J. Nutr. 2012, 142, 1666–1671. [Google Scholar] [CrossRef] [Green Version]
- Perry, T.; Mann, J.; Mehalski, K.; Gayya, C.; Wilson, J.; Thompson, C. Glycaemic Index of New Zealand Foods. N. Z. Med. J. 2000, 113, 140–142. [Google Scholar]
- Aston, L.M.; Gambell, J.M.; Lee, D.M.; Bryant, S.P.; Jebb, S.A. Determination of the Glycaemic Index of Various Staple Carbohydrate-Rich Foods in the UK Diet. Eur. J. Clin. Nutr. 2008, 62, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Barbiroli, A.; Bonomi, F.; Casiraghi, M.C.; Iametti, S.; Pagani, M.A.; Marti, A. Process Conditions Affect Starch Structure and Its Interactions with Proteins in Rice Pasta. Carbohydr. Polym. 2013, 92, 1865–1872. [Google Scholar] [CrossRef]
- Shobana, S.; Selvi, R.P.; Kavitha, V.; Gayathri, N.; Geetha, G.; Gayathri, R.; Vijayalakshmi, P.; Balasubramaniam, K.K.G.; Ruchi, V.; Sudha, V.; et al. Development and Evaluation of Nutritional, Sensory and Glycemic Properties of Finger Millet (Eleusine Coracana L.) Based Food Products. Asia Pac. J. Clin. Nutr. 2018, 27, 84–91. [Google Scholar] [CrossRef]
- Yang, Y.X.; Wang, H.W.; Cui, H.M.; Wang, Y.; Yu, L.D.; Xiang, S.X.; Zhou, S.Y. Glycemic Index of Cereals and Tubers Produced in China. World J. Gastroenterol. 2006, 12, 3430–3433. [Google Scholar] [CrossRef]
- Lok, K.Y.; Chan, R.; Chan, D.; Li, L.; Leung, G.; Woo, J.; Lightowler, H.J.; Henry, C.J.K. Glycaemic Index and Glycaemic Load Values of a Selection of Popular Foods Consumed in Hong Kong. Br. J. Nutr. 2010, 103, 556–560. [Google Scholar] [CrossRef]
- Foster-Powell, K.; Holt, S.H.; Brand-Miller, J.C. International Table of Glycemic Index and Glycemic Load Values: 2002. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [CrossRef] [Green Version]
- Foster-Powell, K.; Miller, J.B. International Tables of Glycemic Index. Am. J. Clin. Nutr. 1995, 62, 871s–890s. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Brand-Miller, J.C.; Foster-Powell, K.; Buyken, A.E.; Goletzke, J. International Tables of Glycemic Index and Glycemic Load Values 2021: A Systematic Review. Am. J. Clin. Nutr. 2021, 31, 2281–2283. [Google Scholar] [CrossRef]
- Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Willett, W.C.; Astrup, A. Nutrition, Metabolism & Cardiovascular Diseases Glycemic Index, Glycemic Load and Glycemic Response: An International Scientific Consensus Summit From the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef] [Green Version]
- Cox, D.J.; Fang, K.; Mccall, A.L.; Conaway, M.R.; Banton, T.A.; Moncrief, M.A.; Diamond, A.M.; Taylor, A.G. Behavioral Strategies to Lower Postprandial Glucose in Those with Type 2 Diabetes May Also Lower Risk of Coronary Heart Disease. Diabetes Ther. 2019, 10, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Sieri, S.; Agnoli, C.; Pala, V.; Grioni, S.; Brighenti, F.; Pellegrini, N.; Masala, G.; Palli, D.; Mattiello, A.; Panico, S.; et al. Dietary Glycemic Index, Glycemic Load, and Cancer Risk: Results From the Epic-Italy Study. Sci. Rep. 2017, 7, 9757. [Google Scholar] [CrossRef] [Green Version]
- Mirrahimi, A.; De Souza, R.J.; Chiavaroli, L.; Sievenpiper, J.L.; Beyene, J.; Hanley, A.J.; Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A. Associations of Glycemic Index and Load with Coronary Heart Disease Events: A Systematic Review and Meta-Analysis of Prospective Cohorts. J. Am. Heart Assoc. 2012, 1, e000752. [Google Scholar] [CrossRef] [Green Version]
- Wolever, T.M.; Jenkins, D.J.; Jenkins, A.L.; Josse, R.G. the Glycemic Index: Methodology and Clinical Implications. Am. J. Clin. Nutr. 1991, 54, 846–854. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; Mcevoy, J.W.; et al. 2019 Acc/Aha Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, E563–E595. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef]
- Davies, M.J.; D’alessio, D.A.; Fradkin, J.; Kernan, W.N.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D.J.; Buse, J.B. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report By the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018, 41, 2669–2701. [Google Scholar] [CrossRef] [Green Version]
- Evert, A.B.; Boucher, J.L.; Cypress, M.; Dunbar, S.A.; Franz, M.J.; Mayer-Davis, E.J.; Neumiller, J.J.; Nwankwo, R.; Verdi, C.L.; Urbanski, P.; et al. Nutrition therapy Recommendations for the Management of Adults with Diabetes. Diabetes Care 2014, 37, S120–S143. [Google Scholar] [CrossRef] [Green Version]
- Sievenpiper, J.L.; Chan, C.B.; Dworatzek, P.D.; Med, C.F.; Williams Med, S.L. 2018 Clinical Practice Guidelines Nutrition therapy Diabetes Canada Clinical Practice Guidelines Expert Committee. Can. J Diabetes 2018, 42, S64–S79. [Google Scholar] [CrossRef]
- Huang, M.; Li, J.; Ha, M.A.; Riccardi, G.; Liu, S. A Systematic Review on the Relations between Pasta Consumption and Cardio-Metabolic Risk Factors. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 939–948. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, M.; Jensen, M.G.; Riboldi, G.; Petronio, M.; Bügel, S.; Toubro, S.; Tetens, I.; Astrup, A. Wholegrain Vs. Refined Wheat Bread and Pasta. Effect on Postprandial Glycemia, Appetite, and Subsequent Ad Libitum Energy Intake in Young Healthy Adults. Appetite 2010, 54, 163–169. [Google Scholar] [CrossRef]
- Riccardi, G.; Clemente, G.; Giacco, R. Glycemic Index of Local Foods and Diets: The Mediterranean Experience. Nutr. Rev. 2003, 61, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Baird, P.; Davis, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health Benefits of Dietary Fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Bahado-Singh, P.S.; Wheatley, A.O.; Ahmad, M.H.; St A Morrison, E.Y.; Asemota, H.N. Food Processing Methods Influence the Glycaemic Indices of Some Commonly Eaten West Indian Carbohydrate-Rich Foods. Br. J. Nutr. 2020, 96, 476–481. [Google Scholar] [CrossRef]
- Betoret, E.; Betoret, N.; Vidal, D.; Fito, P. Functional Foods Development: Trends and Technologies. Trends Food Sci. Technol. 2011, 22, 498–508. [Google Scholar] [CrossRef]
- Fogliano, V.; Vitaglione, P. Functional Foods: Planning and Development. Mol. Nutr. Food Res. 2005, 49, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Foschia, M.; Horstmann, S.W.; Arendt, E.K.; Zannini, E. Legumes as Functional Ingredients in Gluten-Free Bakery and Pasta Products. Annu. Rev. Food Sci. Technol. 2017, 8, 75–96. [Google Scholar] [CrossRef]
- Bustos, M.C.; Pérez, G.T.; León, A.E. Effect of Four Types of Dietary Fiber on the Technological Quality of Pasta. Food Sci. Technol. Int. 2011, 17, 213–221. [Google Scholar] [CrossRef]
- Bustos, M.C.; Perez, G.T.; Leon, A.E. Structure and Quality of Pasta Enriched with Functional Ingredients. Rsc Adv. 2015, 5, 30780–30792. [Google Scholar] [CrossRef]
- Bustos, M.C.; Paesani, C.; Quiroga, F.; León, A.E. Technological and Sensorial Quality of Berry-Enriched Pasta. Cereal Chem. 2019, 96, 967–976. [Google Scholar] [CrossRef]
- Zen, C.K.; Tiepo, C.B.V.; Silva, R.V.; Reinehr, C.O.; Gutkoski, L.C.; Oro, T.; Colla, L.M. Development of Functional Pasta with Microencapsulated Spirulina: Technological and Sensorial Effects. J. Sci. Food Agric. 2020, 100, 2018–2026. [Google Scholar] [CrossRef] [PubMed]
- Biernacka, B.; Dziki, D.; Gawlik-Dziki, U.; Różyło, R.; Siastała, M. Physical, Sensorial, and Antioxidant Properties of Common Wheat Pasta Enriched with Carob Fiber. LWT-Food Sci. Technol. 2017, 77, 186–192. [Google Scholar] [CrossRef]
- El-Sohaimy, S.; Brennan, M.; Darwish, A.M.G.; Brennan, C. Physicochemical, Texture and Sensorial Evaluation of Pasta Enriched with Chickpea Flour and Protein Isolate. Ann. Agric. Sci. 2020, 65, 28–34. [Google Scholar] [CrossRef]
- Fois, S.; Campus, M.; Piu, P.P.; Siliani, S.; Sanna, M.; Roggio, T.; Catzeddu, P. Fresh Pasta Manufactured with Fermented Whole Wheat Semolina: Physicochemical, Sensorial, and Nutritional Properties. Foods 2019, 8, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giménez, M.A.; González, R.J.; Wagner, J.; Torres, R.; Lobo, M.O.; Samman, N.C. Effect of Extrusion Conditions on Physicochemical and Sensorial Properties of Corn-Broad Beans (Vicia Faba) Spaghetti Type Pasta. Food Chem. 2013, 136, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Panghal, A.; Kaur, R.; Janghu, S.; Sharma, P.P.; Sharma, P.P.; Chhikara, N. Nutritional, Phytochemical, Functional and Sensorial Attributes of Syzygium Cumini L. Pulp Incorporated Pasta. Food Chem. 2019, 289, 723–728. [Google Scholar] [CrossRef]
- Regolamento (Ce), N. 1924/2006 Del Parlamento Europeo E Del Consiglio Del 20 Dicembre 2006 Relativo Alle Indicazioni Nutrizionali E Sulla Salute Fornite Sui Prodotti Alimentari. Available online: https://Eur-Lex.Europa.Eu/Legal-Content/It/Txt/Pdf/?Uri=Celex:32006r1924&From=It (accessed on 25 April 2021).
- Aschemann-Witzel, J.; Hamm, U. Do Consumers Prefer Foods with Nutrition and Health Claims? Results of a Purchase Simulation. J. Mark. Commun. 2010, 16, 47–58. [Google Scholar] [CrossRef]
- Lemken, D.; Knigge, M.; Meyerding, S.; Spiller, A. the Value of Environmental and Health Claims on New Legume Products: A Non-Hypothetical online Auction. Sustainability 2017, 9, 1340. [Google Scholar] [CrossRef] [Green Version]
- Sogari, G.; Li, J.; Lefebvre, M.; Menozzi, D.; Pellegrini, N.; Cirelli, M.; Gómez, M.I.; Mora, C. The Influence of Health Messages in Nudging Consumption of Whole Grain Pasta. Nutrients 2019, 11, 2993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Trijp, H.C.M.; Van Der Lans, I.A. Consumer Perceptions of Nutrition and Health Claims. Appetite 2007, 48, 305–324. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, X.; Thouvenot, P.; Belbraouet, S.; Chayvialle, J.A.; Hanesse, B.; Mayeux, D.; Debry, G. Effect of Egg Consumption in Healthy Volunteers: Influence of Yolk, White or Whole-Egg on Gastric Emptying and on Glycemic and Hormonal Responses. Ann. Nutr. Metab. 1996, 40, 109–115. [Google Scholar] [CrossRef]
- Singh, M.; Manickavasagan, A.; Shobana, S.; Mohan, V. Glycemic Index of Pulses and Pulse-Based Products: A Review. Crit. Rev. Food Sci. Nutr. 2020, 61, 1567–1588. [Google Scholar] [CrossRef]
- Trinidad, T.P.; Mallillin, A.C.; Loyola, A.S.; Sagum, R.S.; Encabo, R.R. The Potential Health Benefits of Legumes as a Good Source of Dietary Fibre. Br. J. Nutr. 2010, 103, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Venn, B.J.; Mann, J.I. Cereal Grains, Legumes and Diabetes. Eur. J. Clin. Nutr. 2004, 58, 1443–1461. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, D.S. Dietary Glycemic Index and Obesity. J. Nutr. 2000, 130, 280s–283s. [Google Scholar] [CrossRef]
- Parada, J.; Pérez-Correa, J.R.; Pérez-Jiménez, J. Design of Low Glycemic Response Foods Using Polyphenols from Seaweed. J. Funct. Foods 2019, 56, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Belorio, M.; Gómez, M. Psyllium: A Useful Functional Ingredient in Food Systems. Crit. Rev. Food Sci. Nutr. 2020, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Capriles, V.D.; Arêas, J.A.G. Approaches to Reduce the Glycemic Response of Gluten-Free Products: In Vivo and in Vitro Studies. Food Funct. 2016, 7, 1266–1272. [Google Scholar] [CrossRef]
- Dall’asta, M.; Del Rio, D.; Tappy, L.; Potì, F.; Agostoni, C.; Brighenti, F. Critical and Emerging topics in Dietary Carbohydrates and Health. Int. J. Food Sci. Nutr. 2020, 71, 286–295. [Google Scholar] [CrossRef]
- Padalino, L.; Conte, A.; Del Nobile, M. Overview on the General Approaches to Improve Gluten-Free Pasta and Bread. Foods 2016, 5, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Englyst, K.N.; Vinoy, S.; Englyst, H.N.; Lang, V. Glycaemic Index of Cereal Products Explained By their Content of Rapidly and Slowly Available Glucose. Br. J. Nutr. 2003, 89, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.W.; Brand, J.C.; Thorburn, A.W.; Truswell, S. Glycemic Index of Processed Wheat Products. Am. J. Clin. Nutr. 1987, 46, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Vega-López, S.; Ausman, L.M.; Griffith, J.L.; Lichtenstein, A.H. Interindividual Variability and Intra-Individual Reproducibility of Glycemic Index Values for Commercial White Bread. Diabetes Care 2007, 30, 1412–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrolix, R.; Mensink, R.P. Variability of the Glycemic Response to Single Food Products in Healthy Subjects. Contemp. Clin. Trials 2010, 31, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Collier, G.; Mclean, A.; O’dea, K. Effect of Co-Ingestion of Fat on the Metabolic Responses to Slowly and Rapidly Absorbed Carbohydrates. Diabetologia 1984, 26, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, E.; Vogt, J.A.; Wolever, T.M.S. The Effects of Fat and Protein on Glycemic Responses in Nondiabetic Humans Vary with Waist Circumference, Fasting Plasma Insulin, and Dietary Fiber Intake. J. Nutr. 2006, 136, 2506–2511. [Google Scholar] [CrossRef]
- Sun, L.; Tan, K.W.J.; Lim, J.Z.; Magkos, F.; Henry, C.J. Dietary Fat and Carbohydrate Quality Have Independent Effects on Postprandial Glucose and Lipid Responses. Eur. J. Nutr. 2018, 57, 243–250. [Google Scholar] [CrossRef]
Pasta Product Characteristics | GI Data | Experimental Protocol Data | |||||||
---|---|---|---|---|---|---|---|---|---|
Types | Formulation | Mean Value | Data Distribution | Blood Sample Type | Sample Size | Standard Meal | Av. CHO (g)/Portion | Place of Analysis | Ref. |
Category n 1: 100% refined wheat | |||||||||
Low GI | |||||||||
-spaghetti, dried at high temperature (80 °C) * | durum wheat (var. Duilio) flour | 32.6 | 6.1 º | capillary | 10 | G | 50.0 | Italy | [36] |
-spaghetti § | durum wheat flour | 33.0 | 6.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
-spaghetti * | white wheat flour | 36.4 | 35.8 ** | venous | 12 | G | 50.0 | IS | [38] |
-spaghetti * | white wheat flour | 42.1 | 10.8 ** | capillary | 10 | G | 50.0 | IS | [38] |
-spaghetti * | white wheat flour | 43.8 | 9.2 ** | capillary | 10 | G | 50.0 | IS | [38] |
-spaghetti * | durum wheat flour | 44.0 | 7.0 º | capillary | 13 | G | 50.0 | Italy | [39] |
-spaghetti * (CT: 15 min) | white flour | 44.0 | 3.0 º | n.a. | 10 | G | 48.0 | Australia | [40] |
-spaghetti * | white wheat flour | 44.1 | 19.8 ** | capillary | 10 | G | 50.0 | IS | [38] |
-penne § | durum wheat flour | 47.0 | 4.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
-spaghetti * | semolina flour | 47.0 | n.a. | capillary | 12 | G | 50.0 | Iran | [41] |
-spaghetti, dry * | durum wheat (var. Svevo) flour | 48.0 | 4.0 º | n.a. | 10 | G | 50.0 | Italy | [42] |
-penne § | durum wheat flour | 50.0 | 7.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
-spaghetti § | durum wheat flour | 50.0 | 9.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
-spaghetti § | durum wheat flour | 51.0 | 9.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
-spaghetti, dry * | durum wheat (var. Svevo) flour | 52.0 | 3.0 º | n.a. | 10 | G | 50.0 | Italy | [42] |
-spaghetti, dry § (CT: 8 min) | durum wheat semolina | 52.0 | 4.0 º | capillary | 10 | G | 50.0 | Italy | [43] |
-spaghetti, dried at low temperature (55 °C) § (CT:10 min) | durum wheat flour | 52.3 | 7.0 º | capillary | 15 | G | 50.0 | France | [44] |
-pasta # | durum wheat semolina flour | 52.5 | 8.4 º | capillary | 15 | G | 50.0 | Italy | [21] |
-short penne § | durum wheat flour | 53.0 | 5.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
-fusilli, dry # (CT: 10 min) | durum wheat flour | 54.0 | 11.0 º | capillary | 10 | G | 50.0 | UK | [45] |
-spaghetti # | durum wheat flour | 54.9 | n.a. | n.a. | 10 | WB | 50.0 | Italy | [46] |
Medium GI | |||||||||
-spaghetti * (CT: 15 min) | 100% durum wheat semolina | 58.0 | 6.8 º | capillary | 10 | WB | 50.0 | Sweden | [47] |
-small penne § | durum wheat flour | 59.0 | 11.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
-spaghetti *, infused | common wheat (var. Nol) flour | 60.0 | n.a. | capillary | 12 | G | 50.0 | Iran | [41] |
-macaroni * | wheat flour | 61.0 | 5.0 º | n.a. | 10 | WB | 50.0 | Canada | [48] |
-fusilli * (CT: 10 min) | durum wheat semolina | 61.0 | 9.0 º | n.a. | 10 | G | 50.0 | UK | [49] |
-white spaghetti * and stored | white wheat flour | 62.0 | 5.0 º | capillary | 10 | WB | 50.0 | Brasile | [50] |
-spaghetti * and infused | semolina flour | 63.0 | n.a. | capillary | 12 | G | 50.0 | Iran | [41] |
-white spaghetti and stored * | white wheat flour | 64.0 | 7.0 º | capillary | 10 | WB | 50.0 | Brasile | [50] |
-spaghetti *, infused | common wheat (var. Nol) flour | 68.0 | n.a. | capillary | 12 | G | 50.0 | Iran | [41] |
-spaghetti * | white wheat flour | 70.0 | 10.0 º | n.a. | 12 | WB | 44.0 | Australia | [40] |
High GI | |||||||||
-pasta * | wheat flour | 72.6 | n.a. | capillary | 10 | WB | n.a. | Indonesia | [18] |
-spaghetti * | wheat refined flour | 72.8 | 5.0 º | capillary | 12 | G | n.a. | Spain | [19] |
-pasta, fresh # (CT: 20 min) | semolina flour | 78.0 | 8.0 º | capillary | 10 | WB | 50.0 | Canada | [51] |
-spaghetti * | white wheat flour | 83.6 | 9.6 º | capillary | 19 | G | 50.0 | Canada | [33] |
Category n 2: 100% whole wheat | |||||||||
Low GI | |||||||||
-spaghetti § | whole-meal durum wheat flour | 35.0 | 3.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
-short penne § | whole-meal durum wheat flour | 48.0 | 9.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
-spaghetti § | whole-meal durum wheat flour | 53.0 | 10.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
-spaghetti § | whole-meal durum wheat flour | 55.0 | 10.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
-fusilli, dry # (CT: 10 min) | whole wheat flour | 55.0 | 8.0 º | capillary | 10 | G | 50.0 | UK | [45] |
Medium GI | |||||||||
-spaghetti * | whole wheat flour | 65.0 | n.a. | n.a. | 10 | WB | 40.0 | Canada | [40] |
Category n 3: other cereal-based products | |||||||||
Low GI | |||||||||
-spaghetti, dried at high temperature (80 °C) * | emmer wheat flour (emmer genotype 399) | 18.1 | 2.6 º | capillary | 10 | G | 50.0 | Italy | [36] |
-spaghetti, dried at high temperature (80 °C) * | emmer wheat flour (emmer genotype 257) | 30.5 | 4.7 º | capillary | 10 | G | 50.0 | Italy | [36] |
-spaghetti # | Kamut® (T. polonicum) flour | 41.6 | n.a. | n.a. | 10 | WB | 50.0 | Italy | [46] |
Medium GI | |||||||||
-spaghetti # | spelt (T. dicoccum) flour | 56.5 | n.a. | n.a. | 10 | WB | 50.0 | Italy | [46] |
-pasta fresh # (CT: 5 min) | Celebrity barley cultivar (white pearled) flour | 58.0 | 4.0 º | capillary | 10 | WB | 50.0 | Canada | [51] |
-pasta fresh # (CT: 5 min) | AC Parkhill barley cultivar (white pearled) flour | 64.0 | 4.0 º | capillary | 10 | WB | 50.0 | Canada | [51] |
High GI | |||||||||
-pasta fresh # (CT: 5 min) | Celebrity barley cultivar (whole grain) flour | 71.0 | 6.0 º | capillary | 10 | WB | 50.0 | Canada | [51] |
-pasta fresh # (CT: 5 min) | AC Parkhill barley cultivar (whole grain) flour | 73.0 | 7.0 º | capillary | 10 | WB | 50.0 | Canada | [51] |
Category n 4: containing egg | |||||||||
Low GI | |||||||||
-fettuccine * | egg pasta | 47.0 | n.a. | venous | 14 | G | 46.0 | NZ | [52] |
-tagliatelle § | durum wheat flour, eggs | 51.0 | 7.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
-lasagne, dry # (CT: 10 min) | egg pasta | 53.0 | 9.0 º | capillary | 10 | G | 50.0 | UK | [45] |
-tagliatelle * | egg pasta | 54.0 | 5.0 º | capillary | 10 | G | 50.0 | UK | [53] |
-tagliatelle, dry § | durum wheat flour, eggs | 55.0 | 4.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
Category n 5: gluten free | |||||||||
Low GI | |||||||||
-penne, dry § | corn flour, millet flour, sugar cane syrup | 48.1 | n.a. | capillary | 10 | G | 50.0 | Italy | [34] |
-spaghetti | rice and high amylose maize flour | 51.0 | 5.0 º | n.a. | 10 | G | 49.0 | Australia | [40] |
-pasta | rice flour | 51.0 | n.a. | n.a. | 10 | G | 47.0 | Australia | [40] |
-fusilli, dry § | 100% corn flour, water | 54.4 | n.a. | capillary | 10 | G | 50.0 | Italy | [34] |
Medium GI | |||||||||
-tagliatelle, fresh § | rice, corn and chickpea flour, eggs (20%), egg white, water | 59.6 | n.a. | capillary | 10 | G | 50.0 | Italy | [34] |
-tortellini, fresh § | rice, corn and chickpea flour, eggs (20%), egg white, water, stuffed with pork meat | 60.6 | n.a. | capillary | 10 | G | 50.0 | Italy | [34] |
-pasta macaroni, dry # | parboiled rice flour | 61.0 | n.a. | capillary | 10 | G | 40.0 | Italy | [54] |
-pasta, macaroni dry # | parboiled rice flour | 65.0 | n.a. | capillary | 10 | G | 40.0 | Italy | [54] |
-vermicelli * | finger millet flour, defatted soy, resistant maltodextrin | 65.5 | 5.5 º | capillary | 16 | G | 50.0 | India | [55] |
High GI | |||||||||
-macaroni, dry # | rice flour | 71.0 | n.a. | capillary | 10 | G | 40.0 | Italy | [54] |
-pasta * | corn flour | 78.0 | 10.0 º | n.a. | 10 | G | 42.0 | Australia | [40] |
Category n 6: containing legumes | |||||||||
Low GI | |||||||||
-pasta # | 60% grass pea flour, 40% chickpea flour | 20.0 | 7.6 º | capillary | 15 | G | 50.0 | Italy | [21] |
-pasta # | 100% red lentil flour | 22.3 | 6.9 º | capillary | 15 | G | 50.0 | Italy | [21] |
-pasta # | 100% pea flour | 23.3 | 6.7 º | capillary | 15 | G | 50.0 | Italy | [21] |
-spaghetti, dried at low temperature (55 °C) § (CT: 10.5 min) | 35% faba bean flour, durum wheat semolina | 41.9 | 5.7 º | capillary | 15 | G | 50.0 | France | [44] |
-spaghetti | soy flour | 47.0 | 7.4 º | capillary | 10 | G | 25.0 | Australia | [32] |
-spaghetti, dried at high temperature (90 °C) § (CT: 13.5 min) | 35% faba bean flour, durum wheat semolina | 49.4 | 6.8 º | capillary | 15 | G | 50.0 | France | [44] |
-macaroni * | 50% red lentil flour | 55.0 | 8.0 º | n.a. | 10 | WB | 50.0 | Canada | [48] |
Medium GI | |||||||||
-spaghetti * (CT: 10 min) | 75% durum wheat flour, 25% chickpea flour | 58.9 | 6.0 º | capillary | 12 | G | n.a. | Spain | [19] |
High GI | |||||||||
-spaghetti * | 30% whole yellow pea flour, white durum wheat flour | 93.3 | 9.4 º | capillary | 19 | G | 50.0 | Canada | [33] |
Category n 7: noodles and vermicelli | |||||||||
Low GI | |||||||||
-noodles, dry * | wheat flour | 46.0 | 5.8 º | venous | 10 | G | 50.0 | China | [56] |
-noodle, dried | wheat | 46.0 | 2.0 º | n.a. | 10 | G | 42.0 | China | [40] |
-noodles, instant ‘two-minute’ | n.a. | 48.0 | n.a. | venous | 15 | G | 26.0 | NZ | [52] |
-noodles, instant, all flavors | n.a. | 52.0 | 5.0 º | n.a. | 10 | G | 22.0 | Australia | [40] |
Medium GI | |||||||||
-Jianxi vermicelli * (CT: 8 min) | rice flour | 56.0 | 7.0 º | capillary | 10 | G | 50.0 | HK | [57] |
-Sau tao Beijing noodles * (CT: 3 min) | wheat flour, salt, tapioca starch | 61.0 | 5.0 º | capillary | 10 | G | 50.0 | HK | [57] |
-noodles, reheated (CT: 5 min) | udon pasta, plain | 62.0 | 8.0 º | n.a. | 10 | G | 48.0 | Australia | [40] |
-Sau tao chicken-flavored Sichuan spicy noodles * (CT: 3 min) | wheat flour, salt | 65.0 | 4.0 º | capillary | 10 | G | 50.0 | HK | [57] |
-Taiwan vermicelli * (CT: 2 min) | rice, maize starch | 68.0 | 12.0 º | capillary | 10 | G | 50.0 | HK | [57] |
Category n 8: containing vegetable or algae | |||||||||
Low GI | |||||||||
-small farfalle § | durum wheat flour, carrot and pumpkin pulps | 44.0 | 5.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
-pasta, dry * | wheat flour, algae (eucheuma cottonii) flour (21%), eggs, cooking oil | 44.4 | n.a. | capillary | 10 | WB | N/A | Indonesia | [18] |
-small pipe § | durum wheat flour, tomato and carrot pulps | 47.0 | 7.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
-small penne § | durum wheat flour, zucchini and spinach pulps | 48.0 | 5.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
Medium GI | |||||||||
-pasta, dry * | wheat flour, algae (eucheuma cottonii) flour (14%), eggs, cooking oil | 56.3 | n.a. | capillary | 10 | WB | n.a. | Indonesia | [18] |
-pasta, dry * | wheat flour, algae (eucheuma cottonii) flour (7%), eggs, cooking oil | 66.4 | n.a. | capillary | 10 | WB | n.a. | Indonesia | [18] |
Category n 9: containing other ingredients | |||||||||
Low GI | |||||||||
-pasta * | protein enriched | 28.0 | 1.0 º | n.a. | 10 | G | 49.0 | Australia | [40] |
-spaghetti, dry § (CT: 8.5 min) | 85% durum wheat semolina, 15% Barley Balance® | 33.0 | 5.0 º | capillary | 10 | G | 50.0 | Italy | [43] |
-spaghetti, dry § (CT: 8 min) | 85% durum wheat semolina, 7.5% Barley Balance®, 7.5% psyllium seed husk | 35.0 | 3.0 º | capillary | 10 | G | 50.0 | Italy | [43] |
-spaghetti, dry * | durum wheat (var Svevo, line SBEIIa) flour, 58% amylose, 7.36% RS | 38.0 | 3.0 º | n.a. | 10 | G | 50.0 | Italy | [42] |
-spaghetti, dry * | durum wheat (var Svevo line SSIIa) flour, 44% amylose, 2.06% RS | 49.0 | 3.0 º | n.a. | 10 | G | 50.0 | Italy | [42] |
Category n 10: stuffed | |||||||||
Medium GI | |||||||||
-ravioli, fresh § | durum wheat flour, stuffed with calf meat | 58.0 | 7.0 º | capillary | 10 | G | 50.0 | Italy | [37] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Pede, G.; Dodi, R.; Scarpa, C.; Brighenti, F.; Dall’Asta, M.; Scazzina, F. Glycemic Index Values of Pasta Products: An Overview. Foods 2021, 10, 2541. https://doi.org/10.3390/foods10112541
Di Pede G, Dodi R, Scarpa C, Brighenti F, Dall’Asta M, Scazzina F. Glycemic Index Values of Pasta Products: An Overview. Foods. 2021; 10(11):2541. https://doi.org/10.3390/foods10112541
Chicago/Turabian StyleDi Pede, Giuseppe, Rossella Dodi, Cecilia Scarpa, Furio Brighenti, Margherita Dall’Asta, and Francesca Scazzina. 2021. "Glycemic Index Values of Pasta Products: An Overview" Foods 10, no. 11: 2541. https://doi.org/10.3390/foods10112541