Knowledge Domain and Emerging Trends in Vinegar Research: A Bibliometric Review of the Literature from WoSCC
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Visualization and Analysis
3. Results and Discussion
3.1. Disciplines and Topics Involved in Vinegar Research
3.2. Trends and Comparison of Literature Outputs for Vinegar Research
3.2.1. Trends of Research Outputs and Citations
3.2.2. Comparison of Research Outputs between Different Subject Categories, Countries, Institutions, and Journals
3.3. The Intellectual Structure of Vinegar Research
3.3.1. Research Clusters
3.3.2. Betweenness Centrality
3.3.3. Most Cited Articles
3.3.4. Citation Bursts
3.4. Theme Panels
3.5. Emerging Trends and Outlook
3.6. Evolutionary Stage of Vinegar Research
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Chen, T.; Giudici, P.; Chen, F. Vinegar functions on health: Constituents, sources, and formation mechanisms. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1124–1138. [Google Scholar] [CrossRef]
- Mazza, S.; Murooka, Y. Vinegars through the ages. In Vinegars of the World; Solieri, L., Giudici, P., Eds.; Springer: Milan, Italy, 2009; pp. 17–39. [Google Scholar] [CrossRef]
- Jamaludin, M.A.; Amin, A.; Othman, R.; Fadzlillah, N.A.; Kartika, B. Technical review on vinegar fermentation process and physiochemical properties of vinegar product based on Shariah and scientific perspectives. In Proceedings of the 3rd International Halal Conference, Singapore, 2016; Hashim, N.M., Shariff, N.N.M., Mahamood, S.F., Harun, H.M.F., Shahruddin, M.S., Bhari, A., Eds.; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Joint FAO/WHO Food Standards Programme. Conversion of European Regional Standard for Vinegar into World-Wide Standard; Codex Committee on Processed Fruits and Vegetables: Washington, DC, USA, 1998. [Google Scholar]
- Palacios, V.; Valcárcel, M.; Caro, I.; Pérez, L. Chemical and biochemical transformations during the industrial process of Sherry vinegar aging. J. Agric. Food Chem. 2002, 50, 4221–4225. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Hong, H.D.; Suh, H.J.; Shin, K.S. Structural and immunological feature of rhamnogalacturonan I-rich polysaccharide from Korean persimmon vinegar. Int. J. Biol. Macromol. 2016, 89, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Song, X.; Song, Y.; Bi, J.; Cong, S.; Yu, C.; Tan, M. Fluorescent nanoparticles from mature vinegar: Their properties and interaction with dopamine. Food Funct. 2017, 8, 4744–4751. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Yao, J.; Zhang, J.; Duan, W.; Zhang, B.; Xie, X.; Xia, M.; Song, J.; Zheng, Y.; Wang, M. Evaluation of nutritional compositions, bioactive compounds, and antioxidant activities of Shanxi aged vinegars during the aging process. J. Food Sci. 2018, 83, 2638–2644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, Y.; Zheng, Y.; Xu, Y.; Xia, M.; Tu, L.; Song, J.; Wang, M. Unravelling the composition and envisaging the formation of sediments in traditional Chinese vinegar. Int. J. Food Sci. Technol. 2019, 54, 2927–2938. [Google Scholar] [CrossRef]
- Hashimoto, M.; Obara, K.; Ozono, M.; Furuyashiki, M.; Ikeda, T.; Suda, Y.; Fukase, K.; Fujimoto, Y.; Shigehisa, H. Separation and characterization of the immunostimulatory components in unpolished rice black vinegar (kurozu). J. Biosci. Bioeng. 2013, 116, 688–696. [Google Scholar] [CrossRef]
- Budak, N.H.; Aykin, E.; Seydim, A.C.; Greene, A.K.; Guzel-Seydim, Z.B. Functional properties of vinegar. J. Food Sci. 2014, 79, R757–R764. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, S.; Gong, G. Trends of research on polycyclic aromatic hydrocarbons in food: A 20-year perspective from 1997 to 2017. Trends Food Sci. Technol. 2019, 83, 86–98. [Google Scholar] [CrossRef]
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anklam, E.; Lipp, M.; Radovic, B.; Chiavaro, E.; Palla, G. Characterisation of Italian vinegar by pyrolysis-mass spectrometry and a sensor device (‘electronic nose’). Food Chem. 1998, 61, 243–248. [Google Scholar] [CrossRef]
- Solieri, L.; Giudici, P. Vinegars of the world. In Vinegars of the World; Solieri, L., Giudici, P., Eds.; Springer: Milan, Italy, 2009; pp. 1–16. [Google Scholar] [CrossRef]
- Chen, C. Drexel University, Philadelphia, Pennsylvania, America. The CiteSpace manual 2014. Available online: http://cluster.ischool.drexel.edu/~cchen/citespace/CiteSpaceManual.pdf (accessed on 5 June 2019).
- Chen, C.; Leydesdorff, L. Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis. J. Am. Soc. Inf. Sci. Technol. 2014, 65, 334–351. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Dubin, R.; Kim, M.C. Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert Opin. Biol. Ther. 2014, 14, 1295–1317. [Google Scholar] [CrossRef] [Green Version]
- Huffman, M.D.; Baldridge, A.; Bloomfield, G.S.; Colantonio, L.D.; Prabhakaran, P.; Ajay, V.S.; Suh, S.; Lewison, G.; Prabhakaran, D. Global cardiovascular research output, citations, and collaborations: A time-trend, bibliometric analysis (1999–2008). PLoS ONE 2013, 8, e83440. [Google Scholar] [CrossRef]
- De Solla Price, D.J. Networks of scientific papers. Science 1965, 149, 510–515. [Google Scholar] [CrossRef]
- Persson, O. The intellectual base and research fronts of JASIS 1986–1990. J. Am. Soc. Inf. Sci. 1994, 45, 31–38. [Google Scholar] [CrossRef]
- Liljeberg, H.; Björck, I. Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur. J. Clin. Nutr. 1998, 52, 368–371. [Google Scholar] [CrossRef] [Green Version]
- Alonso, Á.M.; Castro, R.; Rodríguez, M.C.; Guillén, D.A.; Barroso, C.G. Study of the antioxidant power of brandies and vinegars derived from Sherry wines and correlation with their content in polyphenols. Food Res. Int. 2004, 37, 715–721. [Google Scholar] [CrossRef]
- Verzelloni, E.; Tagliazucchi, D.; Conte, A. Relationship between the antioxidant properties and the phenolic and flavonoid content in traditional balsamic vinegar. Food Chem. 2007, 105, 564–571. [Google Scholar] [CrossRef]
- Sakanaka, S.; Ishihara, Y. Comparison of antioxidant properties of persimmon vinegar and some other commercial vinegars in radical-scavenging assays and on lipid oxidation in tuna homogenates. Food Chem. 2008, 107, 739–744. [Google Scholar] [CrossRef]
- Ubeda, C.; Callejón, R.M.; Hidalgo, C.; Torija, M.J.; Troncoso, A.M.; Morales, M.L. Employment of different processes for the production of strawberry vinegars: Effects on antioxidant activity, total phenols and monomeric anthocyanins. LWT Food Sci. Technol. 2013, 52, 139–145. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, Y.; Shao, Y.; Chen, F. Free phenolic acids in Shanxi aged vinegar: Changes during aging and synergistic antioxidant activities. Int. J. Food Prop. 2016, 19, 1183–1193. [Google Scholar] [CrossRef]
- Xie, X.; Zheng, Y.; Liu, X.; Cheng, C.; Zhang, X.; Xia, T.; Yu, S.; Wang, M. Antioxidant activity of Chinese Shanxi aged vinegar and its correlation with polyphenols and flavonoids during the brewing process. J. Food Sci. 2017, 82, 2479–2486. [Google Scholar] [CrossRef]
- Xu, W.; Xu, Q.; Chen, J.; Lu, Z.; Xia, R.; Li, G.; Xu, Z.; Ma, Y. Ligustrazine formation in Zhenjiang aromatic vinegar: Changes during fermentation and storing process. J. Sci. Food Agric. 2011, 91, 1612–1617. [Google Scholar] [CrossRef]
- Yatmaz, A.H.; Kinoshita, T.; Miyazato, A.; Takagi, M.; Tsujino, Y.; Beppu, F.; Gotoh, N. Quantification of fraglide-1, a new functional ingredient, in vinegars. J. Oleo Sci. 2017, 66, 1381–1386. [Google Scholar] [CrossRef] [Green Version]
- Terahara, N.; Matsui, T.; Fukui, K.; Matsugano, K.; Sugita, K.; Matsumoto, K. Caffeoylsophorose in a red vinegar produced through fermentation with purple sweetpotato. J. Agric. Food Chem. 2003, 51, 2539–2543. [Google Scholar] [CrossRef]
- Inagaki, S.; Morimura, S.; Gondo, K.; Tang, Y.; Akutagawa, H.; Kida, K. Isolation of tryptophol as an apoptosis-inducing component of vinegar produced from boiled extract of black soybean in human monoblastic leukemia U937 cells. Biosci. Biotechnol. Biochem. 2007, 71, 371–379. [Google Scholar] [CrossRef]
- Chou, C.H.; Liu, C.W.; Yang, D.J.; Wu, Y.H.S.; Chen, Y.C. Amino acid, mineral, and polyphenolic profiles of black vinegar, and its lipid lowering and antioxidant effects in vivo. Food Chem. 2015, 168, 63–69. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Y.; Zhou, L.; Li, Z.; Zhang, B.; Saito, M.; Wang, X. Nutritional composition and α-glucosidase inhibitory activity of five Chinese vinegars. Jpn. Agric. Res. Q. 2011, 45, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Tagliazucchi, D.; Verzelloni, E.; Conte, A. Contribution of melanoidins to the antioxidant activity of traditional balsamic vinegar during aging. J. Food Biochem. 2010, 34, 1061–1078. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Yang, X. Possible antioxidant mechanism of melanoidins extract from Shanxi aged vinegar in mitophagy-dependent and mitophagy-independent pathways. J. Agric. Food Chem. 2014, 62, 8616–8622. [Google Scholar] [CrossRef]
- Liu, J.; Gan, J.; Nirasawa, S.; Zhou, Y.; Xu, J.; Zhu, S.; Cheng, Y. Cellular uptake and trans-enterocyte transport of phenolics bound to vinegar melanoidins. J. Funct. Foods 2017, 37, 632–640. [Google Scholar] [CrossRef]
- Lee, M.Y.; Kim, H.; Shin, K.S. In vitro and in vivo effects of polysaccharides isolated from Korean persimmon vinegar on intestinal immunity. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 867–876. [Google Scholar] [CrossRef]
- Cerezo, A.B.; Cuevas, E.; Winterhalter, P.; Carmen Garcia-Parrilla, M.; Troncoso, A.M. Anthocyanin composition in Cabernet Sauvignon red wine vinegar obtained by submerged acetification. Food Res. Int. 2010, 43, 1577–1584. [Google Scholar] [CrossRef]
- Chiavaro, E.; Caligiani, A.; Palla, G. Chiral indicators of ageing in balsamic vinegars of Modena. Ital. J. Food Sci. 1998, 10, 329–337. [Google Scholar]
- Cocchi, M.; Lambertini, P.; Manzini, D.; Marchetti, A.; Ulrici, A. Determination of carboxylic acids in vinegars and in aceto balsamico tradizionale di modena by HPLC and GC methods. J. Agric. Food Chem. 2002, 50, 5255–5261. [Google Scholar] [CrossRef]
- Cocchi, M.; Durante, C.; Foca, G.; Manzini, D.; Marchetti, A.; Ulrici, A. Application of a wavelet-based algorithm on HS-SPME/GC signals for the classification of balsamic vinegars. Chemom. Intell. Lab. Syst. 2004, 71, 129–140. [Google Scholar] [CrossRef]
- Cocchi, M.; Durante, C.; Grandi, M.; Lambertini, P.; Manzini, D.; Marchetti, A. Simultaneous determination of sugars and organic acids in aged vinegars and chemometric data analysis. Talanta 2006, 69, 1166–1175. [Google Scholar] [CrossRef]
- Plessi, M.; Bertelli, D.; Miglietta, F. Extraction and identification by GC-MS of phenolic acids in traditional balsamic vinegar from Modena. J. Food Compos. Anal. 2006, 19, 49–54. [Google Scholar] [CrossRef]
- Caligiani, A.; Acquotti, D.; Palla, G.; Bocchi, V. Identification and quantification of the main organic components of vinegars by high resolution 1H NMR spectroscopy. Anal. Chim. Acta 2007, 585, 110–119. [Google Scholar] [CrossRef]
- Sáiz-Abajo, M.J.; González-Sáiz, J.M.; Pizarro, C. Prediction of organic acids and other quality parameters of wine vinegar by near-infrared spectroscopy. A feasibility study. Food Chem. 2006, 99, 615–621. [Google Scholar] [CrossRef]
- Haruta, S.; Ueno, S.; Egawa, I.; Hashiguchi, K.; Fujii, A.; Nagano, M.; Ishii, M.; Igarashi, Y. Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 2006, 109, 79–87. [Google Scholar] [CrossRef]
- Azuma, Y.; Hosoyama, A.; Matsutani, M.; Furuya, N.; Horikawa, H.; Harada, T.; Hirakawa, H.; Kuhara, S.; Matsushita, K.; Fujita, N.; et al. Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res. 2009, 37, 5768–5783. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Pérez, R.; Torres, C.; Sanz, S.; Ruiz-Larrea, F. Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method. Food Microbiol. 2010, 27, 973–978. [Google Scholar] [CrossRef]
- Gullo, M.; Caggia, C.; De Vero, L.; Giudici, P. Characterization of acetic acid bacteria in “traditional balsamic vinegar”. Int. J. Food Microbiol. 2006, 106, 209–212. [Google Scholar] [CrossRef]
- De Vero, L.; Gala, E.; Gullo, M.; Solieri, L.; Landi, S.; Giudici, P. Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiol. 2006, 23, 809–813. [Google Scholar] [CrossRef]
- Solieri, L.; Giudici, P. Yeasts associated to traditional balsamic vinegar: Ecological and technological features. Int. J. Food Microbiol. 2008, 125, 36–45. [Google Scholar] [CrossRef]
- Xu, W.; Huang, Z.; Zhang, X.; Li, Q.; Lu, Z.; Shi, J.; Xu, Z.; Ma, Y. Monitoring the microbial community during solid-state acetic acid fermentation of Zhenjiang aromatic vinegar. Food Microbiol. 2011, 28, 1175–1181. [Google Scholar] [CrossRef]
- Wu, J.J.; Ma, Y.K.; Zhang, F.F.; Chen, F.S. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of “ Shanxi aged vinegar”, a traditional Chinese vinegar. Food Microbiol. 2012, 30, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Zheng, Y.; Wang, M.; Han, Y.; Wang, Y.; Luo, J.; Niu, D. Exploring microbial succession and diversity during solid-state fermentation of Tianjin duliu mature vinegar. Bioresour. Technol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Zheng, Y.; Du, H.; Xie, S.; Wang, M. Dynamics and diversity of microbial community succession intraditional fermentation of Shanxi aged vinegar. Food Microbiol. 2015, 47, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Song, N.E.; Cho, S.H.; Baik, S.H. Microbial community, and biochemical and physiological properties of Korean traditional black raspberry (Robus coreanus Miquel) vinegar. J. Sci. Food Agric. 2016, 96, 3723–3730. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, E.D.; Marín, R.N.; Mejías, R.C.; Barroso, C.G. Stir bar sorptive extraction of volatile compounds in vinegar: Validation study and comparison with solid phase microextraction. J. Chromatogr. A 2007, 1167, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callejón, R.M.; González, A.G.; Troncoso, A.M.; Morales, M.L. Optimization and validation of headspace sorptive extraction for the analysis of volatile compounds in wine vinegars. J. Chromatogr. A 2008, 1204, 93–103. [Google Scholar] [CrossRef]
- Callejón, R.M.; Morales, M.L.; Silva Ferreira, A.C.; Troncoso, A.M. Defining the typical aroma of Sherry vinegar: Sensory and chemical approach. J. Agric. Food Chem. 2008, 56, 8086–8095. [Google Scholar] [CrossRef]
- Aceña, L.; Vera, L.; Guasch, J.; Busto, O.; Mestres, M. Chemical characterization of commercial Sherry vinegar aroma by headspace solid-phase microextraction and gas chromatography-olfactometry. J. Agric. Food Chem. 2011, 59, 4062–4070. [Google Scholar] [CrossRef]
- Lu, Z.M.; Xu, W.; Yu, N.H.; Zhou, T.; Li, G.Q.; Shi, J.S.; Xu, Z.H. Recovery of aroma compounds from Zhenjiang aromatic vinegar by supercritical fluid extraction. Int. J. Food Sci. Technol. 2011, 46, 1508–1514. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, S.; Kong, X.; Ji, Z.; Han, X.; Wu, J.; Mao, J. Elucidation of the aroma compositions of Zhenjiang aromatic vinegar using comprehensive two dimensional gas chromatography coupled to time-of-flight mass spectrometry and gas chromatography-olfactometry. J. Chromatogr. A 2017, 1487, 218–226. [Google Scholar] [CrossRef]
- Castro Mejías, R.; Natera Marín, R.; De Valme García Moreno, M.; García Barroso, C. Optimisation of headspace solid-phase microextraction for analysis of aromatic compounds in vinegar. J. Chromatogr. A 2002, 953, 7–15. [Google Scholar] [CrossRef]
- Kondo, T.; Kishi, M.; Fushimi, T.; Ugajin, S.; Kaga, T. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Biosci. Biotechnol. Biochem. 2009, 73, 1837–1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budak, N.H.; Kumbul Doguc, D.; Savas, C.M.; Seydim, A.C.; Kok Tas, T.; Ciris, M.I.; Guzel-Seydim, Z.B. Effects of apple cider vinegars produced with different techniques on blood lipids in high-cholesterol-fed rats. J. Agric. Food Chem. 2011, 59, 6638–6644. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.W.; Lazim, A.M.; Fazry, S.; Zaki, U.K.H.H.; Lim, S.J. Varieties, production, composition and health benefits of vinegars: A review. Food Chem. 2017, 221, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Fushimi, T.; Suruga, K.; Oshima, Y.; Fukiharu, M.; Tsukamoto, Y.; Goda, T. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Br. J. Nutr. 2006, 95, 916–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budak, H.N.; Guzel-Seydim, Z.B. Antioxidant activity and phenolic content of wine vinegars produced by two different techniques. J. Sci. Food Agric. 2010, 90, 2021–2026. [Google Scholar] [CrossRef]
- Cirlini, M.; Caligiani, A.; Palla, L.; Palla, G. HS-SPME/GC-MS and chemometrics for the classification of balsamic vinegars of Modena of different maturation and ageing. Food Chem. 2011, 124, 1678–1683. [Google Scholar] [CrossRef]
- Ubeda, C.; Hidalgo, C.; Torija, M.J.; Mas, A.; Troncoso, A.M.; Morales, M.L. Evaluation of antioxidant activity and total phenols index in persimmon vinegars produced by different processes. LWT Food Sci. Technol. 2011, 44, 1591–1596. [Google Scholar] [CrossRef]
- Ubeda, C.; Callejón, R.M.; Hidalgo, C.; Torija, M.J.; Mas, A.; Troncoso, A.M.; Morales, M.L. Determination of major volatile compounds during the production of fruit vinegars by static headspace gas chromatography-mass spectrometry method. Food Res. Int. 2011, 44, 259–268. [Google Scholar] [CrossRef]
- Xiao, Z.; Dai, S.; Niu, Y.; Yu, H.; Zhu, J.; Tian, H.; Gu, Y. Discrimination of Chinese vinegars based on headspace solid-phase microextraction-gas chromatography mass spectrometry of volatile compounds and multivariate analysis. J. Food Sci. 2011, 76, C1125–C1135. [Google Scholar] [CrossRef]
- Masino, F.; Chinnici, F.; Bendini, A.; Montevecchi, G.; Antonelli, A. A study on relationships among chemical, physical, and qualitative assessment in traditional balsamic vinegar. Food Chem. 2008, 106, 90–95. [Google Scholar] [CrossRef]
- Tesfaye, W.; Morales, M.L.; García-Parrilla, M.C.; Troncoso, A.M. Wine vinegar: Technology, authenticity and quality evaluation. Trends Food Sci. Technol. 2002, 13, 12–21. [Google Scholar] [CrossRef]
- Gullo, M.; Giudici, P. Acetic acid bacteria in traditional balsamic vinegar: Phenotypic traits relevant for starter cultures selection. Int. J. Food Microbiol. 2008, 125, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Gullo, M.; De Vero, L.; Giudici, P. Succession of selected strains of Acetobacter pasteurianus and other acetic acid bacteria in traditional balsamic vinegar. Appl. Environ. Microbiol. 2009, 75, 2585–2589. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, E.D.; Marín, R.N.; Mejías, R.C.; Barroso, C.G. Optimisation of stir bar sorptive extraction applied to the determination of volatile compounds in vinegars. J. Chromatogr. A 2006, 1104, 47–53. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, S.; Xie, C.; Fan, C.; Bai, Z. “Sensory analysis” of Chinese vinegars using an electronic nose. Sens. Actuators B Chem. 2008, 128, 586–593. [Google Scholar] [CrossRef]
- Webster, J.; Watson, R.T. Analyzing the past to prepare for the future: Writing a literature review. MIS Q. 2002, 26, xiii–xxiii. [Google Scholar]
- Cejudo Bastante, M.J.; Durán Guerrero, E.; Castro Mejías, R.; Natera Marín, R.; Rodríguez Dodero, M.C.; Barroso, C.G. Study of the polyphenolic composition and antioxidant activity of new sherry vinegar-derived products by maceration with fruits. J. Agric. Food Chem. 2010, 58, 11814–11820. [Google Scholar] [CrossRef]
- Cejudo-Bastante, C.; Castro-Mejías, R.; Natera-Marín, R.; García-Barroso, C.; Durán-Guerrero, E. Chemical and sensory characteristics of orange based vinegar. J. Food Sci. Technol. 2016, 53, 3147–3156. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Tao, W.; Ao, Z. Antioxidant activity of vinegar melanoidins. Food Chem. 2007, 102, 841–849. [Google Scholar] [CrossRef]
- Johnston, C.S.; Steplewska, I.; Long, C.A.; Harris, L.N.; Ryals, R.H. Examination of the antiglycemic properties of vinegar in healthy adults. Ann. Nutr. Metab. 2010, 56, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Cocchi, M.; Durante, C.; Foca, G.; Marchetti, A.; Tassi, L.; Ulrici, A. Durum wheat adulteration detection by NIR spectroscopy multivariate calibration. Talanta 2006, 68, 1505–1511. [Google Scholar] [CrossRef] [PubMed]
- Johnston, C.S.; Gaas, C.A. Vinegar: Medicinal uses and antiglycemic effect. Med. Gen. Med. 2006, 8, 61. [Google Scholar]
- Ozturk, I.; Caliskan, O.; Tornuk, F.; Ozcan, N.; Yalcin, H.; Baslar, M.; Sagdic, O. Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT Food Sci. Technol. 2015, 63, 144–151. [Google Scholar] [CrossRef]
- Kondo, S.; Tayama, K.; Tsukamoto, Y.; Ikeda, K.; Yamori, Y. Antihypertensive effects of acetic acid and vinegar on spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 2001, 65, 2690–2694. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Song, H.; Ren, C.; Li, Z. Key aroma compounds in Shanxi aged tartary buckwheat vinegar and changes during its thermal processing. Flavour Fragr. J. 2012, 27, 47–53. [Google Scholar] [CrossRef]
- Maga, J.A.; Katz, I. Simple phenol and phenolic compounds in food flavor. C R C Crit. Rev. Food Sci. Nutr. 1978, 10, 323–372. [Google Scholar] [CrossRef]
- Frankel, E.N.; Meyer, A.S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric. 2000, 80, 1925–1941. [Google Scholar] [CrossRef]
- Huang, D.; Boxin, O.U.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Schlepütz, T.; Büchs, J. Investigation of vinegar production using a novel shaken repeated batch culture system. Biotechnol. Prog. 2013, 29, 1158–1168. [Google Scholar] [CrossRef]
- Xia, X.; Zhu, X.; Yang, H.; Xin, Y.; Wang, W. Enhancement of rice vinegar production by modified semi-continuous culture based on analysis of enzymatic kinetic. Eur. Food Res. Technol. 2015, 241, 479–485. [Google Scholar] [CrossRef]
- Qi, Z.; Dong, D.; Yang, H.; Xia, X. Improving fermented quality of cider vinegar via rational nutrient feeding strategy. Food Chem. 2017, 224, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Guo, J.; Li, Y.; Lin, S.; Wang, L.; Li, J. Optimisation of lactic acid fermentation for improved vinegar flavour during rosy vinegar brewing. J. Sci. Food Agric. 2010, 90, 1334–1339. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Liu, N.; Wang, L.; Wu, L.; Gong, J.; Yu, Y.; Li, G.; Shi, J.; Xu, Z.-H. Elucidating and regulating the acetoin production role of microbial functional groups in multispecies acetic acid fermentation. Appl. Environ. Microbiol. 2016, 82, 5860–5868. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhang, K.C.; Lou, J.W.; Guo, S.C.; Zhang, Y.; Yao, W.F.; Tang, Y.P.; Wu, J.H.; Zhang, L. Simultaneous quantification of twelve compounds in ethyl acetate extracts of Euphorbia kansui before and after fry-baked with vinegar by UPLC–MS/MS and its toxic effect on zebrafish. J. Pharm. Biomed. Anal. 2018, 155, 169–176. [Google Scholar] [CrossRef]
- Lou, J.W.; Cao, L.L.; Zhang, Q.; Jiang, D.J.; Yao, W.F.; Bao, B.H.; Cao, Y.D.; Tang, Y.P.; Zhang, L.; Wang, K.; et al. The toxicity and efficacy evaluation of different fractions of Kansui fry-baked with vinegar on Walker-256 tumor-bearing malignant ascites effusion rats and normal rats. J. Ethnopharmacol. 2018, 219, 257–268. [Google Scholar] [CrossRef]
- Jiang, D.; Kang, A.; Yao, W.; Lou, J.; Zhang, Q.; Bao, B.; Cao, Y.; Yu, S.; Guo, S.; Zhang, Y.; et al. Euphorbia kansui fry-baked with vinegar modulates gut microbiota and reduces intestinal toxicity in rats. J. Ethnopharmacol. 2018, 226, 26–35. [Google Scholar] [CrossRef]
- Xing, J.; Sun, H.M.; Li, Z.Y.; Qin, X.M. Comparison of volatile components between raw and vinegar baked Radix bupleuri by GC-MS based metabolic fingerprinting approach. Evid. Based Complement. Altern. Med. 2015, 2015, 653791. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Y.; Sun, H.M.; Xing, J.; Qin, X.M.; Du, G.H. Chemical and biological comparison of raw and vinegar-baked Radix bupleuri. J. Ethnopharmacol. 2015, 165, 20–28. [Google Scholar] [CrossRef]
- Ran, G.; Li, D.; Zheng, T.; Liu, X.; Chen, L.; Cao, Q.; Yan, Z. Hydrothermal pretreatment on the anaerobic digestion of washed vinegar residue. Bioresour. Technol. 2018, 248, 265–271. [Google Scholar] [CrossRef]
- Song, Z.T.; Dong, X.F.; Tong, J.M.; Wang, Z.H. Effects of waste vinegar residue on nutrient digestibility and nitrogen balance in laying hens. Livest. Sci. 2012, 150, 67–73. [Google Scholar] [CrossRef]
- Du, N.; Shi, L.; Du, L.; Yuan, Y.; Li, B.; Sang, T.; Sun, J.; Shu, S.; Guo, S. Effect of vinegar residue compost amendments on cucumber growth and Fusarium wilt. Environ. Sci. Pollut. Res. 2015, 22, 19133–19141. [Google Scholar] [CrossRef] [PubMed]
- Petsiou, E.I.; Mitrou, P.I.; Raptis, S.A.; Dimitriadis, G.D. Effect and mechanisms of action of vinegar on glucose metabolism, lipid profile, and body weight. Nutr. Rev. 2014, 72, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Lagier, J.C.; Khelaifia, S.; Alou, M.T.; Ndongo, S.; Dione, N.; Hugon, P.; Caputo, A.; Cadoret, F.; Traore, S.I.; Seck, E.H.; et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 2016, 1, 16203. [Google Scholar] [CrossRef]
- Shi, Y.; Tyson, G.W.; Eppley, J.M.; Delong, E.F. Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J. 2011, 5, 999–1013. [Google Scholar] [CrossRef] [Green Version]
- Yugi, K.; Kubota, H.; Hatano, A.; Kuroda, S. Trans-omics: How to reconstruct biochemical networks across multiple “omic” layers. Trends Biotechnol. 2016, 34, 276–290. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, T.V.; Harlow, H.B. Integromics: Challenges in data integration. Genome Biol. 2002, 3, 1–3. [Google Scholar] [CrossRef]
- Gehlenborg, N.; O’Donoghue, S.I.; Baliga, N.S.; Goesmann, A.; Hibbs, M.A.; Kitano, H.; Kohlbacher, O.; Neuweger, H.; Schneider, R.; Tenenbaum, D.; et al. Visualization of omics data for systems biology. Nat. Methods 2010, 7, S56–S68. [Google Scholar] [CrossRef]
- Cambiaghi, A.; Ferrario, M.; Masseroli, M. Analysis of metabolomic data: Tools, current strategies and future challenges for omics data integration. Brief. Bioinform. 2017, 18, 498–510. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.J.; Lu, Z.M.; Yu, N.H.; Xu, W.; Li, G.Q.; Shi, J.S.; Xu, Z.H. HS-SPME/GC-MS and chemometrics for volatile composition of Chinese traditional aromatic vinegar in the Zhenjiang region. J. Inst. Brew. 2012, 118, 133–141. [Google Scholar] [CrossRef]
- Wang, Z.M.; Lu, Z.M.; Yu, Y.J.; Li, G.Q.; Shi, J.S.; Xu, Z.H. Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar. Food Microbiol. 2015, 50, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Naziroǧlu, M.; Güler, M.; Özgül, C.; Saydam, G.; Küçükayaz, M.; Sözbir, E. Apple cider vinegar modulates serum lipid profile, erythrocyte, kidney, and liver membrane oxidative stress in ovariectomized mice fed high cholesterol. J. Membr. Biol. 2014, 247, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.E.; Yeap, S.K.; Lim, K.L.; Yusof, H.M.; Beh, B.K.; Tan, S.W.; Ho, W.Y.; Sharifuddin, S.A.; Jamaluddin, A.; Long, K.; et al. Antioxidant effects of pineapple vinegar in reversing of paracetamol-induced liver damage in mice. Chin. Med. 2015, 10, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohn, M.J. You are what you eat. Science 1999, 283, 335–336. [Google Scholar] [CrossRef]
- Tu, P.; Shi, S.; Jiang, Y. Strategies and approaches on exploring material basis of Chinese materia medica. Chin. Tradit. Herb. Drugs 2012, 43, 209–215. (In Chinese) [Google Scholar]
- Wang, J.; Wei, N.; Zhao, H.; Huang, H.; Jiang, M.; Bai, G.; Luo, G. Global chemome study by LC coupled with DAD and ESI-Q-TOF MS of a composite traditional chinese medicine Qishenyiqi dropping pills. Chromatographia 2010, 72, 431–440. [Google Scholar] [CrossRef]
- Wei, Z.; Fu, Q.; Cai, J.; Huan, L.; Zhao, J.; Shi, H.; Jin, Y.; Liang, X. Evaluation and application of a mixed-mode chromatographic stationary phase in two-dimensional liquid chromatography for the separation of traditional Chinese medicine. J. Sep. Sci. 2016, 39, 2221–2228. [Google Scholar] [CrossRef]
- Song, Y.; Song, Q.; Li, J.; Zhang, N.; Zhao, Y.; Liu, X.; Jiang, Y.; Tu, P. An integrated strategy to quantitatively differentiate chemome between Cistanche deserticola and C. tubulosa using high performance liquid chromatography-hybrid triple quadrupole-linear ion trap mass spectrometry. J. Chromatogr. A 2016, 1429, 238–247. [Google Scholar] [CrossRef]
- Lan, K.; Xie, G.; Jia, W. Towards polypharmacokinetics: Pharmacokinetics of multicomponent drugs and herbal medicines using a metabolomics approach. Evid. Based Complement. Altern. Med. 2013, 2013, 819147. [Google Scholar] [CrossRef] [Green Version]
- Jia, W.; Fan, T.; Wang, X.; Xie, G. The polypharmacokinetics of herbal medicines. Science 2015, 350, S76–S79. [Google Scholar]
- Feng, W.; Ao, H.; Peng, C.; Yan, D. Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol. Res. 2019, 142, 176–191. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Luo, L.; Zhong, M.; Xie, T.; Liu, Y.; Li, H.; Ni, J. Gut microbiota: A new angle for traditional herbal medicine research. RSC Adv. 2019, 9, 17457–17472. [Google Scholar] [CrossRef] [Green Version]
- Shneider, A.M. Four stages of a scientific discipline; Four types of scientist. Trends Biochem. Sci. 2009, 34, 217–223. [Google Scholar] [CrossRef] [PubMed]
Geographical Distribution | Vinegar | Raw Material | Fermentation Technology |
---|---|---|---|
America | Malt vinegar | Barley, corn malt | LSF |
Austria | Apple cider vinegar | Apple | LSF |
Brazil | Alcohol vinegar | Alcohol | LSF |
China | Shanxi aged vinegar (SAV) | Sorghum, barley, pea, bran, rice hull | SSF |
China | Zhenjiang aromatic vinegar (ZAV) | Rice, glutinous rice, pea, wheat, barley, rice hull | SSF |
China | Huixian persimmon vinegar | Persimmon, bran | SSF |
England | Malt vinegar | Barley malt | LSF |
France | Champagne wine vinegar | White grape | LSF |
France | Red wine vinegar | Red grape | LSF |
France | Walnut grape balsamic vinegar | Grape, walnut powder | LSF |
Germany | Apple cider vinegar | Apple | LSF |
Germany | White wine vinegar | White grape | LSF |
Greece | Red wine vinegar | Grape, honey | LSF |
Italy | Traditional balsamic vinegar (TBV) | Grape | LSF |
Italy | White wine vinegar | White grape | LSF |
Italy | Apple cider vinegar | Apple | LSF |
Japan | Black rice vinegar | Brown rice | LSF |
Japan | Kombucha vinegar | Kombucha tea | LSF |
Malaysia | Nipa palm vinegar | Nipa palm sap | LSF |
Mexico | Apple cider vinegar | Apple | LSF |
New Zealand | Apple cider vinegar | Apple, honey | LSF |
Portugal | Grape vinegar | Grape | LSF |
Philippines | Coconut vinegar | Coconut sap | LSF |
Philippines | Cane vinegar | Sugarcane juice | LSF |
Spain | Sherry vinegar | Sherry wine | LSF |
Spain | Sweet Moscatel vinegar | Sweet Moscatel wine | LSF |
South Korea | Glutinous rice vinegar | Glutinous rice | LSF |
Turkey | Grape vinegar | Grape | LSF |
Turkey | Pomegranate vinegar | Pomegranate | LSF |
Vietnam | Rice vinegar | Rice | LSF |
NO. | Name | Frequency | Percentage % |
---|---|---|---|
Subject categories | |||
1 | Food Science & Technology | 445 | 50.40 |
2 | Chemistry | 247 | 27.97 |
3 | Chemistry, Applied | 123 | 13.93 |
4 | Biotechnology & Applied Microbiology | 113 | 12.80 |
5 | Agriculture | 96 | 10.87 |
6 | Nutrition & Dietetics | 88 | 9.97 |
7 | Chemistry, Analytical | 84 | 9.51 |
8 | Biochemistry & Molecular Biology | 70 | 7.93 |
9 | Microbiology | 67 | 7.59 |
10 | Agriculture, Multidisciplinary | 55 | 6.23 |
Countries | |||
1 | China | 261 | 29.56 |
2 | Japan | 109 | 12.34 |
3 | Spain | 101 | 11.44 |
4 | Italy | 83 | 9.40 |
5 | South Korea | 72 | 8.15 |
6 | USA | 58 | 6.57 |
7 | Turkey | 31 | 3.51 |
8 | Brazil | 29 | 3.28 |
9 | Malaysia | 19 | 2.15 |
10 | Germany | 17 | 1.93 |
Institutions | |||
1 | University of Modena and Reggio Emilia (Italy) | 35 | 3.96 |
2 | University of Seville (Spain) | 27 | 3.05 |
3 | University of Cadiz (Spain) | 25 | 2.83 |
4 | Jiangnan University (China) | 19 | 2.15 |
5 | Jiangsu University (China) | 18 | 2.04 |
6 | Chinese Academy of Sciences (China) | 17 | 1.92 |
7 | University of Rovira i Virgili (Spain) | 15 | 1.70 |
8 | Tianjin University of Science and Technology (China) | 13 | 1.47 |
9 | China Agricultural University (China) | 13 | 1.47 |
10 | Spanish National Research Council (CSIC, Spain) | 13 | 1.47 |
NO. | Journal Name | JCR Category a | Rank in Category | Quartile in Category | IF | Eigenfactor Score | Average JIF Percentile | Frequency | Percentage % |
---|---|---|---|---|---|---|---|---|---|
1 | Food Chemistry | Chemistry, Applied | 5/71 | Q1 | 5.399 | 0.10387 | 92.600 | 39 | 4.41 |
2 | Journal of Agricultural and Food Chemistry | Agriculture, Multidisciplinary | 3/56 | Q1 | 3.571 | 0.06656 | 85.384 | 34 | 3.85 |
3 | Food Science and Biotechnology | Food Science & Technology | 108/135 | Q4 | 0.888 | 0.00355 | 20.370 | 19 | 2.15 |
4 | Journal of the Japanese Society for Food Science and Technology-Nippon Shokuhin Kagaku Kogaku Kaishi | Food Science & Technology | 129/135 | Q4 | 0.262 | 0.00023 | 4.815 | 18 | 2.04 |
5 | Journal of the Science of Food and Agriculture | Agriculture, Multidisciplinary | 9/56 | Q1 | 2.422 | 0.01875 | 73.883 | 18 | 2.04 |
6 | European Food Research and Technology | Food Science & Technology | 58/135 | Q2 | 2.056 | 0.00607 | 57.407 | 17 | 1.92 |
7 | International Journal of Food Microbiology | Food Science & Technology | 16/135 | Q1 | 4.006 | 0.01961 | 79.786 | 17 | 1.92 |
8 | Journal of Food Engineering | Engineering, Chemical | 28/138 | Q1 | 3.625 | 0.01831 | 80.592 | 16 | 1.81 |
9 | Food Analytical Methods | Food Science & Technology | 45/135 | Q2 | 2.413 | 0.00854 | 67.037 | 14 | 1.58 |
10 | Food Control | Food Science & Technology | 11/135 | Q1 | 4.248 | 0.02984 | 92.222 | 14 | 1.58 |
Cluster # | Size | Silhouette | Label (LSI a) | Label (LLR a) | Label (MI a) | Mean (Year) |
---|---|---|---|---|---|---|
0 | 83 | 0.737 | Modena | Multivariate calibration | Powerful combination | 2004 |
1 | 75 | 0.692 | Vinegar | Fermented beverage | Pomegranate vinegar | 2012 |
2 | 73 | 0.810 | Acetic acid bacteria | Vinegar production | Pomegranate vinegar | 2007 |
3 | 57 | 0.602 | Maceration | New sherry | Oat vinegar | 2010 |
4 | 53 | 0.623 | Vinegar | Bioactive compound | Aroma constituent | 2014 |
5 | 43 | 0.842 | Vinegar | Bacterial diversity | Benchmarking laboratory-scale pomegranate vinegar | 2012 |
6 | 36 | 0.945 | Vinegar | Healthy subject | Vinegar intake | 2003 |
7 | 36 | 0.868 | Sorptive extraction | Typical aroma | Concentrated fruit vinegar | 2005 |
8 | 33 | 0.911 | Protected designation | Candida species | Spanish wine vinegar | 2011 |
9 | 21 | 0.955 | Vinegar | Euphorbia kansui | Cell membrane constituent | 2013 |
11 | 13 | 0.988 | Characterization | Electronic nose | Using gas chromatography | 1994 |
12 | 11 | 0.991 | Vinegar residue | Vinegar residue | Using vinegar residue biochar | 2014 |
Cluter # | Cited References | Citing Articles | ||
---|---|---|---|---|
Cites | Cited References | Coverage % | First Author (Year) Title | |
1 & 6 | 40 | [11] | 27 | Li, S. (2015) Microbial diversity and their roles in the vinegar fermentation process |
24 | [67] | 9 | Lynch, K. M. (2019) Physiology of acetic acid bacteria and their role in vinegar and fermented beverages | |
21 | [68] | 8 | Chen, H. Y. (2016) Vinegar functions on health: constituents, sources, and formation mechanisms | |
20 | [69] | 11 | Leeman, M. (2005) Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects | |
19 | [70] | 10 | Ostman, E. (2005) Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects | |
18 | [71] | 5 | Johnston, C. S. (2005) Vinegar and peanut products as complementary foods to reduce postprandial glycemia | |
3 & 4 | 18 | [35] | 24 | Li, S. (2015) Microbial diversity and their roles in the vinegar fermentation process |
18 | [72] | 5 | Aykin, E. (2015) Bioactive components of mother vinegar | |
17 | [73] | 4 | Cejudo-Bastante, M. J. (2013) Study of the volatile composition and sensory characteristics of new sherry vinegar-derived products by maceration with fruits | |
16 | [74] | 9 | Kawa-Rygielska, J. (2018) Bioactive compounds in cornelian cherry vinegars | |
15 | [75] | 8 | Xia, T. (2018) Evaluation of nutritional compositions, bioactive compounds, and antioxidant activities of Shanxi aged vinegars during the aging process | |
14 | [76] | 8 | Xia, T. (2018) Shanxi aged vinegar prevents alcoholic liver injury by inhibiting CYP2E1 and NADPH oxidase activities | |
0 | 24 | [45] | 12 | Liu, F. (2011) Variety identification of rice vinegars using visible and near infrared spectroscopy and multivariate calibrations |
22 | [77] | 10 | Liu, F. (2011) Detection of organic acids and pH of fruit vinegars using near-infrared spectroscopy and multivariate calibration | |
18 | [47] | 8 | Chen, Q. S. (2012) Simultaneous measurement of total acid content and soluble salt-free solids content in Chinese vinegar using near-infrared spectroscopy | |
2 | 26 | [78] | 19 | Fernandez-Perez, R. (2010) Rapid molecular methods for enumeration and taxonomical identification of acetic acid bacteria responsible for submerged vinegar production |
21 | [79] | 16 | Fernandez-Perez, R. (2010) Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method | |
20 | [52] | 12 | Torija, M. J. (2010) Identification and quantification of acetic acid bacteria in wine and vinegar by TaqMan-MGB probes | |
5 | 34 | [56] | 7 | Nie, Z. Q. (2017) Unraveling the correlation between microbiota succession and metabolite changes in traditional Shanxi aged vinegar |
29 | [55] | 6 | Gan, X. (2017) Diversity and dynamics stability of bacterial community in traditional solid-state fermentation of Qishan vinegar | |
19 | [57] | 5 | Milanovic, V. (2018) Profiling white wine seed vinegar bacterial diversity through viable counting, metagenomic sequencing and PCR-DGGE | |
7 | 8 | [60] | 17 | Callejon, R. M. (2008) Defining the typical aroma of sherry vinegar: sensory and chemical approach |
8 | [80] | 17 | Callejon, R. M. (2008) Targeting key aromatic substances on the typical aroma of sherry vinegar | |
8 | [81] | 9 | Callejon, R. M. (2008) Optimization and validation of headspace sorptive extraction for the analysis of volatile compounds in wine vinegars |
References | Centrality | Document Type | Cluster # | Article Contents |
---|---|---|---|---|
[83] | 0.13 | Journal article | 3 | Derived sherry wine vinegar was obtained by maceration with fruits; polyphenolic content and antioxidant activity were determined. |
[84] | 0.11 | Journal article | 3 | The development of an orange-based vinegar; the polyphenolic and volatile content were determined. |
[45] | 0.09 | Journal article | 0 | A gas chromatographic method to determine the sugars and organic acids in vinegar was developed; a chemometric technique (Tucker 3) was applied in data analysis. |
[77] | 0.08 | Review | 0 | Wine vinegar processing technology (including bacterial strain, acetification system design optimum conditions), authentication, and quality evaluation were reviewed. |
[52] | 0.07 | Journal article | 2 | Isolation and characterization of acetic acid bacteria (AAB) from TBV. |
[78] | 0.07 | Review | 2 | Phenotypic traits of AAB in TBV production, TBV defects, and selection criteria for AAB starter culture were reviewed. |
[85] | 0.07 | Journal article | 0 | The phenolic content and antioxidant activity of high-molecular-weight melanoidins in ZAV were determined. |
[47] | 0.07 | Journal article | 0 | An 1H NMR method to simultaneously determine the main organic components of vinegars was developed. |
[60] | 0.06 | Journal article | 7 | A new technique (SBSE) for extracting volatile compounds of vinegar was introduced, and a comparison of this method with solid-phase microextraction (SPME) method was made. |
[86] | 0.06 | Journal article | 1 | The antiglycemic properties of vinegar in adults were evaluated. |
References | Citation Counts | Document Type | Cluster # | Article Contents |
---|---|---|---|---|
[11] | 40 | Review | 1 | The health effects of vinegar were reviewed. |
[56] | 34 | Journal article | 5 | Microorganisms including yeasts, lactic acid bacteria (LAB), and AAB were isolated and characterized based on phenotypic and genotypic approaches. |
[55] | 29 | Journal article | 5 | Denaturing gradient gel electrophoresis combined with clone library was used to analyze the microbial diversity during the fermentation process of ZAV. |
[78] | 26 | Review | 2 | Phenotypic traits of AAB in TBV production, TBV defects, and selection criteria for AAB starter culture were reviewed. |
[45] | 24 | Journal article | 0 | A gas chromatographic method to determine the sugars and organic acids in vinegar was developed; a chemometric technique (Tucker 3) was applied in data analysis. |
[67] | 24 | Journal article | 1 | The antiobesity effect of vinegar in adults was evaluated. |
[77] | 22 | Review | 0 | Wine vinegar processing technology (including bacterial strain, acetification system design optimum conditions), authentication, and quality evaluation were reviewed. |
[79] | 21 | Journal article | 2 | The application of selected Acetobacter pasteurianus strains for TBV production was assessed, and its persistence and species succession were evaluated. |
[68] | 21 | Journal article | 1 | The hypolipidemic effect of apple cider vinegars produced with and without inclusion of maceration was evaluated in high-cholesterol-fed rats. |
[69] | 20 | Review | 1 | Varieties, production, volatile compounds, organic acids, bioactive compounds, and health benefits of vinegar were reviewed. |
References | Strength of Burst | Document Type | Duration of Burst | Cluster # | Article Contents |
---|---|---|---|---|---|
[77] | 10.60 | Review | ▂▂▂▂▂▂▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂ | 0 | Wine vinegar processing technology (including bacterial strain, acetification system design optimum conditions), authentication, and quality evaluation were reviewed. |
2004–2010 | |||||
[11] | 10.25 | Review | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ | 1 | The health effects of vinegar were reviewed. |
2016–2019 | |||||
[70] | 7.43 | Journal article | ▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂ | 6 | The prevention of hyperlipidemia by dietary acetic acid in high-cholesterol fed rats was evaluated. |
2009–2014 | |||||
[52] | 7.30 | Journal article | ▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂▂▂ | 2 | Isolation and characterization of AAB from TBV. |
2008–2010 | |||||
[43] | 7.18 | Journal article | ▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂ | 0 | The efficiency of high performance liquid chromatography (HPLC) and GC combined with a solid-phase extraction method with C18 and NH(2) exchangers to determine the carboxylic acids was evaluated. |
2004–2008 | |||||
[87] | 6.89 | Journal article | ▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▂▂▂▂▂ | 0 | A near-infrared spectroscopy method was developed to quantify the degree of adulteration of wheat flours. |
2007–2014 | |||||
[48] | 6.66 | Journal article | ▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂▂▂ | 0 | A near-infrared spectroscopy method for quality control of wine vinegar through the determination of 14 parameters was developed. |
2009–2012 | |||||
[88] | 6.21 | Review | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂ | 1 | Scientific evidences for medicinal uses of vinegar, especially as an antiglycemic agent, were reviewed. |
2010–2014 | |||||
[89] | 6.05 | Journal article | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ | 1 | Antioxidant activity, antimicrobial, mineral, volatile profiles, and microbiota of 20 traditional Turkey vinegars were characterized. |
2017–2019 | |||||
[90] | 5.93 | Journal article | ▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂ | 6 | The antihypertensive effect of acetic acid and vinegar on spontaneously hypertensive rats was evaluated. |
2005–2009 |
References | Centrality | Strength of Burst | Sigma | Document Type | Duration of Burst | Cluster # | Theme Panels |
---|---|---|---|---|---|---|---|
[57] | 0.01 | 3.33 | 1.05 | Journal article | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃ | 5 | Microorganisms |
2015–2019 | |||||||
[11] | 0.05 | 10.25 | 1.66 | Review | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ | 1 | Health functions |
2016–2019 | |||||||
[35] | 0.01 | 5.19 | 1.05 | Journal article | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ | 4 | Substances, health functions |
2016–2019 | |||||||
[58] | 0.01 | 4.68 | 1.03 | Journal article | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ | 5 | Microorganisms |
2016–2019 | |||||||
[108] | 0.02 | 4.03 | 1.10 | Review | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ | 1 | Health functions |
2016–2019 | |||||||
[64] | 0.02 | 3.34 | 1.08 | Journal article | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ | 5 | Substances |
2016–2019 | |||||||
[74] | 0.01 | 3.21 | 1.02 | Journal article | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ | 3 | Substances |
2016–2019 | |||||||
[89] | 0.00 | 6.05 | 1.00 | Journal article | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ | 1 | Substances, microorganisms, health functions |
2017–2019 | |||||||
[115] | 0.01 | 5.18 | 1.04 | Journal article | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ | 4 | Substances |
2017–2019 | |||||||
[31] | 0.00 | 4.31 | 1.01 | Journal article | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ | 4 | Substances |
2017–2019 | |||||||
[116] | 0.00 | 4.31 | 1.01 | Journal article | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ | 5 | Substances, microorganisms |
2017–2019 | |||||||
[117] | 0.00 | 3.46 | 1.00 | Journal article | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ | 1 | Health functions |
2017–2019 | |||||||
[118] | 0.00 | 3.45 | 1.01 | Journal article | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ | 1 | Health functions |
2017–2019 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.-L.; Zheng, Y.; Xia, M.-L.; Wu, Y.-N.; Liu, X.-J.; Xie, S.-K.; Wu, Y.-F.; Wang, M. Knowledge Domain and Emerging Trends in Vinegar Research: A Bibliometric Review of the Literature from WoSCC. Foods 2020, 9, 166. https://doi.org/10.3390/foods9020166
Zhang X-L, Zheng Y, Xia M-L, Wu Y-N, Liu X-J, Xie S-K, Wu Y-F, Wang M. Knowledge Domain and Emerging Trends in Vinegar Research: A Bibliometric Review of the Literature from WoSCC. Foods. 2020; 9(2):166. https://doi.org/10.3390/foods9020166
Chicago/Turabian StyleZhang, Xiang-Long, Yu Zheng, Meng-Lei Xia, Ya-Nan Wu, Xiao-Jing Liu, San-Kuan Xie, Yan-Fang Wu, and Min Wang. 2020. "Knowledge Domain and Emerging Trends in Vinegar Research: A Bibliometric Review of the Literature from WoSCC" Foods 9, no. 2: 166. https://doi.org/10.3390/foods9020166
APA StyleZhang, X. -L., Zheng, Y., Xia, M. -L., Wu, Y. -N., Liu, X. -J., Xie, S. -K., Wu, Y. -F., & Wang, M. (2020). Knowledge Domain and Emerging Trends in Vinegar Research: A Bibliometric Review of the Literature from WoSCC. Foods, 9(2), 166. https://doi.org/10.3390/foods9020166