The “Vertigo” of the Food Sector within the Triangle of Climate Change, the Post-Pandemic World, and the Russian-Ukrainian War
Abstract
:1. Introduction
2. The Impact of Climate Change on the Food Sector
3. The Food Sector in the Post-Pandemic World
4. The Impact of the Russian-Ukrainian War on the Food Supply Chain
5. Targeting Food Sustainability and Resilience
5.1. Mitigation Measures to Tackle the Impacts of Climate Change
5.2. Mitigation Measures to Secure Food and Deal with Future Pandemics
5.3. Mitigation Measures to Deal with the Impacts of Geopolitical Conflicts
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Galanakis, C.M. The Food Systems in the Era of the Coronavirus (COVID-19) Pandemic Crisis. Foods 2020, 9, 523. [Google Scholar] [CrossRef]
- Galanakis, C.M. Editorial. Food Science Articles in a Post-COVID-19 Era. Discov. Foods 2021, 1, 1. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Rizou, M.; Aldawoud, T.M.S.; Ucak, I.; Rowan, N.J. Innovations and Technology Disruptions in the Food Sector within the COVID-19 Pandemic and Post-lockdown Era. Trends Food Sci. Technol. 2021, 110, 193–200. [Google Scholar] [CrossRef]
- Benedek, Z.; Ferto, I.; Marreiros, C.G.; De Aguiar, P.M.; Pocol, C.B.; Cechura, L.; Poder, A.; Paaso, P.; Bakucs, Z. Farm diversification as a potential success factor for small-scale farmers constrained by COVID created lockdown. PLoS ONE 2021, 16, e0251715. [Google Scholar] [CrossRef]
- Boyacι-Gündüz, C.P.; Ibrahim, S.A.; Wei, O.C.; Galanakis, C.M. Transformation of the Food Sector: Security and Resilience after the COVID-19 Pandemic. Foods 2021, 10, 497. [Google Scholar] [CrossRef]
- Pereira, P.; Basic, F.; Bogunovic, I.; Barcelo, D. Russian-Ukrainian war impacts the total environment. Sci. Total Environ. 2022, 837, 155865. [Google Scholar] [CrossRef]
- Esfandabadi, Z.S.; Ranjbari, M.; Scagnelli, S.D. The imbalance of food and biofuel markets amid Ukraine-Russia crisis: A systems thinking perspective. Biofuel Res. J. 2022, 34, 1640–1647. [Google Scholar] [CrossRef]
- Nakandala, D.; Tsang, Y.P.; Lee, C.K.M. An Industrial Blockchain-Based Multi-Criteria Decision Framework for Global Freight Management in Agricultural Supply Chains. Mathematics 2022, 10, 3550. [Google Scholar] [CrossRef]
- Hassen, T.B.; El Bilali, H. Impacts of the Russia-Ukraine War on Global Food Security: Towards More Sustainable and Resilient Food Systems? Foods 2022, 11, 2301. [Google Scholar] [CrossRef]
- Rawtani, D.; Gupta, G.; Khatri, N.; Rao, P.K.; Hussain, C.M. Environmental damages due to war in Ukraine: A perspective. Sci. Total Environ. 2022, 850, 157932. [Google Scholar] [CrossRef]
- Zakeri, B.; Paulavets, K.; Barreto-Gomez, L.; Echeverri, L.G.; Pachauri, S.; Boza-Kiss, B.; Zimm, C.; Rogelj, J.; Creutzig, F.; Urge-Vorsatz, D.; et al. Pandemic, War, and Global Energy Transitions. Energies 2022, 15, 6114. [Google Scholar] [CrossRef]
- Ghoulem, M.; Moueddeb, K.E.; Nehdi, E.; Boukhanouf, R.; Calautit, J.K. Greenhouse design and cooling technologies for sustainable food cultivation in hot climates: Review of current practice and future status. Biosyst. Eng. 2019, 183, 121–150. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Brunori, G.; Chiaramonti, D.; Matthews, R.; Panoutsou, C.; Fritsche, U.R. Bioeconomy and Green Recovery in a Post-COVID-19 Era. Sci. Total Environ. 2022, 808, 152180. [Google Scholar] [CrossRef] [PubMed]
- Ukhurebor, K.E.; Aidonojie, P.A. The influence of climate change on food innovation technology: Review on topical developments and legal framework. Agric. Food Secur. 2021, 10, 50. [Google Scholar] [CrossRef]
- Saxena, R.; Vanga, S.K.; Wang, J.; Orsat, V.; Raghavan, V. Millets for food security in the context of climate change: A review. Sustainability 2018, 10, 2228. [Google Scholar] [CrossRef]
- Farooq, M.S.; Uzair, M.; Raza, A.; Habib, M.; Xu, Y.; Yousuf, M.; Yang, S.H.; Khan, M.R. Uncovering the Research Gaps to Alleviate the Negative Impacts of Climate Change on Food Security: A Review. Front. Plant Sci. 2022, 13, 927535. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S. Principles, drivers, and policy tools for just climate change adaptation in legacy cities. Environ. Sci. Policy 2020, 111, 35–41. [Google Scholar] [CrossRef]
- Owino, V.; Kumwenda, C.; Ekesa, B.; Parker, M.E.; Ewoldt, L.; Roos, N.; Lee, W.T.; Tome, D. The impact of climate change on food systems, diet quality, nutrition, and health outcomes: A narrative review. Front. Clim. 2022, 4, 941842. [Google Scholar] [CrossRef]
- Niles, M.T.; Ahuja, R.; Barker, T.; Esquivel, J.; Gutterman, S.; Heller, M.C.; Mango, N.; Portner, D.; Raimond, R.; Tirado, C.; et al. Climate change mitigation beyond agriculture: A review of food system opportunities and implications. Renew. Agric. Food Syst. 2018, 33, 297–308. [Google Scholar] [CrossRef]
- Islam, S.M.F.; Karim, Z. Worlds demand for food and water: The consequences of climate change. In Desalination—Challenges and Opportunities; Farahani, M., Vatanpour, V., Taheri, A., Eds.; IntechOpen: Rijeka, Croatia, 2019; pp. 12–25. [Google Scholar] [CrossRef] [Green Version]
- Danquah, E.O.; Danquah, F.O.; Frimpong, F.; Dankwa, K.O.; Weebadde, C.K.; Ennin, S.A.; Asante, M.O.O.; Bermpong, M.B.; Dwamena, H.A.; Addo-Danso, A.; et al. Sustainable Intensification and Climate-Smart Yam Production for Improved Food Security in West Africa: A Review. Front. Agron. 2022, 4, 858114. [Google Scholar] [CrossRef]
- Morkunas, M.; Rudiene, E.; Ostenda, A. Can climate-smart agriculture help to assure food security through short supply chains? A systematic bibliometric and bibliographic literature review. J. Bus. Manag. Econ. Eng. 2022, 20, 207–223. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Review: Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal 2018, 12, 1744–1754. [Google Scholar] [CrossRef]
- Dembedza, V.P.; Chopera, P.; Mapara, J.; Macheka, L. Impact of climate change-induced natural disasters on intangible cultural heritage related to food: A review. J. Ethn. Foods 2022, 9, 32. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Hosseinzadeh-Bandbafha, H.; Shahbeik, H.; Tabatabaei, M. The role of sustainability assessment tools in realizing bioenergy and bioproduct systems. Biofuel Res. J. 2022, 35, 1697–1706. [Google Scholar] [CrossRef]
- Delcour, I.; Spanoghe, P.; Uyttendaele, M. Literature review: Impact of climate change on pesticide use. Food Res. Int. 2015, 68, 7–15. [Google Scholar] [CrossRef]
- Wu, X.; Lu, Y.; Zhou, S.; Chen, L.; Xu, B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 2016, 86, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Kron, W.; Löw, P.; Kundzewicz, Z.W. Changes in risk of extreme weather events in Europe. Environ. Sci. Policy 2019, 10, 74–83. [Google Scholar] [CrossRef]
- Uddin, M.E.; Kebreab, E. Review: Impact of food and climate change on pastoral industries. Front. Sustain. Food Syst. 2020, 4, 543403. [Google Scholar] [CrossRef]
- Shcherbak, I.; Millar, N.; Robertson, G.P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef] [Green Version]
- Griffis, T.J.; Chen, Z.; Baker, J.M.; Wood, J.D.; Millet, D.B.; Lee, X.; Venterea, R.T.; Turner, P.A. Nitrous oxide emissions are enhanced in a warmer and wetter world. Proc. Natl. Acad. Sci. USA 2017, 114, 12081–12085. [Google Scholar] [CrossRef]
- Muluneh, M.G. Impact of climate change on biodiversity and food security: A global perspective—A review article. Agric. Food Secur. 2021, 10, 36. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R. Climate change and variability in Kenya: A review of impacts on agriculture and food security. Environ. Dev. Sustain. 2021, 23, 23–43. [Google Scholar] [CrossRef]
- Duchenne-Moutien, R.A.; Neetoo, H. Climate change and emerging food safety issues: A review. J. Food Prot. 2021, 84, 1884–1897. [Google Scholar] [CrossRef] [PubMed]
- Godde, C.M.; Mason-D’Croz, D.; Mayberry, D.E.; Thornton, P.K.; Herrero, M. Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob. Food Secur. 2021, 28, 100488. [Google Scholar] [CrossRef] [PubMed]
- Azani, N.; Suhaimi, H.; Azra, M.N.; Hassan, M.M.; Jung, L.H.; Rasdi, N.W. The impacts of climate change on plankton as live food: A review. IOP Conf. Ser. Earth Environ. Sci. 2021, 869, 012005. [Google Scholar] [CrossRef]
- Sorgho, R.; Quiñonez, C.A.M.; Louis, V.R.; Winkler, V.; Dambach, P.; Sauerborn, R.; Horstick, O. Climate Change Policies in 16 West African Countries: A Systematic Review of Adaptation with a Focus on Agriculture, Food Security, and Nutrition. Int. J. Environ. Res. Public Health 2020, 17, 8897. [Google Scholar] [CrossRef]
- Rahimi, P.; Islam, M.S.; Duarte, P.M.; Tazerji, S.S.; Sobur, M.A.; Zowalaty, M.E.E.; Ashour, H.M.; Rahman, M.T. Impact of the COVID-19 pandemic on food production and animal health. Trends Food Sci. Technol. 2022, 121, 105–113. [Google Scholar] [CrossRef]
- Nasereldin, Y.A.; Brenya, R.; Bassey, A.P.; Ibrahim, I.E.; Alnadari, F.; Nasiru, M.M.; Ji, Y. Is the Global Food Supply Chain during the COVID-19 Pandemic Resilient? A Review Paper. Open J. Bus. Manag. 2021, 9, 184–195. [Google Scholar] [CrossRef]
- Da Silva Junior, A.E.; Macena, M.L.; Santos de Oliveira, A.D.; Praxedes, D.R.S.; Pureza, I.R.O.M.; Florencio, T.M.M.; Gearhardt, A.N.; Bueno, N.B. Prevalence of food addiction and its association with anxiety, depression, and adherence to social distancing measures in Brazilian university students during the COVID-19 pandemic: A nationwide study. Eat. Weight Disord. 2022, 27, 2027–2035. [Google Scholar] [CrossRef]
- Paparella, A.; Purgatorio, C.; Chaves-Lopez, C.; Rossi, C.; Serio, A. The Multifaceted Relationship between the COVID-19 Pandemic and the Food System. Foods 2022, 11, 2816. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Aldawoud, T.M.S.; Rizou, M.; Rowan, N.; Ibrahim, S. Food Ingredients and Active Compounds against the Coronavirus Disease (COVID-19) Pandemic: A Comprehensive Review. Foods 2020, 9, 1701. [Google Scholar] [CrossRef]
- Galanakis, C.M. Functionality of Food Components and Emerging Technologies. Foods 2021, 10, 128. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, S.; Panigrahi, C.; Barua, S.; Sahoo, M.; Mandliya, S. Food nutrients as inherent sources of immunomodulation during COVID-19 pandemic. LWT Food Sci. Technol. 2022, 158, 113154. [Google Scholar] [CrossRef] [PubMed]
- Fanzo, J.; Hood, A.; Davis, C. Eating our way through the Anthropocene. Physiol. Behav. 2020, 222, 112929. [Google Scholar] [CrossRef] [PubMed]
- Tendall, D.M.; Joerin, J.; Kopainsky, B.; Edwards, P.; Shreck, A.; Le, Q.B.; Kruetli, P.; Grant, M.; Six, J. Food system resilience: Defining the concept. Glob. Food Secur. 2015, 6, 17–23. [Google Scholar] [CrossRef]
- Hidalgo, D.M.; Nunn, P.D.; Beazley, H. Challenges and opportunities for food systems in a changing climate: A systematic review of climate policy integration. Environ. Sci. Policy 2021, 124, 485–495. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Lorenzo, J.M.; Bohrer, B.M.; Pateiro, M.; Cantalapiedra, J.J.; Franco, D. A Year Following the Onset of the COVID-19 Pandemic: Existing Challenges and Ways the Food Industry Has Been Impacted. Foods 2021, 10, 2389. [Google Scholar] [CrossRef]
- Iranmanesh, M.; Ghobakhloo, M.; Nilashi, M.; Tseng, M.L.; Senali, M.G.; Abbasi, G.A. Impacts of the COVID-19 pandemic on household food waste behaviour: A systematic review. Appetite 2022, 176, 106127. [Google Scholar] [CrossRef]
- Dreibrodt, F.; Hofmann, R.; Dal Corso, M.; Bork, H.R.; Duttmann, R.; Martini, S.; Saggau, P.; Scwark, L.; Shatilo, L.; Videiko, M.; et al. Earthworms, Darwin and prehistoric agriculture-Chernozem genesis reconsidered. Geoderma 2022, 409, 115607. [Google Scholar] [CrossRef]
- Weir, D.; McQuillan, D.; Francis, R.A. Civilian science: The potential of participatory environmental monitoring in areas affected by armed conflicts. Environ. Monit. Assess. 2019, 191, 618. [Google Scholar] [CrossRef]
- Gross, M. Global food security hit by war. Curr. Biol. 2022, 32, R341–R343. [Google Scholar] [CrossRef]
- Bazhal, M.; Koutchma, T. Ukraine as a food and grain hub: Impact of science and technology development on food security in the world. Front. Food Sci. Technol. 2022, 2, 1040396. [Google Scholar] [CrossRef]
- Markus, S. Long-term business implications of Russia’s war in Ukraine. Asian Bus. Manag. 2022, 21, 483–487. [Google Scholar] [CrossRef]
- Portner, L.M.; Lambrecht, N.; Springmann, M.; Bodirsky, B.L.; Gaupp, F.; Freund, F.; Lotze-Campen, H.; Gabrysch, S. We need a food system transformation—In the face of the Russia-Ukraine war, now more than ever. One Earth 2022, 5, 470–472. [Google Scholar] [CrossRef]
- Qureshi, A.; Rizwan, M.S.; Ahmad, G.; Ashraf, D. Russia-Ukraine war and systemic risk: Who is taking the heat? Financ. Res. Lett. 2022, 48, 103036. [Google Scholar] [CrossRef]
- Lang, T.; McKee, M. The reinvasion of Ukraine threatens global food supplies. BMJ 2022, 376, o676. [Google Scholar] [CrossRef]
- Behnassi, M.; El Haiba, M. Implications of the Russia–Ukraine war for global food security. Nat. Hum. Behav. 2022, 6, 745–755. [Google Scholar] [CrossRef]
- Jones, S.; Krzywoszynka, A.; Maye, D. Resilience and transformation: Lessons from the UK local food sector in the COVID-19 pandemic. Geogr. J. 2022, 188, 209–222. [Google Scholar] [CrossRef]
- Naylor, R.L. Managing Food Production Systems for Resilience. In Principles of Ecosystem Stewardship Resilience-Based Natural Resource Management in a Changing World; Chapin, F.S., Kofinas, G.P., Folke, C., Eds.; Springer: New York, NY, USA, 2009; pp. 259–280. [Google Scholar] [CrossRef]
- Maleksaeidi, H.; Karami, E. Social-Ecological Resilience and Sustainable Agriculture Under Water Scarcity. Agroecol. Sustain. Food Syst. 2013, 37, 262–290. [Google Scholar] [CrossRef]
- Brown, B.J.; Hanson, M.E.; Liverman, D.M.; Merideth, R.W. Global sustainability: Toward definition. Environ. Manag. 1987, 11, 713–719. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.R.; Lenton, T.M.; Bascompte, J.; Brock, W.; Dakos, V.; van de Koppel, J.; van de Leemput, I.A.; Levin, S.A.; van Nes, E.H.; et al. Anticipating Critical Transitions. Science 2012, 338, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Guerin, T.F. Roles of company directors and the implications for governing for the emerging impacts of climate risks in the fresh food sector: A review. Food Control 2022, 133, 108600. [Google Scholar] [CrossRef]
- Mariam, N.; Valerie, K.; Karin, D.; Angelika, W.-R.; Nina, L. Limiting food waste via grassroots initiatives as a potential for climate change mitigation: A systematic review. Environ. Res. Lett. 2020, 15, 123008. [Google Scholar] [CrossRef]
- Chanza, N.; Musakwa, W. Revitalizing indigenous ways of maintaining food security in a changing climate: Review of the evidence base from Africa. Int. J. Clim. Chang. Strat. Manag. 2022, 14, 252–271. [Google Scholar] [CrossRef]
- Conceição, P.; Levine, S.; Lipton, M.; Warren-Rodríguez, A. Toward a food secure future: Ensuring food security for sustainable human development in Sub-Saharan Africa. Food Policy 2016, 60, 1–9. [Google Scholar] [CrossRef]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable intensification in agriculture: Premises and policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef]
- Petersen, B.; Snapp, S. What is sustainable intensification? Views from experts. Land Use Policy 2015, 46, 1–10. [Google Scholar] [CrossRef]
- Hassan, W.; Li, Y.; Saba, T.; Jabbi, F.; Wang, B.; Cai, A.; Wu, J. Improved and sustainable agroecosystem, food security and environmental resilience through zero tillage with emphasis on soils of temperate and subtropical climate regions: A review. Int. Soil Water Conserv. Res. 2022, 10, 530e545. [Google Scholar] [CrossRef]
- Rushpalatha, R.; Gangadharan, B. Is Cassava (Manihot esculenta Crantz) a Climate “Smart” Crop? A Review in the Context of Bridging Future Food Demand Gap. Trop. Plant Biol. 2020, 13, 201–211. [Google Scholar] [CrossRef]
- Osman, A.I.; Fawzy, S.; Farghali, M.; El-Azazy, M.; Elgarahy, A.M.; Fahim, R.A.; Abdel Maksoud, M.I.A.; Ajlan, A.A.; Yousry, M.; Saleem, Y.; et al. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: A review. Environ. Chem. Lett. 2022, 20, 2385–2485. [Google Scholar] [CrossRef]
- Barbier, M.; Araujo, R.; Rebours, C.; Jacquemin, B.; Holdt, S.L.; Charrier, B. Development and objectives of the phycomorph European guidelines for the sustainable aquaculture of seaweeds (pegasus). Bot. Mar. 2020, 63, 5–16. [Google Scholar] [CrossRef]
- Yang, Y.; Tilman, D. Soil and root carbon storage is key to climate benefits of bioenergy crops. Biofuel Res. J. 2020, 7, 1143–1148. [Google Scholar] [CrossRef]
- Leisner, C.P. Review: Climate change impacts on food security- focus on perennial cropping systems and nutritional value. Plant Sci. 2020, 293, 110412. [Google Scholar] [CrossRef] [PubMed]
- Farghali, M.; Mohamed, I.M.A.; Osman, A.I.; Rooney, D.W. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: A review. Environ. Chem. Lett. 2022, 1–56. [Google Scholar] [CrossRef] [PubMed]
- Firdaus, R.B.R.; Tan, M.L.; Rahmat, S.R.; Gunaratne, M.S. Paddy, rice and food security in Malaysia: A review of climate change impacts. Cogent Soc. Sci. 2020, 6, 1818373. [Google Scholar] [CrossRef]
- Talari, G.; Cummins, E.; McNamara, C.; O’Brien, J. State of the art review of Big Data and web-based Decision Support Systems (DSS) for food safety risk assessment with respect to climate change. Trends Food Sci. Technol. 2022, 126, 192–204. [Google Scholar] [CrossRef]
- Charlebois, S.; Music, J. SARS-CoV-2 Pandemic and Food Safety Oversight: Implications in Canada and Coping Strategies. Foods 2021, 10, 2241. [Google Scholar] [CrossRef]
- Maréchal, A.; Hart, K.; Baldock, D.; Wunder, S.; Aubert, P.M. Aligning the Post-2020 Common Agricultural Policy with the European Green Deal; Institute for European Environmental Policy, Ecologic Institute & IDDRI: Bruxelles, Belgium, 2020; pp. 1–27. [Google Scholar]
- Tseng, Y.; Lee, B.; Chen, C.; He, W. Understanding Agri-Food Traceability System User Intention in Respond to COVID-19 Pandemic: The Comparisons of Three Models. Int. J. Environ. Res. Public Health 2022, 19, 1371. [Google Scholar] [CrossRef]
- Pulighe, G.; Lupia, F. Food First: COVID-19 Outbreak and Cities Lockdown a Booster for a Wider Vision on Urban Agriculture. Sustainability 2020, 12, 5012. [Google Scholar] [CrossRef]
- Ruiz-Salmón, I.; Margallo, M.; Laso, J.; Villanueva-Rey, P.; Mariño, D.; Quinteiro, P.; Dias, A.C.; Nunes, M.L.; Marques, A.; Feijoo, G.; et al. Addressing challenges and opportunities of the European seafood sector under a circular economy framework. Curr. Opin. Environ. Sci. Health 2020, 13, 101–106. [Google Scholar] [CrossRef]
- Branca, G.; Mccarthy, N.; Lipper, L.; Jolejole, M.C. Climate-Smart Agriculture: A Synthesis of Empirical Evidence of Food Security and Mitigation Benefits from Improved Cropland Management. Mitigation of Climate Change in Agriculture Series 3; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; pp. 1–42. [Google Scholar]
- Pingali, P.L. Green revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [PubMed]
- Aryal, J.P.; Jat, M.L.; Sapkota, T.B.; Khatri-Chhetri, A.; Kassie, M.; Rahut, D.B.; Maharjan, S. Adoption of multiple climate-smart agricultural practices in the Gangetic plains of Bihar, India. Int. J. Clim. Chang. Strat. Manag. 2018, 10, 407–427. [Google Scholar] [CrossRef]
- Galanakis, C.M. Emerging technologies for the production of nutraceuticals from agricultural by-products: A viewpoint of opportunities and challenges. Food Bioprod. Process. 2013, 91, 575–579. [Google Scholar] [CrossRef]
- Galanakis, C.M. Separation of functional macromolecules and micromolecules: From ultrafiltration to the border of nanofiltration. Trends Food Sci. Technol. 2015, 42, 44–63. [Google Scholar] [CrossRef]
- Galanakis, C.M. Sustainable applications for the valorization of cereal processing by-products. Foods 2022, 11, 241. [Google Scholar] [CrossRef] [PubMed]
- Kovacevic, D.B.; Barba, F.J.; Granato, D.; Galanakis, C.M.; Herceg, Z.; Dragovic-Uzelac, V.; Prutnik, P. Pressurized hot water extraction (PHWE) for the green recovery of bioactive compounds from steviol glycosides from Stevis rebaudiana Bertoni Leaves. Food Chem. 2018, 254, 150–157. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Tsatalas, P.; Galanakis, I.M. Implementation of phenols recovered from olive mill wastewater as UV booster in cosmetics. Ind. Crops Prod. 2018, 111, 30–37. [Google Scholar] [CrossRef]
- Tranchant, J.-P.; Guelli, A.; Bliznashka, L.; Diallo, A.S.; Sacko, M.; Assima, A.; Siegel, E.H.; Aurino, E.; Masset, E. The impact of food assistance on food insecure populations during conflict: Evidence from a quasi-experiment in Mali. World Dev. 2019, 119, 185–202. [Google Scholar] [CrossRef]
- Overland, I.; Sabyrbekov, R. Know your opponent: Which countries might fight the European carbon border adjustment mechanism? Energy Policy 2022, 169, 1317. [Google Scholar] [CrossRef]
- Korosteleva, J. The Implications of Russia’s Invasion of Ukraine for the EU Energy Market and Businesses. Br. J. Manag. 2022, 33, 1678–1682. [Google Scholar] [CrossRef]
- Belucio, M.; Santiago, R.; Fuinhas, J.A.; Braunm, L.; Antunes, J. The Impact of Natural Gas, Oil, and Renewables Consumption on Carbon Dioxide Emissions: European Evidence. Energies 2022, 15, 5263. [Google Scholar] [CrossRef]
- Swinburn, B.A.; Kraak, V.I.; Allender, S.; Atkins, V.J.; Baker, P.I.; Bogard, J.R.; Brinsden, H.; Calvillo, A.; De Schutter, O.; Devarajan, R.; et al. The global syndemic of obesity, undernutrition, and climate change: The Lancet Commission report. Lancet 2019, 393, 791–846. [Google Scholar] [CrossRef] [PubMed]
Mitigation Measure | Climate Change | Pandemics | Geopolitical Conflicts |
---|---|---|---|
Transparent and robust collaborations among all the relevant actors | ++ | + | +++ |
Synchronization, data sharing, and holistic risk assessment | ++ | +++ | +++ |
Preparedness strategies and advanced monitoring mechanisms | ++ | ++ | +++ |
Sustainable agricultural practices | ++ | + | + |
Improvement of food access | + | +++ | |
Reduction of food demand and food waste | ++ | + | + |
Decentralization of agricultural systems and shortening of supply chains | ++ | +++ | +++ |
Focus on local and traditional foods | ++ | ++ | |
Enhancement of food transfers and food assistance | + | ++ | |
Diversification of distribution systems and logistic infrastructures | + | ++ | ++ |
Supporting of laboratories to develop early detection methods for pathogens | +++ | ||
Intensification of food production systems through automation, smart agriculture, and Industry 4.0 applications | + | ++ | + |
Training of the workforce in emerging technologies, robotics, and disruptive technologies | + | ++ | + |
Climate-resilient infrastructures | +++ | ++ | + |
Optimization of livestock production | ++ | + | |
Increasing reliance on renewable resources and local energy systems | +++ | ++ | |
Ιncreasing genomic, genetic, and gene-editing resources | + | + | |
Adaptation of “One Health” principles | ++ | +++ | |
Transition to circular economy | +++ | ||
Valorization of food waste and diverse bioresources | +++ | + | ++ |
Sustainable diets based on alternative protein sources | +++ | + | + |
Awareness and education campaigns on food safety risks | + | ++ | + |
Development of immune- and health-boosting products based on target food bioactive ingredients | ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galanakis, C.M. The “Vertigo” of the Food Sector within the Triangle of Climate Change, the Post-Pandemic World, and the Russian-Ukrainian War. Foods 2023, 12, 721. https://doi.org/10.3390/foods12040721
Galanakis CM. The “Vertigo” of the Food Sector within the Triangle of Climate Change, the Post-Pandemic World, and the Russian-Ukrainian War. Foods. 2023; 12(4):721. https://doi.org/10.3390/foods12040721
Chicago/Turabian StyleGalanakis, Charis M. 2023. "The “Vertigo” of the Food Sector within the Triangle of Climate Change, the Post-Pandemic World, and the Russian-Ukrainian War" Foods 12, no. 4: 721. https://doi.org/10.3390/foods12040721
APA StyleGalanakis, C. M. (2023). The “Vertigo” of the Food Sector within the Triangle of Climate Change, the Post-Pandemic World, and the Russian-Ukrainian War. Foods, 12(4), 721. https://doi.org/10.3390/foods12040721